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ABSTRACT

We study the uniqueness and robustness of acoustic signatures in the cosmic microwave

background by allowing for the possibility that they are generated by some as yet unknown

source of gravitational perturbations. The acoustic pattern of peak locations and relative heights

predicted by the standard inflationary cold dark matter model is essentially unique and its

con�rmation would have deep implications for the causal structure of the early universe. A

generic pattern for isocurvature initial conditions arises due to backreaction e�ects but is not

robust to exotic source behavior inside the horizon. If present, the acoustic pattern contains

unambiguous information on the curvature of the universe even in the general case. By classifying

the behavior of the unknown source, we determine the minimal observations necessary for robust

constraints on the curvature. The di�usion damping scale provides an entirely model independent

cornerstone upon which to build such a measurement. The peak spacing, if regular, supplies a

precision test.

Subject headings: cosmology:theory { cosmic microwave background

http://www.sns.ias.edu/Main/members.html
http://www-astro-theory.fnal.gov/Personal/mwhite/welcome.html


{ 2 {

Contents

1 Introduction 4

2 Physical Processes 5

2.1 Fluid Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Gravitational Redshift E�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Oscillator Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Photon Backreaction at Early Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Driven Oscillations and Superhorizon E�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Forced Oscillations and Subhorizon E�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Baryon Drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.8 Photon Di�usion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Acoustic Signatures 17

3.1 Peak Locations for Driven Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Peak Locations for Forced Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Peak Heights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Damping Tail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Uniqueness of the Inflationary Spectrum 22

4.1 Robustness of the Harmonic Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Uniqueness of the Harmonic Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 First Peak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Relative Peak Heights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Robustness of the Curvature Measurement 28

5.1 Angular Diameter Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Acoustic Peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Damping Tail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4 Exotic Baryon Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



{ 3 {

5.5 Exotic Thermal History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.6 Toward Reconstructing the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Conclusions 38

A Causality and Compensation 39

List of Figures

1 Pure modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Compensation and isocurvature fluctuations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Driven oscillations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Forced oscillations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Baryon drag and relative peak heights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Di�usion damping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7 Relative peak locations and the harmonic series. . . . . . . . . . . . . . . . . . . . . . . . . . 23

8 Obscured isocurvature peak. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

9 Pathological isocurvature model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

10 Baryon drag in the inflationary model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

11 Standard rulers and the angular diameter distance. . . . . . . . . . . . . . . . . . . . . . . . . 29

12 Peak spacing and damping scale as a function of Ω0. . . . . . . . . . . . . . . . . . . . . . . . 32

13 Exotic baryon and radiation content. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

14 Exotic ionization history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



{ 4 {

1. Introduction

Cosmic microwave background (CMB) anisotropies provide a unique window into the early universe

through which we receive information on both the model for structure formation in the universe

(e.g. Efstathiou, Bond & White 1992, Gorski et al. 1995, Ostriker & Steinhardt 1995, Crittenden &

Turok 1995, Albrecht et al. 1995, Durrer et al. 1996, Dodelson, Gates & Stebbins 1995) and the

background cosmology (e.g. Bond et al. 1994, Hu, Sugiyama & Silk 1995, Jungman et al. 1995, Seljak

1994, Scott & White 1995). In the simplest models for structure formation, based on the gravitational

instability of initial density perturbations, the acoustic signature in the anisotropy power spectrum provides

a clean and unambiguous means of measuring all of the parameters of a Friedman-Robertson-Walker

cosmology. In particular, it o�ers a standard ruler with which to make a classical test for curvature in

the universe (Doroshkevich, Zel’dovich & Sunyaev 1978, Sugiyama & Gouda 1992, Kamionkowski, Spergel

& Sugiyama 1994, Hu & White 1996). However, structure formation may have proceeded by a more

complicated route. Recent investigations have begun to probe the acoustic signature in texture (Crittenden

& Turok 1995, Durrer et al. 1996) and string (Albrecht et al. 1995, Magueijo et al. 1996) models for structure

formation. Their predictions di�er strongly from the standard inflationary case and suggest that perhaps

without prior knowledge of the correct model for structure formation, the information contained in the

acoustic signature cannot be extracted. In this paper, we focus on two general questions: does the acoustic

signature uniquely specify the model for structure formation? how robust is a measurement of the curvature

to changes in the underlying model?

As discussed in the appendix, the question of uniqueness is especially interesting in the case of the

standard inflationary paradigm. Inflation is the unique causal mechanism for generating correlated curvature

perturbations above the horizon (Liddle 1995). All other causal mechanisms generate signi�cant curvature

perturbations only near horizon crossing. We will refer to these alternate possibilities as isocurvature models.

A unique signature of superhorizon curvature fluctuations can be used as a test of inflation. By generalizing

the external source formalism of Hu & Sugiyama (1995a,b; hereafter HSa, HSb) to include backreaction

e�ects in x2, we �nd that a large class of isocurvature models carry a distinct acoustic signature that can

be easily distinguished from the inflationary case, independent of the curvature and other cosmological

parameters. The distinction lies in the gross properties of the spectrum, not small or subtle shifts in the

peaks heights which require very high resolution measurements to see. As shown in x3, tell-tale features

include the harmonic series of peak locations, the alternating relative peak heights due to baryon drag, and

the di�usion damping tail. From this study, we conclude in x4 that the standard inflationary model with big

bang nucleosynthesis (BBN) baryon-to-photon ratio bears an essentially unique signature.

If acoustic oscillations are present in the CMB, as is the case in all but models with signi�cant reionization

(see e.g. Peebles 1987, Efstathiou & Bond 1987, Coulson et al. 1994) or late formation of perturbations

(Ja�e, Stebbins & Frieman 1995), their signature will provide information on the curvature. The damping

tail contains the most robust information, but its location alone can constrain but not precisely �x the

curvature. Additional restrictions such as a standard recombination history and a near BBN baryon content

are required to make this a sensitive probe of the curvature. Furthermore, in models where the acoustic

signature is su�ciently regular, the spacing of the peaks provides a precision test of the curvature even if

the baryon content is anomalously low or somewhat high. It can also be combined with the damping tail to

discriminate against truly exotic models. In x5, we discuss speci�cally what regularities must be observed

before the curvature can be unambiguously measured if the correct model for structure formation is not

assumed to be known a priori.
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The outline of this paper is as follows. The next section contains the derivation of our principle results.

