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Models of f(R) cosmic acceleration that evade solar system tests
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We study a class of metric-variation f(R) models that accelerates the expansion without a cosmological
constant and satisfies both cosmological and solar-system tests in the small-field limit of the parameter
space. Solar-system tests alone place only weak bounds on these models, since the additional scalar
degree of freedom is locked to the high-curvature general-relativistic prediction across more than 25
orders of magnitude in density, out through the solar corona. This agreement requires that the galactic halo
be of sufficient extent to maintain the galaxy at high curvature in the presence of the low-curvature
cosmological background. If the galactic halo and local environment in f(R) models do not have
substantially deeper potentials than expected in ACDM, then cosmological field amplitudes [fz| =
1076 will cause the galactic interior to evolve to low curvature during the acceleration epoch. Viability of
large-deviation models therefore rests on the structure and evolution of the galactic halo, requiring
cosmological simulations of f(R) models, and not directly on solar-system tests. Even small deviations
that conservatively satisfy both galactic and solar-system constraints can still be tested by future, percent-
level measurements of the linear power spectrum, while they remain undetectable to cosmological-
distance measures. Although we illustrate these effects in a specific class of models, the requirements on

f(R) are phrased in a nearly model-independent manner.
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L. INTRODUCTION

Cosmic acceleration, in principle, can arise not from
dark energy—a new, exotic form of matter—but rather
from a modification of gravity that appears on large scales.
The addition of a nonlinear function of the Ricci scalar R to
the Einstein-Hilbert action has been demonstrated to cause
acceleration for a wide variety of f(R) functions [1-62].

What is less clear in the literature is whether any pro-
posed metric-variation f(R) modification can simulta-
neously satisfy stringent solar-system bounds on
deviations from general relativity as well as accelerate
the expansion at late times [63—74]. Chiba [75] showed
that the fundamental difficulty is that f(R) gravity intro-
duces a scalar degree of freedom with the same coupling to
matter as gravity that, at the background cosmological
density, is extremely light. This light degree of freedom
produces a long-range fifth force or, equivalently, a disso-
ciation of the curvature of the space-time from the local
density. As a result, the metric around the sun is predicted
to be different than is implied by observations. This prob-
lem has been explicitly proven to exist for a wide variety of
f(R) models, if the sun is placed into a background of
cosmological density [76,77].

If high density could be reassociated with high curvature
this difficulty would disappear. The scalar degree of free-
dom would become massive in the high-density solar
vicinity and hidden from solar-system tests by the so-called
chameleon mechanism [78—82]. This requires a form for
f(R) where the mass squared of the scalar is large and
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positive at high curvature [62]. Such a condition is also
required for agreement with high-redshift cosmological
tests from the cosmic microwave background (CMB)
[83,84]. It should be considered as a necessary condition
for a successful f(R) model; it is violated in the original
inverse-curvature model and many other generalizations
(e.g. [85]).

Faulkner et al. [80] analyzed a class of models where
solar-system tests of gravity could be evaded, but only at
the price of reintroducing the cosmological constant as a
constant piece of f(R) that drives the cosmic acceleration
but is unrelated to local modifications of gravity. Moreover,
for these models to satisfy local constraints, all aspects of
the cosmology are essentially indistinguishable from gen-
eral relativity with a cosmological constant.

In this paper, we introduce a class of f(R) models that do
not contain a cosmological constant and yet are explicitly
designed to satisfy cosmological and solar-system con-
straints in certain limits of parameter space. We use these
models to ask under what circumstances it is possible to
significantly modify cosmological predictions and yet
evade all local tests of gravity.

We begin in Sec. II by introducing the model class, its
effect on the background expansion history and the growth
of structure. We show that cosmological tests of the growth
of structure can, in principle, provide extremely precise
tests of f(R) gravity that rival local constraints and comple-
ment them in a very different range in curvature. We then
analyze local tests of gravity in Sec. Il and show that solar-
system tests alone are fairly easy to evade, provided grav-
ity behaves similarly to general relativity in the galaxy.
However, if cosmological deviations from general relativ-
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ity are required to be large, the latter condition is satisfied
only with extreme and testable changes to the galactic halo.
We discuss these results in Sec. I'V.

IL. f(R) COSMOLOGY

In this section, we discuss the cosmological impact of
f(R) models of the acceleration. We begin in Sec. I A by
introducing a class of models that accelerate the expansion
without a true cosmological constant but nonetheless in-
cludes the phenomenology of ACDM as a limiting case.
We then describe the background equations of motion
(Sec. I B) and their representation as an equation for the
scalar degree of freedom (Sec. II C). Finally, we calculate
the expansion history (Sec. II D) and linear power spectrum
(Sec. IIE) in our class of f(R) models.

A. Model

We consider a modification to the Einstein-Hilbert ac-
tion of the form [86]

5 — f d4x\/—_g[R;7:2(R) " £m} (1)

where R is the Ricci scalar, which we will refer to as the
curvature, k2 = 8#7G, and L, is the matter Lagrangian.
Note that a constant f is simply a cosmological constant.
We work in the Jordan frame throughout this paper.