Their impact on the features in the angular power spectrum of the CMB is described in x3. We discuss our

main points in xx4 { 5, and present our conclusions in x6.

2. Physical Processes

This section develops the formalism behind our principle results and illustrates them in a series of

concrete examples. The lessons learned here will be applied in the later sections. A summary of important

conclusions is given in x2.9, so that the bulk of this section may be skimmed on a �rst reading.

Acoustic oscillations in the CMB are inevitable if gravitational potential perturbations exist during the

period when the Compton mean free path of a photon scattering o� a free electron is much less than the

horizon scale. In this case, the photons and electrons are tightly coupled. Since Coulomb interactions couple

the electrons to the baryons, we refer to the system as a photon-baryon fluid. Photon pressure in the fluid

resists gravitational compression and sets up acoustic waves in the system.

Because the properties of the oscillator are determined by the background while those of the gravitational

forces are described by the model for the perturbations, the acoustic signature provides a unique opportunity

to probe both the background cosmology and the model for structure formation. Here, we explore the

evolution of acoustic phenomena under the influence of an arbitrary source of gravitational perturbations.

This is employed in x3 to determine the conditions under which signatures such as the peak locations, relative

heights, and damping tail may be considered robust. These signatures will be observable in the small scale

CMB anisotropy if the tight coupling condition is satis�ed during the epoch immediately preceding the last

scattering event. In particular, it holds for the standard thermal history where recombination and hence last

scattering occurs at redshift z� � 103.

2.1. Fluid Equations

We start with the fundamental equations describing the dynamics of a relativistic fluid. The physical

interpretation and description of these equations is given below. The evolution of the photons and baryons in

a metric perturbed by density fluctuations in the kth normal mode is given in the Newtonian representation

as (see e.g. Mukhanov, Feldman & Brandenberger 1992, Ma & Bertschinger 1995)

_�0 = −
k

3
�1 − _�;

_�b = −kVb − 3 _�;
(1)

for the continuity equations and

_�1 = k[�0 + Ψ− 1
6�γ ]− _�(�1 − Vb);

_Vb = −
_a

a
Vb + kΨ + _�(�1 − Vb)=R;

(2)

for the momentum conservation or Euler equations of the photons and baryons respectively. Here overdots

are derivatives with respect to conformal time � =
R
dt=a, R = 3�b=4�γ is the baryon-photon momentum

density ratio, and _� = xene�Ta is the di�erential Compton optical depth with xe as the ionization fraction,

ne as the electron number density, and �T as the Thomson cross section. The fluctuations are de�ned as

�0 = �T=T = �γ=4 the isotropic temperature perturbation, �1 the dipole moment or photon bulk velocity,
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�γ the photon anisotropic stress perturbation, �b the baryon energy density perturbation and Vb the baryon

velocity. The gravitational sources are �, the perturbation to the spatial curvature, and Ψ, the Newtonian

potential. In this gauge, these gravitational perturbations distort the metric as g00 = −a2(1 + 2ΨQ) and

gij = a2(1 + 2�Q)γij, where γij is the three metric on a surface of constant curvature and Q is a plane wave

exp(ik � x) in a flat geometry or more generally the k-eigenfunction of the Laplacian (Wilson 1983). The

Einstein-Poisson equations thus relate them to the matter fluctuations as (Bardeen 1980)

(k2 − 3K)� = 4�Ga2
P�

�i�i + 3
_a

a
(�i + pi)Vi=k

�
;

k2(Ψ + �) = −8�Ga2
P
pi�i;

(3)

where the sum is over particle species, the curvature K = −H2
0 (1 − Ω0 − Ω�) and the Hubble constant

H0 = 100h km s−1 Mpc−1. We will assume from now on that the relevant scales are far under the curvature

scale (K=k2 ! 0). None of our main results are a�ected by this assumption for reasonable values of K. Note

also that if the anisotropic stress pT�T =
P
pi�i is negligible, Ψ = −�.

Now let us examine the physical content of Eqs. (1) and (2). Photon number conservation relates changes

in the temperature fluctuations to the velocity divergence by a factor of 1
3 (since number density is related

to temperature by nγ � T 3). The _� term represents the dilation e�ect on the wavelength of the photons.

Since the curvature perturbation \stretches" the spatial metric, changes in � gives rise to a dilation e�ect

of the same origin as the cosmological redshift. Notice the sign of this e�ect implies that the photons will

always oppose a change in the curvature, a point which will be very important later. Similar e�ects govern

the baryon continuity equation. Since the fractional energy and number density fluctuations are equal for a

non-relativistic particle, their rate of change is given by the velocity divergence. The additional e�ect due

to the stretching of the volume from _� also implies a number density dilution of 3 _�.

The expansion makes particle momenta decay as a−1. For the photons, this is accounted for by the

temperature redshift; for the baryons, by expansion drag on the bulk velocity (the _a=a term). Gradients in the

potential, kΨ, generate velocity perturbations by gravitational infall. For the photons, infall is countered by

stress in the fluid, both isotropic (pressure) and anisotropic (quadrupole moment). The baryons however are

e�ectively pressureless. The photon and baryon equations are coupled by Compton scattering (the _� terms)

which exchanges momentum between the fluids. Since the momentum density of the fluid is proportional to

�+ p, conservation relates the scattering terms by the factor R = (pb + �b)=(pγ + �γ) � 3�b=4�γ . Scattering

seeks to equalize the bulk velocities �1 = Vb causing adiabatic evolution of the density perturbations
_�b = 3 _�0.

If the scattering is rapid compared with the travel time across a wavelength, the momentum conservation

Eqs. (2) may be expanded in powers of the Compton mean free path over the wavelength k= _� . By eliminating

the baryon velocity, we obtain the tight coupling approximation for the evolution of the photons (Peebles &

Yu 1970, HSa)

_�0 = −
k

3
�1 − _�;

_�1 = −
R

1 +R

_a

a
�1 +

1

1 +R
k�0 + kΨ:

(4)

The quadrupole term �γ = O(k= _�)�1 causes viscous damping and is treated in x2.8. It is a higher order

correction because scattering tends to isotropize the photons in the baryon rest frame and suppresses the

quadrupole. From examining Eq. (4), one can see that baryons decrease the e�cacy of the pressure and add

an expansion drag term to the momentum equation. The gravitational infall term remains unaltered since

its baryon analogue is identical.
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2.2. Gravitational Redshift E�ects

Before proceeding with the main task of exploring the acoustic signatures, let us review how gravitational

e�ects manifest themselves in the CMB (Sachs & Wolfe 1967). As discussed in x2.1, these are the ordinary

redshift of a photon climbing out in and out of potential wells and the dilation e�ect from changes in the

spatial metric. If the metric fluctuations are generated by the density fluctuations in the photon-baryon

system itself, the Poisson equations (3) tell us that they are suppressed by a factor of (k�)−2 with respect

to the temperature fluctuations inside the horizon. Thus the self-gravity of the photon-baryon fluctuations

generally only is important outside the horizon k� � 1. However this is not necessarily true for metric

fluctuations generated by an external source. Gravitational redshift e�ects can signi�cantly alter the acoustic

signature, and we must include them in the analysis even on small scales.

Because temperature perturbations are observed only after the photons have lost energy climing out of

potential wells Ψ, the \e�ective" temperature perturbation is given by �0 + Ψ. It is this quantity that we

measure as a temperature fluctuation on the sky. It will be important in the following sections to consider

the e�ective temperature fluctuation rather than the intrinsic fluctuation �0. The blueshift from infall into

a constant gravitational well is exactly cancelled by the redshift from climbing out. Thus �0 may have a

large but unobservable o�set which is removed in the e�ective temperature �0 + Ψ.

On the other hand, the intrinsic temperature evolves as _�0 = − _� above the horizon to oppose changes

in the spatial curvature. Thus the e�ective temperature obeys the relation _�0 + _Ψ = _Ψ − _� � −2 _� above

the horizon. This yields a general description of the gravitational redshift or Sachs-Wolfe e�ect (Sachs &

Wolfe 1967),

[�0 + Ψ](�; k) = [�0 + Ψ](�i; k) + [Ψ−�](�; k)j��i ; (5)

where �i is some initial epoch at which the fluctuations were formed. In particular, if the initial conditions are

isocurvature �(�i; k) = 0, and the initial temperature fluctuation is also small, then the e�ective temperature

becomes Ψ − � � −2�. The photons are thus underdense in potential wells. For adiabatic fluctuations,

photons are overdense in potential wells so that the e�ective temperature fluctuation is reduced. As we shall

see below, in the radiation-dominated era �0 + Ψ = 1
2Ψ. The change in the equation of state through the

matter-radiation transition causes a small decay in the potential [see Appendix, Eq. (A4)] and brings the

e�ective temperature in the matter dominated limit to �0 + Ψ = 1
3 Ψ (Sachs & Wolfe 1967, HSa).

2.3. Oscillator Equation

In HSa, a formalism was developed to calculate the response of the photon-baryon fluid to metric

fluctuations Ψ and � which are considered external to the fluid. Combining the two equations in (4), we

obtain
d

d�
(1 +R) _�0 +

k2

3
�0 = −

k2

3
(1 +R)Ψ−

d

d�
(1 +R) _�: (6)

Conceptually, this equation reads: the change in momentum of the photon baryon fluid is determined by a

competition between the pressure restoring and the gravitational driving forces. Below the sound horizon,

rs(�) =

Z �

0

d�0 cs =

Z �

0

d�0
1p

3(1 +R)
; (7)

photon pressure resists gravitational compression and sets up acoustic oscillations. Though conceptually

useful, this approach has the practical disadvantage that the photon-baryon contribution to the metric
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fluctuations must be already known. In general, it is unknown and we must break the metric fluctuations up

into pieces generated by the photon-baryon fluid (γb) and by the external source (s), e.g. from dark matter,

entropy fluctuations, defects, etc. The Poisson equations (3) and the tight coupling condition Vb = �1 tell

us

�bγ = −Ψbγ = 6ΩγH
2
0 (ak)−2(1 +R)[�0 +

_a

a

1

k
�1]; (8)

for adiabatic fluctuations in the photon-baryon system where �b = 3�0. As we shall see in x2.5, entropy

fluctuations S = �b− 3�0 are simply described as an external source since _S = 0 in the tight coupling limit.

Thus Eq. (8) represents no loss of essential generality.

As Eq. (8) implies, the response of the photon-baryon fluid is most easily solved in the so-called rest

frame of the fluid (see Appendix). Here the temperature perturbation is

T = �0 +
_a

a

1

k
�1: (9)

Combining Eqs. (4) and (9), it evolves under the equations�
1 +

6

y2
(1 +R)

� �
T 0 −

y0

y

1

1 +R
T

�
+

1

3

"
1− 3

y00

y
+ 6

�
y0

y

�2
#

�1 =
y0

y
Ψs − �0s;

�01 +
y0

y
�1 −

�
1−

6

y2
(1 + R)2

�
1

1 + R
T = Ψs;

(10)

where primes are derivatives with respect to x = k� with k �xed, and y = (ΩγH
2
0 )−1=2ak. Notice that if

j�1j �< j�0j, as is the case in the oscillatory regime xcs �> 1, Eq. (9) implies that T = �0[1 + O(x−1)] and

the two representations become equivalent. In the next few sections, we will examine the implications of

Eq. (10) through a number of examples and approximations.

2.4. Photon Backreaction at Early Times

The evolution equation (10) simpli�es substantially in the radiation-dominated epoch. Early on,

the baryon contribution is negligible and the fluid evolution is dominated by the response of the photon

perturbations to the source. The resulting photon-baryon density fluctuation feeds back into the metric

fluctuation. Even though the universe may be just becoming matter dominated at last scattering, its early

radiation-dominated legacy plays the dominant role. As we shall see, the processes that �x the amplitude

of the acoustic oscillation take e�ect mainly around horizon crossing when the universe was still radiation

dominated for the relevant fluctuations.

It is instructive to consider �rst the case in which the expansion is photon-dominated. This neglects

the neutrino and source contribution to the background energy density, but does not fundamentally alter

the results for the early superhorizon evolution (see HSb). In this limit, R ! 0, y ! x, and the evolution

equations (10) become

T 0 − T =x+ �1=3 =
x2

x2 + 6
[Ψs=x− �0s] ;

�01 + �1=x−
�
1− 6=x2

�
T = Ψs;

(11)

or combining the two

T 00 +
1

3

�
1−

6

x2

�
T = S; (12)
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Fig. 1.| Pure modes.