We choose the functional form of f(R) to satisfy certain
observationally desirable properties. First, the cosmology
should mimic ACDM in the high-redshift regime where it
is well tested by the CMB. Second, it should accelerate the
expansion at low redshift with an expansion history that is
close to ACDM, but without a true cosmological constant.
Third, there should be sufficient degrees of freedom in the
parametrization to encompass as broad a range of low-
redshift phenomena as is currently observationally accept-
able. Finally, for the purposes of constraining small devia-
tions from general relativity with cosmological and solar-
system tests, it should include the phenomenology of
ACDM as a limiting case.

These requirements suggest that we take

%Elgo f(R) = const, Ilell% f(R) =0, (2)

which can be satisfied by a general class of broken power
law models,

ci(R/m?)"

I == ey 1

3)

with n > 0, and for convenience we take the mass scale

2_
» _ K"Po
m:

Q,,h?
= (8315 Mpc) ?( -2}, 4
8315 Mpo) (1) @
where p, = p(Ina = 0) is the average density today. ¢,
and ¢, are dimensionless parameters. It is useful to note
that
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The sign of f(R) is chosen so that its second derivative

f(R)
dR2

Srr >0 (6)
for R > m?, to ensure that, at high density, the solution is
stable at high curvature [62].

Together, these conditions imply that cosmological tests
at high redshift remain the same as in general relativity
(GR). For example, the physical matter density (0,,h>
inferred from the CMB using GR remains valid for the
f(R) models. As such, m is a better choice of scale than H,,
since it does not vary for f(R) models in this class. A few
examples of the f(R) functions are shown in Fig. 1.

There is no true cosmological constant introduced in this
class, unlike in the models of [87]. However, at curvatures
high compared with m?, f(R) may be expanded as

2 n
lim f(R) =~ — L m? + C—;m’l(m—) NG
m?/R—0 CH c5 R
Thus the limiting case of ¢;/c3 — 0 at fixed ¢,/c, is a
cosmological constant in both cosmological and local tests
of gravity, as we shall see. Moreover, at finite ¢;/c3, the
curvature freezes into a fixed value and ceases to decline
with the matter density, creating a class of models that
accelerate in a manner similar to ACDM. These models
therefore also do not exhibit the problems of models with
the form f(R) = u*/R. (Note the sign difference from the
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FIG. 1. Functional form of f(R) for n = 1, 4, with normaliza-

tion parameters c;, ¢, given by |fgol = 0.01 and a matching to
ACDM densities (see Sec. IID). These functions transition from
zero to a constant as R exceeds m?. The sharpness of the
transition increases with n and its position increases with
| frol. During cosmological expansion, the background only
reaches R/m? ~ 40 for |fro| < 1 and so the functional depen-
dence for smaller R/m? has no impact on the phenomenology.
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original inverse-curvature CDTT model [1].) While these
models can accelerate the expansion, they evolve in the
future into an unstable regime where 1 + fr < 0 and also
do not contain ACDM as a limiting case of the parameter
space [84]. Note that, at high curvature, n = 1 resembles
these models with the addition of a cosmological constant.
Likewise n = 2 resembles the inverse-curvature squared
model [34] plus a cosmological constant.

B. Background evolution equations

Variation of the action (1) with respect to the metric
yields the modified Einstein equations

Gap t frRap — (JEC - DfR>ga,B = Vo Vpfr = KTyp,
(®)
where the field,
df(R)
drR ’

will play a central role in the analyses below.

Since modifications only appear at low redshift, we take
a matter-dominated stress-energy tensor. For the back-
ground Friedmann-Robertson-Walker (FRW) metric,

fr= 9

R = 12H? + 6HH', (10)

where H(lna) is the Hubble parameter and ' = d/dIna.
The modified Einstein equations become the modified
Friedmann equation
2 / 2y 4 1 2 ,_ kP
To solve these equations, we reexpress them in terms of
parameters whose values vanish in the high-redshift limit,
where f(R) modifications are negligible,

R

Ya=—>5—a’, YR —2—3a_3. (12)
m m

Equations (10) and (11) become a coupled set of ordinary
differential equations,

Vi =k — 4y (13)
1 1
yu + a3 m*fre

1 1 1
X [)’H _fR<6)’R — YH _Ea%) +6%} (14)

Ve =9a" -

To complete this system, we take the initial conditions at
high redshift to be given by detailed balance of perturbative
corrections to R = k2p.

The impact of f(R) on the expansion history can be
recast as an effective equation of state for a dark energy
model with the same history,
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Note that wgg is not the total equation of state defined by
H'/H, as it excludes the contribution of the matter to the
expansion.

The two equations (13) and (14) combine in the high-
curvature limit—a 3 > y,, yp—to form

v+ Iy + — yu = driving terms,  (16)

1
3m2fRRa
where [...] contains a time-dependent friction term whose
exact nature is not relevant for the qualitative argument and
the driving terms involve the matter density. As shown in
[62], a critical requirement of the model is that fzr >0
such that Eq. (16) becomes an oscillator equation with
real—not imaginary—mass. For the background, it is
convenient to express this as the dimensionless quantity

H
B= fiR/—,. (17)
1+ fr H
This oscillator equation and the parameter B have a simple
interpretation in terms of the scalar field f as we shall now
see.