In the absence of sources, the growing mode of the rest frame temperature perturbation matches onto a

cosine acoustic oscillation inside the horizon, whereas the decaying mode matches onto a sine oscillation.

The oscillator response to an external source is constructed by Greens method from these homogeneous

solutions and transformed into the Newtonian frame with Eq. (9).

where the gravitational source is given by

S = −

�
1

3
−

12

(x2 + 6)2

�
Ψs −

x(x2 + 18)

(x2 + 6)2
�0s +

x

x2 + 6
Ψ0s −

x2

x2 + 6
�00s : (13)

If S = 0, this is simply the Bessel equation. The homogeneous solutions are therefore (Kodama &

Sasaki 1986)
Ta(x) = − cos(x=

p
3) + (

p
3=x) sin(x=

p
3);

Tb(x) = − sin(x=
p

3)− (
p

3=x) cos(x=
p

3);
(14)

with Wronskian 1=
p

3. These functions are plotted in Fig. 1 and may be considered as the fundamental or

pure modes of the photon-baryon fluid. Their limiting behavior as x ! 0 is Ta = x2=9 and Tb = −
p

3=x.

From Eq. (9), the corresponding limits for the Newtonian fluctuations are �0 = 1=3 and 6
p

3=x3 and

�γb = 2=3 and −6
p

3=x3 for the two modes respectively. As x ! 1, they become cosine and sine waves

respectively for both the rest frame and Newtonian temperatures.

Although Eq. (11) may easily be solved numerically, the Green’s method is more illuminating.

Constructing the solution out of the pure modes, we �nd

T (x) = Aa(x)Ta(x) +Ab(x)Tb(x); (15)

with
Aa(x) = Aa(xi) −

p
3
R x
xi
Tb(x0)S(x0)dx0;

Ab(x) = Ab(xi)−
p

3
R x
xi
Ta(x0)S(x0)dx0;

(16)
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where xi is the initial epoch at which the perturbations and hence the constants Aa(xi) and Ab(xi) are �xed.

If the photon fluctuations are set to zero at xi, then the answer can be read directly o� the source behavior.

When Tb � Ta, source contributions stimulate the Ta mode mainly. An examination of Fig. 1 would imply

that all superhorizon e�ects from the source would create a Ta cosine mode. However, the initial fluctuations

could be set up such that Aa(xi) and Ab(xi) exactly cancel the influence of the source. This is exactly what

occurs in the class of isocurvature models based on balanced initial conditions.

To see this more clearly, let us express the evolution in terms of �γb, the curvature perturbation

generated by the photon-baryon fluid. In the photon dominated limit, equation Eq. (8) gives �γb = 6T =x2

and Eq. (12) becomes

x2�00γb + 4x�0γb = −x2�00s − 4x�0s; (17)

for x� 1. The solution is

�(x) = �γb(x) + �s(x)

= �γb(xi) + �s(xi) + 1
3 [�γb + �s + (2=xi)�1](xi)

�
(xi=x)3 − 1

�
;

(18)

where we have approximated Ψs(xi) = −�s(xi) in rewriting the initial conditions in terms of �1. Aside

from a decaying mode, the photons evolve to keep the curvature perturbation constant (c.f. Eq. (A9) and

Veeraraghavan & Stebbins 1990). Thus, independent of the source behavior, if �bγ(xi) = −�s(xi) and

�1(xi) = 0, compensation forces �(x� 1) � 0.

While this argument only shows compensation for a photon dominated system, the argument applies

equally well for whatever the dominant dynamical component is since _� / − _� for x! 0. The argument does

not strictly apply if the identity of this component, i.e. the equation of state, changes. For example, pressure

fluctuations and hypersurface warping can change the curvature through the matter-radiation transition even

if x� 1. We discuss these points further in the Appendix, and show that densities and hence temperature

fluctuations are anticorrelated with the total curvature outside the horizon for isocurvature initial conditions

(see also Eq. 5).

2.5. Driven Oscillations and Superhorizon E�ects

In this section, we will see how superhorizon compensation drives the oscillator and stimulates one of

the two pure modes of x2.4. Let us start with a simple and concrete example: the baryon isocurvature case.

Here, we begin at some initial epoch with an entropy fluctuation S(xi) = �(nb=nγ) = �b(xi) − 3�0(xi).

Tight coupling implies that the number density fluctuation of the photons and baryons, and hence S,

remains constant [see Eq. (1)]. The entropy acts as an external source, which from Eq. (3) contributes as

k2�s = 4�Ga2�bS, or rewriting this in the form of Eq. (8)

�s = −Ψs =
2

x2
RS =

A

x
; (19)

where A = 3
2 (ΩbH

2
0)(ΩγH

2
0)−1=2k−1S. Notice that the curvature perturbation implied by the source actually

increases as x! 0. For this model, the e�ective source in Eq. (13) reduces to the simple form

S = −
1

3
Ψs =

A

3

1

x
: (20)

Now let us assume the isocurvature condition at the initial epoch �(xi) = 0, or �bγ(xi) = −�s(xi) and

�1(xi) = 0 (see also Appendix). By requiring continuity in T and its �rst derivative, the initial partition into
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Fig. 2.| Compensation and isocurvature fluctuations.

(a) Baryon isocurvature model (�s / x−1). Outside the horizon x �
< 1, backreaction from the photons

cancels the contribution of the source to the curvature fluctuation. Inside the horizon, pressure prevents

signi�cant metric contributions from the photon-baryon fluid and �! �s . (b) For source functions �s / xp,

the ratio of Ta to Tb amplitudes decreases due to feedback. This leaves the acoustic oscillation mainly in

the sine mode at x� 1.

pure modes in Eq. (16) becomes Aa(xi) = −A=xi and Ab(xi) = (
p

3=54)Ax2
i , yielding a large contribution

to the Ta mode. However, let us examine the influence of the source term on the subsequent evolution,

p
3
R x
xi
Ta(x0)S(x0)dx0 = −(

p
3=54)(x2 − x2

i )A;p
3
R x
xi
Tb(x0)S(x0)dx0 = (x−1 − x−1

i )A: (x� 1)
(21)

Thus as the evolution progresses, the initially large Ta contribution drops precipitously leaving mainly the

Tb or sine mode at subhorizon scales x �> 1. Fundamentally, this is due to the feedback e�ect of Eq. (17):

the photons oppose any change to the net curvature and evolve to maintain the isocurvature condition.

In Fig. 2, we show the time evolution of T , the source curvature and the total curvature in the baryon

isocurvature model. By comparing � to �s, notice that the feedback e�ect is only important outside the

horizon. Another interesting quantity is the ratio of the Ta to Tb amplitude shown in Fig. 2b. In this case,

the Ta mode essentially disappears after horizon crossing leaving the acoustic perturbation in a pure sine

mode (p = −1:0, heavy line). In fact, the integral in Eq. (16) takes on a simple asymptotic form (HSb)

limx!1Aa(x) = 0;

limx!1Ab(x) = A=
p

3:
(22)

We also show in Fig. 2b the behavior when the source is generalized to �s = −Ψs = Axp. Again, the initially

large Ta mode is reduced as the superhorizon scale evolution progresses.

Even if the source has some superhorizon scale feature, i.e. a maximum at x � 1, its e�ect is mainly

cancelled out. From Eq. (18), notice that the photons always attempt to counter the source. The photon

fluctuations would track the rise and fall of a feature leaving an e�ect only from the boundary conditions.

Below the horizon however, compensation cannot occur due to the intervention of photon pressure.



{ 12 {

Fig. 3.| Driven oscillations.

The self-gravity of the photon-baryon fluid drives a cosine oscillation for adiabatic initial conditions (thin

lines) and a sine oscillation (thick lines) for isocurvature initial conditions. The adiabatic model has

�s(xi) = 0 and �γb(xi) 6= 0. The isocurvature model is the baryonic model of Eq. (19). The dashed

lines show the full potential, the solid lines the e�ective temperature. In both cases the amplitude in �0 +Ψ

increase during the �rst few oscillations, as described in x2.5.

How then does one obtain strong contributions to the Ta cosine mode? If superhorizon fluctuations

are not fully compensated, Eq. (16) implies a large amplitude in Ta. This adiabatic component implies

superhorizon curvature perturbations initially: �(xi) 6= 0. The simplest example is the case of �s = 0 and

�γb(xi) 6= 0. In Fig. 3, this case is contrasted with the baryon isocurvature case. Let us use these examples

to gain further intuition about the feedback mechanism.

From Fig. 3, we see that in the isocurvature case, compensation prevents a large curvature fluctuation

from appearing outside of the horizon regardless of the source. However photon pressure, which becomes

important around sound horizon crossing, resists the accompanying rarefaction of the photon fluid due to

dilation. At this point, the fluid turns around and begins falling into the potential wells of the source

enhancing the curvature fluctuation by its self-gravity. Note the increase in the amplitude of the oscillation

between the negative maximum and the positive maximum. As the photons resist further compression at

the positive maximum, the self-gravity contribution to the potential fluctuation decays. This leaves the

photon-baryon fluid in a highly compressed state and increases the amplitude of the acoustic oscillation.

Thus the self-gravity of the photon-baryon fluid essentially drives the oscillator. It provides a kick at each

of the �rst two turning points to enhance the oscillation.

A similar analysis applies to adiabatic fluctuations. Here the initial curvature fluctuation is kept constant

outside the horizon by photon backreaction. From x2.1 recall that the intrinsic temperature fluctuation and

gravitational potential partially cancel in the e�ective temperature. From the x � 1 limit of Eq. (14),

�0 + Ψγb = 1
2Ψγb < 0. At horizon crossing, the fluid begins to compress itself due to its self-gravity and

the e�ective temperature reverses sign. As pressure begins to stop the compression, the potential decays.
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Fig. 4.| Forced oscillations.

Inside the horizon, the regulatory e�ects of photon-baryon self-gravity become ine�ective. A source that

peaks at x = k� � 1 can produce complicated forced oscillations in the fluid. The intrinsic temperature

fluctuation T � �0 su�ers a large unobservable o�set −Ψs (bottom panel) which is removed by the redshift

in the e�ective temperature �0 + Ψ (top panel). Notice that the fundamental period krs = 2� or x ’ 10:9

is still clearly apparent for this slowly-varying source.

Again the fluid is left in a highly compressed state, and self-gravity acts as a driving term. The dilation

due to � (see discussion following Eq. (3)) doubles the e�ect of infall from Ψ, so that the end amplitude is
1
2 Ψγb(xi) − 2Ψγb(xi) � −

3
2Ψγb.

A di�erence in phase between the two modes arises since gravitational infall which initiates the chain

of events leading to the adiabatic acoustic mode only takes e�ect inside the horizon, whereas the dilation

e�ect that begins the isocurvature chain of events is already occurring outside the horizon. The end result is

that the self-gravity of the photon-baryon fluid drives a cosine oscillation for adiabatic initial conditions and

a sine mode for isocurvature initial conditions. This is not the most general case however, since self-gravity

and thus the initial conditions only dominate the behavior around or before horizon crossing. We consider

the behavior after horizon crossing in the next section.

2.6. Forced Oscillations and Subhorizon E�ects

If the source is still e�ective inside the horizon �s(x > 1) � �s(x = 1), more complicated behavior can

result since the regulatory mechanism of photon feedback is ine�ective. This is the case of so-called \active

perturbations" (Magueijo et al. 1996). The general Greens function solution can be rewritten as

T (x) = [A2
a(x) +A2

b(x)]1=2 sin
n
x=
p

3 + tan−1 [Aa(x)=Ab(x)]
o
; (23)
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for x� 1. The phase of the acoustic wave is in general time dependent for subhorizon e�ects. Furthermore,

we cannot ignore the gravitational redshift of the photons climbing out of the potential even inside the

horizon (see x2.2). The e�ective temperature is �0 + Ψ � T + Ψ if x � 1. In Fig. 4, we plot an example

based on a broken power law source of the form

�s =
1

(�x)−p1 + xp2
: (24)

Here p1 = 3, p2 = 1 and � = 0:01 such that the source peaks well below the horizon scale. Initial conditions

do not play a major role here since the fluctuation is generated inside the horizon. By considering only

the e�ective temperature �0 + Ψ, we remove the large unobservable o�set from gravitational blueshift in T

(see x2.2). Note that it is important to include the Sachs-Wolfe contribution to obtain a reliable measure of

the temperature anisotropy at last scattering. This is especially true when the anisotropies are \sourced"

such that metric fluctuations remain substantial inside the horizon, as in some defect models. Neglecting

this e�ect, for example by use of the oft-employed synchronous-gauge photon density, can lead to erroneous

conclusions about the shape of the CMB anisotropy power spectrum. Should the potentials have signi�cant

time variability after last scattering it is also necessary to include the ISW e�ect, as this can lead to signi�cant

distortions of the peaks, notably the �rst peak.