C. Field equations

The impact of f(R) can be alternatively viewed in terms
of the field equation for f». The trace of Eq. (8) can be
interpreted as the equation of motion for fp,

30fr — R+ frR — 2f = —K?p. (18)
This equation can be recast in the form
O Verr
Ofr = , 19
fr e (19)
with the effective potential
=_—(R— frR +2f — K’p). 2
ar. “3R—SRT2A = p) (0
The effective potential has an extremum at
R — Rfg + 2f = k%p. (1)

In the high-curvature regime, where |fgz| <1 and
|f/R| < 1, the extremum lies at the general-relativistic
expectation of R = «?p. The curvature at the extremum is
given by

2
2 :aVeff:l<1+fR_R> 22)

m
I afr 3\ frer
and hence the extremum is a minimum for B >0 and a

maximum for B < 0 in the high-curvature limit with |fg],
| frrR| < 1. Finally the Compton wavelength

/\fR = m]?Rl (23)
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implies that, in this limit,
B2~ H, (24)

such that B'/2 is essentially the Compton wavelength of f»
at the background curvature in units of the horizon length.
The Compton wavelength plays an important role in both
cosmological and local tests of f(R) models, as we shall
see.

D. Expansion history

We now evaluate the expansion histories for the class of
f(R) models in Eq. (3). First, we would like to narrow the
parameter choices to yield expansion histories that are
observationally viable, i.e. that deviate from ACDM in
the effective equation of state (15) by no more than |1 +
weirl = 0.2 during the acceleration epoch. This equates to
choosing a value for the field at the present epoch fry =
fr(lna = 0) < 1 or, equivalently, R, > m?. In this case,
the approximation of Eq. (7) applies for the whole past
expansion history and the field is always near the minimum
of the effective potential

R=1rK’p —2f = K2p+2&m2, (25)
2

where the 2f term is nearly constant and mimics the energy
density of a cosmological constant. Thus, to approximate
the expansion history of ACDM with a cosmological con-
stant (), and matter density €),, with respect to a fiducial
critical value, we set

o 69/‘, (26)

m

(&)

leaving two remaining parameters, n and c¢;/c5 =
60 A/czﬁm, to control how closely the model mimics
ACDM. Larger n mimics ACDM until later in the expan-
sion history; smaller ¢;/c3 mimics it more closely. Note
that, since the critical density and Hubble parameter de-
pend on the f modification, flm is only the true value in
the limit

lim Q,,

c1/e3—0

=Q0,, 27)

whereas the matter density in physical units remains un-
changed, Q,,H3 = Q,,H2.
For the flat ACDM expansion history

Q

R~ 3m2<a’3 +45 A>, (28)

Qm

and the field takes on a value of
2

cp(m n+1
= —n—|— . 29
fo= ] ( . ) (29)

At the present epoch
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12 ci /12 —n—1
R %m2<~——9>, = —n—1<~——9> R
0 fRO C% Qm

__ 6n(n+1) C1<12
S cif e

—n—2
_— = 9 . 30
(1 + fRO)Qm C% > ( )

Qﬂ’l
In particular, for Q,, = 0.24 and O, = 0.76, Ry = 41m?,
fro= —nc;/c3/(41)"*! and By = —0.61(n + 1)fg, for
|frol << 1. The consequences of cosmological and solar-
system tests can be phrased in a nearly model-independent
way by quoting the field value f;. Consequently, we will
hereafter parametrize the amplitude c;/c3 through the
cosmological field value today, fgo-

In Fig. 2, we show several examples of the background
evolution of fz. For a fixed present value frq, a larger n
produces a stronger suppression of the field at high redshift
and a larger value of B relative to f. The steepness of this
suppression will play an important role for galactic tests in
Sec. III D.

The effective equations of state for these models are
shown in Fig. 3. Deviations from a cosmological constant,
weis = — 1, are of the same order of magnitude as fgq. This
class of models has a phantom effective equation of state,
Wegr < — 1, at high redshift and crosses the phantom divide
at a redshift that decreases with increasing n. Note that an
effective equation of state that evolves across the phantom
divide is a smoking gun for modified gravity acceleration
or dark energy with noncanonical degrees of freedom or
couplings [88-91].

E. Linear perturbations

Given an expansion history that defines fr(Ina) and
B(Ina), the evolution of linear perturbations can be solved
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FIG. 2. Cosmological evolution of the scalar field f and the
Compton wavelength parameter B for models with n = 1, 4.
Both parameters control observable deviations from general
relativity and deviations decline rapidly with redshift as n
increases.
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FIG. 3. Evolution of the effective equation of state forn = 1, 4
for several values of the cosmological field amplitude today, f -
The effective equation of state crosses the phantom divide
wegr = — 1 at a redshift that decreases with increasing n leading
potentially to a relatively unique observational signature of these
models.

using the techniques of [62]. The principal feature of the
linear evolution is that, once the wavelength of the pertur-
bation becomes smaller than the Compton wavelength in
the background

k

B2 >,

oA 31

strong deviations from the GR growth rate appear. In
particular, the space-space ® and time-time ¥V pieces of
the metric fluctuations in the Newtonian (longitudinal)
gauge evolve to a ratio

b

1
vy
implying the presence of order-unity deviations from GR.