Even this smooth, well-behaved source leads to complicated structure in the acoustic oscillation.

Furthermore, after the source turns o� and Aa and Ab become constant in time, the oscillator is left with

a phase shift described by Eq. (23) that does not necessarily correspond to one of the pure modes. It is

important to note that even in this case, the temperature perturbation is anticorrelated with the source

fluctuation immediately after horizon crossing. This is due to compensation from feedback around horizon

crossing and will be important for the question of robust distinctions between models. We have found that

this anticorrelation persists even if the source changes sign outside the horizon or near horizon crossing.

It is of course impossible to quantify all the possibilities that arise from the arbitrary action of a source

well inside the horizon. However Fig. 4 illustrates two general points. Large metric and correspondingly even

larger density fluctuations are required for subhorizon forcing to dominate over driving e�ects at horizon

crossing. Compare the vertical scales of the upper and lower panels of Fig. 4. There are two e�ects that

make forcing around horizon crossing easier than well inside the horizon. The �rst is that for x � 1 a

large metric perturbation requires a very large density perturbation, since the Poisson equation (3) gives

�s = (�s=�T )O(�s=x
2). Also, from the Euler equation, pressure perturbations are more important than

metric perturbations at large x, once the arti�cial o�set due to the kΨ term has been removed by considering

the e�ective temperature. From Eq. (6), the e�ective temperature evolves according to

(�0 + Ψ)00 +
1

3
(�0 + Ψ) = Ψ00 −�00 (25)

The source is thus � −2�00, and if constant, produces a temperature shift of 6�00. Exotic spectra of this

type require extreme conditions. More plausible is a model whose forced e�ects dominate only around x � 1

where feedback e�ects still play some role. As we shall see in x3.2, this has consequences for the coherence

of the resulting oscillations.

The second point is that in spite of the gravitational forcing the natural period of the oscillation, here

x = 2
p

3� is still apparent in the harmonic structure. If the source �00 is slowly varying in time, so is the

phase shift. In Fig. 4, the spacing between the peaks is still regular and corresponds to the natural period

despite the slowly varying o�set. Thus this acoustic signature is only lost if the metric fluctuations are both

extremely large and rapidly varying inside the horizon.
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Fig. 5.| Baryon drag and relative peak heights.

Baryons displace the zero point of the oscillation by −RΨ. For a near BBN baryon content (center panel),

the displacement is smaller than the oscillation itself leading to alternating peak heights in the rms. For a

much larger baryon content, the photons oscillate around a strongly displaced zero point.

If such an exotic spectrum is measured in the CMB, we would have concrete evidence that the mechanism

responsible for structure formation requires new physics. Until the spectrum is measured however, we can

only consider the broader implications. The possibility of driven sub-horizon e�ects raises two questions

that we will address in xx4 { 5. Are there any unique signatures of the pure cases that distinguish them

from these more exotic scenarios? How does the existence of such exotic models a�ect our ability to measure

quantities such as the curvature of the universe? To help answer these questions, we need to understand two

additional acoustic e�ects that can provide clues to unraveling the spectrum.

2.7. Baryon Drag

Up until this point, we have neglected the e�ect of the baryons in the photon-baryon fluid. This

is appropriate for the early evolution and reveals the qualitative structure of the acoustic signal even at

recombination since R(��) = 3�b=4�γ j�� � 31:5Ωbh
2 � 30%. Nevertheless, there is an important acoustic

signature associated with the baryons if Ωbh
2 is near or greater than this BBN value (HSa, and Hu &

Sugiyama 1996, hereafter HSc). To include its e�ects properly, we must solve the full Eq. (10). However it

is instructive to examine the qualitative origin of the e�ect �rst. Eq. (6) tells us that the baryons contribute

to the inertial and gravitational mass of the fluid. Thus with a higher baryon content, gravity can compress

the fluid more strongly inside the potential well Ψ < 0. In the limit that x � 1 and we observe for only a
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time short compared with changes in R and the source, the solution to the oscillator equation (6) is

�0 + Ψ = C1 cos(krs) +C2 sin(krs)− RΨ: (26)

The last term represents the baryon drag on the photons and displaces the zero point of the oscillation.

Since −RΨ > 0 inside a potential well, it enhances the compression and suppresses the rarefaction stage of

the acoustic oscillation in the potential well. The crucial point is that the presence of baryons allows us to

distinguish between the two stages from the observable rms deviation j�0 + Ψj. Fig. 5 shows an example

based on the source in Eq. (24) with p1 = 2, p2 = 1 and � = 0:05. Here we take the k-spectrum at

recombination for a baryon content of Ωbh
2 = 0; 0:0125; 0:25 where R� = R(��) = 0; 0:38; 7:6. The neutrino

and CDM densities have been set to zero for simplicity. Notice that if baryon drag is signi�cant but not

dominant (middle panel) then it will modulate the peaks into a pattern of alternating peak heights. If it

dominates (bottom panel), the rms fluctuations no longer possess zero crossings but oscillate around some

large d.c. o�set. Either pattern is quite distinctive and as we shall see can separate the adiabatic from

isocurvature scenarios in all cases save those with jRΨj � j�0 + Ψj at last scattering.

2.8. Photon Di�usion

Finally, photon di�usion leaves a robust signature by providing a cut o� scale to the acoustic oscillations

that is independent of the source fluctuation. As the di�usion length passes the wavelength, acoustic

oscillations are exponentially damped (see Silk 1968, Weinberg 1972). Physically this occurs since di�usion

erases temperature di�erences across a wavelength and causes viscosity (or anisotropic stress) in the fluid.