The consequence of this relative enhancement of the
gravitational potential W is an increase in the growth rate
of linear density perturbations on scales below the
Compton wavelength. If the Compton wavelength is longer
than the nonlinear scale of a few Mpc, this transition leads

(32)
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to a strong and potentially observable deviation in the
matter power spectrum. Even percent-level deviations in
the power spectrum are, in principle, detectable with future
weak-lensing surveys. If the Compton wavelength ap-
proaches the horizon, it can substantially alter the CMB
power spectrum as well [62].

In Fig. 4, we illustrate this effect for n = 1 and n = 4
models. Deviations occur in the linear regime down to a
field amplitude of |fgx| ~ 1077. For these small-field am-
plitudes, the expansion history and hence distance mea-
sures of the acceleration are indistinguishable from a
cosmological constant with any conceivable observational
probe. Nonetheless, linear structure can provide a precision
test of gravity that, we shall see, rivals that of local tests in
a substantially different curvature regime.

T T T T T T | I T

[ (a) n=1 i
L [ frol=0.01
L 3 i
02 u —
I 104 ]
% L i
0.1 — 105 -
r 1097
i 1077
0 ,,,,, —d

AP/P

0.001 0.01 0.1
k (h Mpc-1)

Cooinal 1

FIG. 4. Fractional change in the matter power spectrum P(k)
relative to ACDM for a series of the cosmological field ampli-
tude today, fry, for n = 1, 4 models. For scales that are below
the cosmological Compton wavelength during the acceleration
epoch k = (aH)B~!/? perturbation dynamics transition to the
low-curvature regime where y = 1/2 and density growth is
enhanced. This transition occurs in the linear regime out to field
amplitudes of |fgol ~ 1076-107".
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III. LOCAL TESTS

In this section, we consider local tests of f(R) gravity.
We begin in Sec. III A with a general metric around spheri-
cally symmetric sources and its relationship to the f field.
In Sec. III B, we discuss the qualitative behavior of the field
solutions and their relationship with the Compton wave-
length. We evaluate solar-system constraints in Sec. III C
and the requirements they place on the extent and evolution
of the galactic halo in Sec. IIID.

A. Metric and field equations
We take the general spherically symmetric isotropic
form for the metric around a source centered at r = 0,
ds?> = —[1 —2A(r) + 2B(r)]ds?
+[1 4+ 2A(>)](dr?* + r2dQ), (33)

where we assume that | A(r)] < 1 and |B(r)| < 1 near
the source, such that the metric is nearly Minkowski. In the
GR limit, B(r) — 0; limits on B in the solar system
provide the strongest tests of modification to gravity of
the type considered here.

By definition of the Ricci tensor, the sources of the
metric potentials A and B are given by

V(A + B) = —IR, (34)

V2B = 4R + R/2). (35)

Note that a low-curvature R << «*p solution may be ac-
commodated by B = —A.

To relate the time-time component of the Ricci tensor to
f(R), let us take the time-time component of the field
equation (8)

(1+ fRIR = 3R+ f) + Ufr + 91 fr = —6°p. (36)

Under the assumption of a static solution, we can combine
this equation with the trace equation (18) to obtain

_ _2K2p+%R—%f+fRR
3(1 + fr)
Even in a low-curvature solution where R < k*p, R, =
O(k*p).
Equation (35) then becomes
V2B — _l —4K’p + 4R + 5frR — f ’
4 3(1 + fr)

where f(R) is given by the solution to the trace equation
(18) in the static limit,

3V2f, — R+ fxR — 2f = —2p. (39)

R, (37)

(38)

As an aside, choosing models for which B >0 in
Sec. I A not only results in the existence in the expansion
history of a stable matter-dominated era, but ensures that
the models do not exhibit the related instability for stellar-
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type objects [92,93]. Small, time-dependent perturbations
to a high-curvature solution of Eq. (39) have positive mass
squared and do not grow in this class of f(R).

In the limit that |fz| << 1 and |f/R| < 1, valid for all
sources that we shall consider,

VA = —1p + Uk*p — R), (40)

V2B = X«*p — R). 41)

As expected, the source of B is the deviation of the
curvature R from the GR value of x*p. Moreover, in the
same limit, Eq. (39) for f; becomes

V2fp = AR — k2p). 42)

A solution for f therefore gives B up to constants of
integration,

B(r) = —fR(r)-i-al—i-a—rz. (43)

Since B must remain finite at r = 0, a, = 0. Let us assume
that at sufficiently large radii fz(r) — froo and B — 0,
then

B(r) = —[fr(r) = frel = —AfR(r). (44

For radii beyond which the source x>p — R becomes neg-
ligible, B(r) «< 1/r. It is convenient to then define an
effective enclosed mass

M = 47 /(p — R/Kk?)r*dr, (45)

such that

B(r) = ~Af(r) — ot (46)
3r
Note that this is an implicit solution, since R(fg).
Nevertheless, we shall see in the next section that it sheds
light on the behavior of explicit solutions.
Finally, the deviation from the general-relativistic metric
is given by

B 2M, eff

BEYY R YRR, 47)
3Mt0t + Mcff

where M, is the total mass of the system. The two limiting
cases are My << My, for which y — 1 = —2M/3M,,
and M 4 = M, for whichy — 1 = —1/2. These solutions
correspond to high curvature, R = «2p, and low curvature,
R < k?p [76,77], respectively.