Anisotropic stress, or the quadrupole, is generated from the free streaming of a dipole fluctuation �1. As

photons from crests and troughs of the original velocity perturbation meet, their Doppler shifts create

a quadrupole temperature pattern. This transfer of power from the dipole to the quadrupole is but a

manifestation of a general tendency. Streaming transfers power to higher angular moments since the original

temperature fluctuation subtends a smaller and smaller angle as seen by a distant observer. However in

the tight coupling limit, streaming is collisionally suppressed by the factor _�=k (the optical depth through a

wavelength) such that in the tight coupling limit, the anisotropic stress is approximately (see HSc, Eq. A8)

�γ =
8

5
(k= _�)f−1

2 �1; (27)

where f2 = 3
4

(Kaiser 1983). Other approximation commonly employed are f2 = 9
10

for unpolarized

radiation (Chibisov 1972) and f2 = 1 for further neglecting the angular dependence of Compton scattering

(Weinberg 1972,HSa). From Eq. (26), it is natural to try a solution of the form exp i
R
! d� for both

[�0 + (1 + R)Ψ] and �1. Heat conduction, proportional to Vb − �1, is described by iterating the baryon

Euler equation (2) to second order,

Vb −�1 = − _�−1R[i!�1 − kΨ]− _�−2R2!2�1: (28)

Here we have ignored changes on the order of an expansion time compared with those at the oscillation

period. Combining Eqs. (27) and (28) in the photon Euler equation (2), we obtain the dispersion relation

! = �kcs + i
1

6
k2 _�−1

�
R2

(1 +R)2
+

4

5
f−1

2

1

1 +R

�
; (29)

where recall that the sound speed cs = 1=
p

3(1 + R). It follows that acoustic oscillations are damped as

(HSc)

�0 + Ψ = [�̂0 + Ψ]e−[k=kD(�)]2 + RΨ(e−[k=kD(�)]2 − 1); (30)
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where �̂0 is the acoustic signal described by Eq. (4) and the damping wavenumber is

k−2
D =

1

6

Z
d�

1

_�

R2 + 4f−1
2 (1 +R)=5

(1 + R)2
: (31)

To order of magnitude, the di�usion length is the geometric mean of the Compton mean free path _�−1 and

the horizon �, as expected of a random walk. Aside from the residual baryon drag e�ect, photon di�usion

leaves a distinctive damping signal in the CMB that is only dependent on the cosmological background.

Because the damping is exponential, no oscillations survive at k� kD regardless of the source.

One complication arises however. As recombination progresses, the ionization fraction and hence

the di�erential optical depth _� decreases. The corresponding increase in the damping length can still be

approximated in the tight coupling limit if _�=kD(��) � kD�� � 1. In this case, the di�usion length passes

the wavelength while tight coupling holds and the damping can be calculated semi-analytically from the

known ionization history (see HSc). If this condition is not satis�ed, as is the case for extremely low Ωbh
2

or reionized models with a long Compton mean free path at recombination, the damping must be calibrated

numerically (Hu & White, in preparation).

2.9. Summary

In summary then, we have shown that the evolution of fluctuations acts to resist changes in the spatial

curvature, whenever the pressure can be neglected (outside the horizon). Schematically, this is because

the radiation or matter in a growing curvature perturbation redshifts faster than average (c.f. cosmological

redshift, as in x2.1) reducing the local energy density and hence stabilizing the curvature perturbation. It is

also a consequence of causality as shown in the Appendix.

The behavior of the acoustic oscillations due to sources outside the horizon thus depends only on

the initial conditions: whether or not there are initial uncompensated curvature perturbations. The

compensation by the radiation also implies that the self-gravity of the photons produces an important

feedback mechanism. The result is that sources arising before or near horizon crossing stimulate either the

cosine or the sine mode of the oscillation, not an arbitrary admixture.

The fact that the compensation mechanism leads to rarefactions in the photon density at horizon

crossing for isocurvature fluctuations but compressions for adiabatic fluctuations inside the potential well is

an extremely robust conclusion. Of crucial importance is it leads to an observable e�ect in models with Ωbh
2

of a few percent or greater due to the drag induced by the baryons. Photon di�usion also leaves a distinct

damping tail that is entirely independent of the model for the fluctuations but sensitive to the thermal

history.

3. Acoustic Signatures

Having studied the acoustic oscillations in the last section, let us now consider what signatures the

e�ects summarized in x2.9 leave in the angular power spectrum of CMB anisotropies. Acoustic oscillations

are frozen in at last scattering �� when the Compton optical depth to the present drops below unity. The

evolutionary properties of the acoustic phenomena before last scattering influence the peak locations, heights,

and damping tail. These will be used in the next sections to devise tests of the model for structure formation

and the background cosmology.
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3.1. Peak Locations for Driven Oscillations

At last scattering, each k-mode is caught at a di�erent phase in its oscillation. Of course, one can adjust

the magnitudes in k by choosing di�erent relative weights for the k-modes at the initial conditions. We

assume that any such weighting is not in itself oscillatory in k. Under this single assumption, the acoustic

pattern of peaks is robust to the details of the model even though their absolute heights are not. These

oscillations on the last scattering surface are viewed today as anisotropies on the sky. Thus the k-space

power spectrum is projected onto an angular power spectrum. The angular correlation function is broken

up into ‘ Legendre moments which represent the power on the scale � � ‘−1. The power spectrum is usually

denoted as ‘(‘+ 1)C‘ where C‘ is the ensemble average of the squared multipole coe�cients.

As we shall see in x5 [(see Eq. (39)], since the projection of k onto ‘ is highly dependent on the curvature,

knowledge of the physical scale of acoustic features allows a sensitive probe of the curvature. The physical

scale of the peaks is related to the sound horizon rs =
R
cs d� � �=

p
3 as R! 0 or more generally

rs =
2
p

3
(Ω0H

2
0)−1=2

r
aeq

Req
ln

p
1 +R+

p
R+ Req

1 +
p
Req

; (32)

assuming the universe was radiation dominated before aeq. The exact relation of the peak scale to the sound

horizon depends on the nature of the fluctuations and supplies a test of the model (see x5.6). Let us now

examine this relationship more carefully.