B. Compton and thin-shell conditions

Before examining explicit solutions for f(r) given p(r),
we show how the nature of the solutions is tied to the
Compton wavelength of the field and exhibits the so-called
chameleon mechanism [78] for hiding scalar degrees of
freedom in high-density regions [79-82,94].
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An examination of Eq. (39) shows that there are two
types of local solutions to the field equations distinguished
by a comparison of the Compton wavelength of the field

fR’
Ary =mz! = 3 xr. (48)

to the density structure of the source.

Let us again assume that |fgx| <1 and |f/R| <1 so
that the field equation is well approximated by Eq. (42).
The first class of solutions to this equation has high curva-
ture R =~ k’p and small-field gradients V?fr < k?p. The
second class of solutions has low curvature R << «*p and
large-field gradients V2 fg =~ —k?p/3.

A sufficient condition for the high-curvature solution is
that field gradients can be ignored at all radii when com-
pared with the density source. A necessary or consistency
condition is that field gradients implied by the high-
curvature solution f(R = k*p) can be ignored compared
with local density gradients. More specifically

fll?é!glR=K2paip < P (49)

i.e. that the density changes on scales that are much longer
than the Compton wavelength. Equivalently, a mass source
induces changes in the field with a Yukawa profile of
e "x"/r which are highly suppressed on scales larger
than the Compton wavelength. We call this condition the
Compton condition.

If the Compton condition is satisfied at all radii, then the
high-curvature solution is also valid at all radii and devia-
tions from GR will be highly suppressed. If this condition
is violated beyond some outer radius, then a portion of the
exterior must be at low curvature R < x?p. Moreover,
since Birkhoff’s theorem does not apply, the exterior
low-curvature solution can penetrate into the region where
the Compton condition (49) is locally satisfied. The interior
solution then depends on the exterior conditions. We have
seen in Sec. ITE that linear cosmological perturbations are
in the low-curvature regime on scales smaller than the
cosmological Compton wavelength and so the Compton
criteria must be violated far in the exterior if | fgo| = 1077,
We will return to this point in Sec. IIID.

To quantify these considerations, note that the maximal
change in f from the interior to the exterior is imposed by
the low-curvature assumption R << k%p or My = M,

Afr(r) = 30 (7), (50)

where ®,,(r) is the Newtonian potential profile of the
source, i.e. Py = GM,/r exterior to the dominant
mass. This condition sets an upper limit on the difference
between the interior and exterior field values for a static
solution.

If the thin-shell condition is satisfied and |Afg(r)] <
®,,(r), then M > M4 and somewhere in the interior there
must exist a high-curvature region where R — x’p. To
estimate where this occurs consider a local version of

fRRlR:KZpaizp <p,
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Eq. (50),
Afp = i(p = pa)r™ (51)

From the outside in, when this condition is first satisfied,
there is enough source to make the transition between the
interior and exterior field values. Once this is satisfied, it
remains satisfied in the interior as long as further changes
in fp are much smaller than the initial jump. In other
words, the exterior field is only generated by the “thin
shell” of mass M that lies outside of this transition. We
will call this the thin-shell criterion, and such a solution is
known in the literature as a chameleon solution.

The thin-shell criterion is related to the low-curvature
linearization condition of [77], Eq. (13). There, a solution
for the curvature is found by linearizing Eq. (39) around its
background value. Requiring that the value of the pertur-
bation be smaller than that of the background curvature
results in exactly the opposite of Eq. (50),

| frool = %‘DM(")- (52)

Therefore, the linearization procedure is not valid for ex-
actly those sets of parameters for which the thin-shell
condition is satisfied: high-curvature solutions are neces-
sarily nonlinear. When the linearization is valid, the solu-
tion is low curvature everywhere leading to large
deviations from GR in the interior.

The thin-shell criterion (51) is also related to but
stronger than the local Compton condition

Trr <713, (53)

where r, is the distance over which the density field
changes. Converting derivatives to finite differences,

frr =~ 0fr/6R,
Sfr =< 5Rr% ~ K25pr%. (54)

The difference between the two conditions is that the
Compton condition involves the small change in the field
6fr at high curvature, whereas the thin-shell criterion
involves the potentially larger change in the field Afy
from the high- to low-curvature regimes. If there is no
transition to low curvature in the exterior then these con-
ditions are the same.

The thin-shell condition implies that the field does not
always sit at the local potential minimum R =~ k’p.
Nonetheless, the field does choose the energetically favor-
able configuration. The field f will not lie at the potential
minimum in the interior region if the energy cost for
introducing a field gradient between the interior and ex-
terior is too high. The potential energy density cost for not
lying at the potential minimum is

2
AVN?PMfRL (55)

where Afy is the difference between the potential mini-
mum and the exterior solution. Compare this with the
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gradient energy density gain from not introducing a profile
in the field

1|AfRI?
AE ~— . 56
2 7 (56)
The potential energy cost outweighs the gain if
[Afrl = K2pr?, (57

which is the thin-shell condition.

C. Solar system to galaxy

We now consider explicit solutions of the field equation
(39), given the density profile p(r), in the solar vicinity. In
this section, we will assume that the galaxy has sufficient
mass and extent to bring the field to the potential minimum
of Eq. (29) in the outskirts of the solar system. In the next
section, we will discuss the requirement this assumption
places on the structure and evolution of the galactic halo.

Specifically, we set the boundary condition fre = fge
where

ng = fR(R = szg)' (58)

Here, p, is the average galactic density in the solar vicinity.
Under this assumption, the galactic field value is related to
the cosmological one as

1/(n+1) Rn Q. K2 -1
Trg — 814 x 10720 2w P\
fro m? 0.13 \107** gcm ™3

(59)

For the density profile in the solar vicinity we take the
helioseismological model of [95] for the solar interior, the
chromosphere model of [96], and the corona model of [97]
for the surrounding region. We add to these density profiles
a constant galactic density of p, = 107* gem™3. This
profile is shown in Fig. 5 (solid curve).

We solve the field equation (39) as a boundary-value
problem using a relaxation algorithm. The source-free
(p = 0) field equation has exponentially growing and de-
caying Yukawa homogeneous solutions exp(*my, r)/r.
Initial-value integrators have numerical errors that would
stimulate the positive exponential, whereas relaxation
methods avoid this problem by enforcing the outer bound-
ary at every step. We show an example solution in Fig. 5
(dashed curve) for n = 4 and |fgy| = 0.1.

A solution is found on an interval, by requiring that the
field fr minimize the potential (20) at two chosen radii:
one far away from the sun and its corona, the other inside
the solar density distribution. We place the outer boundary
at r = 106ro, where the density distribution is entirely
dominated by the constant galactic-density component.
The solutions are robust to increasing the radius of this
boundary.

For the inner boundary, we take the starting point as
approximately 1000 Compton wavelengths from the tran-
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rir,

FIG. 5. Density profile in the solar interior and vicinity (solid
curve). Under GR, the curvature R would track the density
profile. For the f(R) model with n =4, cosmological field
amplitude |fol = 0.1, and a galactic field amplitude that mini-
mizes the scalar potential, the curvature tracks the GR or high-
curvature limit out to the edge of the solar corona at about 1 AU
(dashed line).

sition to low curvature; the Compton condition is well
satisfied there. Interior to this point, the solution is more
efficiently obtained by a perturbative solution around the
high-curvature solution of R©) = «2p. The first-order cor-
rection to this solution is R = R© + RM with

RW = (3V2fr + frR — 2) g—go- (60)

With this correction to R, the first-order correction to fp
can be obtained using initial-value-problem methods. This
series can be iterated to arbitrary order and is strongly
convergent when the Compton condition is satisfied. In
fact, at our chosen starting point, the zeroth order solution
typically suffices. We have also checked that, for cases
where the Compton condition is everywhere satisfied, the
numerical solution matches the perturbative solution.
Finally, we stop the relaxation code when the solution
satisfies the trace equation (39) to at least 10™° accuracy.

Let us now relate the numerical solutions shown in Fig. 6
to the qualitative analysis of the previous section. First,
consider the Compton condition. The Compton wave-
length at R = k%p is

Ap, = (10.6 pe)(8.14 X 1077)*=D/2[(n + 1) fol]'/2
v (& th2><n+1>/2< p

= 61)

107%* gcm

—(n+2)/2
m? 0.13 >

For example, for n = 4 and the fiducial cosmology

P _3)_3, (62)

- 1/2
Ay = 8300r0) ol e

so that the Compton condition is satisfied for the whole
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FIG. 6. Solar solution for f(r) with n =4 for a series of
cosmological field amplitudes fp, with a galactic field that
minimizes the potential. The field smoothly transitions from
the fr ~ O interior value to the galactic values once the thin-
shell criterion is violated.

solar profile for | fgo| = 1072. Note that, even at the base of
the corona where the density is p = 1071 gem™3, the
Compton wavelength is ~10723|fgol'/2re. Thus, in spite
of the steep density gradient at the edge of the sun, the
Compton condition is well satisfied, allowing the solution
in Fig. 5 to follow the high-curvature solution R = k’p
closely through the transition.

On the other hand, the thin-shell criterion is satisfied in
the solar corona up to |fgol = 107!. Thus for n = 4, we
expect order-unity cosmological fields to be achievable
with the entire solar interior including the edge and chro-
mosphere in the high-curvature regime.

The numerical solutions shown in Fig. 6 verify the
qualitative behavior described in the previous section.
For |fgol = 1072, the deviations from the high-curvature
R = k?p limit are fractionally small since the Compton
condition is everywhere satisfied. For |fgo| = 107!, the
break to low curvature occurs in the corona. This break
occurs gradually in the field profile fz(r) but rapidly in the
curvature (see Fig. 7). At small-field values, a small change
in fr represents a large change in the curvature. M is
approximately just the mass between this transition and the
point at which the galactic density exceeds the corona.
Outside of this transition, the exterior field relaxes to the
galactic value as |Afg| o e /=" /r. In these examples, the
Compton wavelength in the galaxy is of order 103-10%r,
and the mass term further suppresses the deviations from
GR.

In Fig. 8 we show |y — 1] for the same n = 4 models.
The deviations peak at ~10~1. Such deviations easily pass
the stringent solar-system tests of gravity from the Cassini
mission [98]

ly =11 <23 X 1073, (63)
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FIG. 7. Solar solution for the curvature R for the n = 4 model

and a series of cosmological field amplitudes f, with a galactic
field that minimizes the potential. The solution abruptly transi-
tions from the high-curvature R =~ k?p to the low-curvature
regime once the thin-shell criterion is violated.

under the assumption that the galactic field fr, is given by
the potential minimum.

Models that saturate this observational bound have a
sufficiently large |fg,| that the thin-shell criterion is first
satisfied at the edge of the sun, where the fractional en-
closed mass becomes 2M ¢ /3M,,, = 107> [see Eq. (47)].
For a given fy, this can be achieved by lowering n. In such
models, the additional contribution to the effective mass
outside of the photosphere is negligible and the field solu-
tion obeys Eq. (46). The exterior solution therefore be-
comes

1.5 T — T T
- lwlo1 =
oo
oot .
~ '~ Ifwl=0.001 .- N
s | — Ifrol=0 e \\
— 7 -——
=< o - RN R
: L /// /// AN \\
;()Sk //,// //// \\\\ N
- L P - N
//// ’/// \\
et et Tt S etats.
100 1000 104

FIG. 8. Metric deviation parameter |y — 1| for n = 4 models
and a series of cosmological field amplitudes fr, with a galactic
field that minimizes the potential. These deviations are unob-
servably small for the whole range of amplitudes.

064004-9



WAYNE HU AND IGNACY SAWICKI

Afp() = (y = DDy = (y = Mo (64

r

since the Compton wavelength in the exterior implied by
Eq. (61) is much larger than the solar system.
Given that

GM,

I'eo

=2.12 X107, (65)

the solar-system constraints can be simply stated as
|Afr(ro)l = |fgel <4.9 X 107! (66)

Note that this bound is independent of the form of f(R) and
the assumption that f%, is given by the minimum of the
effective potential. The model dependence comes from the
implications for the cosmological field value fzy. Using
Eq. (59) at a galactic density of p, = 1072* gem™, we
can translate this into a bound on the amplitude of the
cosmological field,

RO thZ —(n+1)
m? 0.13} - D

frol < 74(1.23 X 106)n1[—

As shown in Fig. 9 this is a fairly weak constraint. For n >
1 it allows order-unity cosmological deviations from GR.
Note that the models of [80] are equivalent to a continu-
ation of the approximate form of our model in Eq. (7) but
with n < 0. Solar-system constraints on cosmological am-
plitudes are significantly stronger in that class. Finally,
although a detailed calculation is beyond the scope of
this work, laboratory constraints on fifth forces are also
weak under the same assumptions given the much larger
effective densities involved [78].

L e e e o A " s
10 g 3
__102g 3
@ F solar system E
£ 103F E
=
g
5 104E E
=
105F 3
E galaxy 3
T
0.5 1 1.5

FIG. 9. Maximum cosmological field |fzo| allowed by the
solar-system constraint alone (top curve) under the assumption
that the galactic field remains at the potential minimum at the
present epoch. Models with [fgol = 107¢ (bottom curve) have
galactic fields | ngl that evolve to higher values during the
acceleration epoch, potentially enabling substantially stronger
constraints with structure formation simulations.
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D. Galaxy to cosmology

The cosmological bound, Eq. (67), from the solar-
system constraint, Eq. (66), is robust but weak. A related
but potentially more powerful constraint comes from the
transition between the high curvature of the galaxy and the
desired cosmological curvature. Indeed, the implicit as-
sumption in applying the solar-system constraint to the
cosmology is that the galaxy itself is in the high-curvature
regime with respect to its own density profile.

The validity of this assumption depends on both the
structure of the galactic halo and its evolution during the
acceleration epoch. Large |fgo| requires that either the
galactic gravitational potential is substantially deeper
than in ACDM or that it has not yet reached its equilibrium
value.

From the linear theory analysis in Sec. IIE, we know
that the Compton condition is violated for linear perturba-
tions if [ fgo| = 1077 Hence, at the outskirts of the galactic
halo where the density profile joins onto the large-scale
structure of the universe, there must be a transition from
high to low curvature. As we have seen in Sec. III B, the
low-curvature cosmological field will eventually penetrate
into the galaxy unless

|AfR(DI = 1frg = frol = |fRol =3P, (63)

where @, is the Newtonian potential of the galaxy. For
definiteness, let us consider the Navarro-Frenk-White
(NFW) density profile

M, 1

) ©

pg(r) =
where M, is the galactic mass contained within 5.3r, and

r, is the scale radius of the dark-matter halo. This density
profile has a Newtonian potential of

GM,
o, = . £ In(1 + r/ry), (70)
and a maximum rotation-curve velocity of
GM,\1/2
Vmax = O.46< > (71)
rS

at 2.16r,. Taking the thin-shell criterion to be satisfied at
r = r,, such that the interior is in the high-curvature re-
gime, leads to an upper limit on | f 0| for a static solution of

Umax )2' (72)

<2 X 1076(-—mx__
ol 0 (300 km/s

For higher cosmological values of the field |fgol, the
galaxy will relax over time to the low-curvature solution
to minimize the cost of field gradients. Note that even a
value of |fgo|l = 1076 provides potentially observable
modifications in the linear regime since gravity between
galactic halos is still modified by order unity (see Fig. 4).
We have verified through the numerical techniques of the
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previous section that the constraint in Eq. (72) is nearly
independent of the functional form of f(R). In Fig. 10, we
show an example solution. Here we err on the conservative
side by taking v, = 300 km s™! and r, = 75 kpc to
reflect a somewhat more massive and extended halo by a
factor of a few than expected in ACDM for our galaxy
(cf. [99], Fig. 7). Empirical data exist only out to ~20 kpc
where the rotational velocity reaches v =~ 230 km s .

Unfortunately, the bound in Eq. (72) is suggestive but
not definitive. A cosmological simulation will be required
to determine how halos of galactic size, which are em-
bedded in a group-sized dark-matter halo, which itself is
part of the quasilinear large-scale structure of the universe,
evolve during the acceleration epoch. The density profiles
of the structures in which the galaxy is embedded can
further shield the galactic interior from the low-curvature
solution. Furthermore, the cosmological background itself
was at high curvature at z > 1. For n >> 1, the condition
that the background | fz| = 107 is well satisfied for z > 1
even for fp, approaching unity. For example, if n = 4, the
cosmological field drops by a factor of 103 by z = 2 (see
Fig. 2). Therefore when the galactic halo formed, both its
interior and exterior were at high curvature. The local
curvature would then follow the local density R = x’p
closely everywhere.

Only during the recent acceleration epoch is the thin-
shell criterion for the galaxy violated at |fzo| = 107°. The
low-curvature, high field values of the background will
then begin to propagate into the interior of the galactic
halo in a manner that requires a simulation of the process.
The static, thin-shell bound for the galaxy given by

1024 ¢ —— T Sy
E n=1/21
1025¢ —FP 3
£ —_ . — -6
~ r IfRol—O.S X10 0
'E 1026 | - IfRO|=1.OX10’6
E | .
- | - == |frol=2.0 x10-6
N L '\ \
¥ 0k ' i
~ E \ \
< N
L \\
1028 el
1 Lol 1 ool 1 L

FIG. 10. A galactic solution for the scalar curvature R for n =
1/2 with an NFW density profile (69) and conservative parame-
ters r,=75kpc and vy, =300kms~!. For |fgol =
2 X 107%, no static solution can be found which has high
curvature, R = k?p, inside the halo. As in the solar case, once
the thin-shell criterion is violated the solution abruptly transi-
tions to low curvature and matches onto the cosmological value
of fro outside the halo.
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Eq. (72) is therefore overly restrictive but suggests that
cosmological simulations should enable much more strin-
gent bounds on f(R) models than solar-system tests alone.

IV. DISCUSSION

We have introduced a class of f(R) models that accel-
erate the expansion without a cosmological constant. Its
parameters allow the gravitational phenomenology exhib-
ited in cosmological, galactic, and solar-system tests to
span the range between infinitesimal and order-unity devi-
ations from general relativity with a cosmological
constant.

In these models, unlike the original model of [1] and
related generalizations, the general-relativistic or high-
curvature value for the Ricci scalar R = «?p is the solution
that minimizes the potential for the scalar degree of free-
dom f = df(R)/dR. This feature is critical for both cos-
mological and solar-system tests.

Solar-system tests of f(R) gravity alone place only weak
bounds on these models, despite a strong and nearly model-
independent limit on the f field amplitude in the galaxy of
|frel <5 107! Indeed, we show that, for a range of
models that include cosmological fields of order unity
|frol = 1, the field deviates from the high-curvature re-
gime only for a brief interval in the solar corona. Likewise,
deviations from general relativity in the metric are gener-
ated by the mass in this interval and so are unobservably
small. This is strikingly different from constraints that
would arise if one embeds the sun directly into a medium
at the cosmological density |fgol <5 X 1071,

Without further constraints on the size and evolution of
the galactic halo, solar-system tests may be evaded rela-
tively easily. This is because of the assumed strong density
scaling of the field amplitude at the potential minimum.
However, though the galactic field begins at high redshift at
its potential minimum, it will only remain there if the
galaxy is sufficiently massive to protect it against the
cosmological exterior which is evolving to low curvature
at z < 1.

An order of magnitude estimate, based on the extrapo-
lation of rotation-curve measurements and the assumption
that the galactic halo does not differ substantially from
ACDM expectations in the outskirts, suggests that an
isolated galaxy that is otherwise like our own will only
remain stable at high curvature if the cosmological field is
| frol = 107°. Despite the fact that the high-curvature so-
lution still minimizes the potential energy of the field, the
gradient energy implied by the field profile from the galac-
tic interior to exterior is too high. This estimate is also
nearly independent of the functional form of f(R) and
improvements in the solar-system constraint. Turning this
estimate into a firm constraint on models will require
cosmological simulations of f(R) acceleration to examine
how far into the solar system the exterior low-curvature
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field values can penetrate by the present epoch in the local
environment of our galactic halo.

Distance-based measurements of the expansion history
will be limited to testing |fgol = 1073~1072 for the fore-
seeable future, since the field amplitude determines the
deviations in the effective equation of state to be of com-
parable size. Nonetheless, future, percent-level constraints
on the matter power spectrum in the linear regime offer
potentially even stronger tests of f(R) models than solar or
galactic constraints, in principle, down to amplitudes of
| frol ~ 1077, This sensitivity is due to the large Compton
scale in the background across which perturbations make
the transition from low to high curvature and exhibit order-
unity deviations from general relativity. Cosmological
simulations are also required to determine how these sig-

PHYSICAL REVIEW D 76, 064004 (2007)

natures can be disentangled from the nonlinear evolution of
structure.
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