Once the source becomes ine�ective j�0j � j�sj, the partition into pure mode amplitudes Aa and Ab
of x2.4 becomes time independent and the acoustic oscillations settle into a pure sinusoidal form, sin�(�; k),

with phase

� = k rs + tan−1(Aa=Ab): (33)

For sources which peak before horizon crossing, backreaction e�ects create a two state system (see x2.5). If

the fluctuations are not perfectly compensated at the initial conditions, Aa � Ab. Compensation tends to

create a situation where Ab > Aa.

Robust predictions arise for the location of the peaks in the k or ‘ space power spectra. Since the phase

is dependent only on the nature of the initial fluctuation, not on the detailed behavior or the source in time

or k, all such models give de�nite predictions for the peak locations.

�(km) = (m− 1=2)�; (34)

for integer m. Furthermore, the harmonic series of peak locations is independent of the background quantities

that �x the sound horizon and the angle it subtends on the sky. The generic adiabatic prediction is that peak

locations follow a 1 : 2 : 3 � � � series in k or ‘. Isocurvature models tend toward a 1 : 3 : 5 � � � pattern (HSb).

Even if Aa and Ab are comparable, as would be the case if a small (�nely tuned) uncompensated fluctuation

remained in the initial condition, the pattern of peaks uniquely determines the phase shift. This might be the

case if the initial conditions contain a balanced amount of coherent adiabatic and isocurvature fluctuations.

In most physical examples however (see e.g. Kawasaki, Sugiyama & Yanagida 1995), the processes which

generate the two types of fluctuations are statistically independent and the two contributions are incoherent,

i.e. generated with di�erent phases in k. In this case it is even more unlikely that the two contributions

would be balanced to give the same acoustic amplitudes. For incoherent superpositions, the phase is always

determined by the dominant component with a change in amplitude, not phase, caused by the weaker

component. Furthermore, the phase di�erence �(km) − �(km−1) = � implies that regardless of the phase
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shift or amplitude variation, the spacing of the peaks in k is given by

kA = km − km−1 = �=rs (35)

Thus the acoustic peaks possess both model information in the ratios of their locations and model independent

information for the measurement of background parameters in the spacing between the peaks.

3.2. Peak Locations for Forced Oscillations

Although de�niteness in phase is a typical feature of acoustic oscillations, it is not necessarily obeyed by

models where the source is still active inside the horizon. In this case, the partition into pure modes through

Aa and Ab is time dependent. There are two limiting cases worth considering. The source could be scale

free in its temporal behavior such that �s(x; k) = G(x)F (k) where recall x = k�. This occurs for example if

the source behavior is correlated with horizon crossing due perhaps to the onset of a causal mechanism. As

discussed in x2.6, this is in fact the most likely scenario since metric perturbations that can overcome photon

pressure become increasingly hard to generate inside the horizon. In this case, the behavior as a function

of x = k� represents both the time evolution of a �xed k-mode and the transfer function in k for a �xed

time, e.g. at last scattering ��. If G(x) peaks around x = 1 as is typical, we would expect an irregular �rst

peak followed by an increasingly regular but phase shifted harmonic series. If it peaks much after x = 1,

complicated acoustic behavior containing detailed information about the source evolution would result (see

Fig. 4). Even in this case, we can see from Eq. (25) that if the source is slowly varying in time such that

G0000 � c2sG
00, the natural period is still imprinted in the oscillations. In cases where the driving force is

large, we expect only compressional phases to be clearly visible as peaks in the rms. Rarefactions become

rms troughs. Using only the compressional extrema, the peak spacing is then given by 2kA = 2�=rs.

In the extreme case that the metric perturbations are generated well after x = 1, one might also expect

stochastic behavior in the source (Albrecht et al. 1995). Here the timing mechanism due to the act of horizon

crossing no longer serves to correlate the modes. In this case, each k-mode receives a di�erent set of impulses

from the source. The phase shift given by tan−1[Aa(x; k)=Ab(x; k)] varies with k. In the extreme limit of

rapid variation, the phase information is lost when summing over k-modes to form the observable anisotropy.

This washes out the oscillatory behavior. It is believed that a concrete example of this mechanism is given

by the cosmic string scenario (Albrecht et al. 1995) although whether it is the dominant mechanism or not

is currently disputed. We shall discuss what can be learned in the case where the oscillations are washed

out in x5. Let us assume for the present that oscillations will be observed.

3.3. Peak Heights

A wealth of information is stored in the peak heights. Their signature is more model dependent than

the peak locations and provides an excellent means of examining the �ne details of the model. On the other

hand, robust features that distinguish between general classes of models are more di�cult to isolate. In

this section, we will examine generic features in the peak heights that may at least be used as clues for this

purpose.

Let us begin by examining the familiar scale-invariant adiabatic case. In the tight coupling limit, there

are two e�ects that determine the heights of the peaks: the driving force of feedback and baryon drag.

They are to a certain extent mutually exclusive. As we have seen in x2.5, feedback boosts the oscillation
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amplitude above the initial conditions [�0 + Ψ](�i; k) = 1
2 Ψ(�i; k) by a factor of 3. Recall that the fluid

�rst is compressed by its own self-gravity. Photon pressure resists the compression, causing the photon-

baryon contribution to the potential to decay. The fluid is thus released exactly in this highly compressed

state into the acoustic phase. We show in the Appendix that the potential in the matter dominated limit

Ψ(�; k) = 9
10Ψ(�i; k), thus the boost represents a factor of 5 enhancement over the �0 +Ψ = 1

3Ψ Sachs-Wolfe

tail. The inclusion of the neutrino background slightly lowers the amplitude (see HSc). The driving e�ect

does not occur if the potentials are dominated by an external source such as cold dark matter. Hence the

prominence of the acoustic oscillations increases if the universe is made more photon-baryon or radiation

dominated at last scattering.

Baryon drag enhances the compressional, here odd, peaks by a term of O(RΨ). This alters the peak

heights to give the distinctive alternating or o�set oscillation pattern but becomes sub-dominant if the

potential is intrinsically small. Such is the case for driven oscillations since the potential Ψ � Ψγb and

decays inside the sound horizon.

For isocurvature models, gravitational redshifts cause the e�ective temperature above the horizon to

be �0 + Ψ � 2Ψ < 0 (see x2.2). It is also worthwhile to note that although the fluctuation outside the

horizon at last scattering is small in these models, this does not imply that the observable anisotropy from

those scales is correspondingly small. Gravitational redshifts from the time dependent potential continue to

generate fluctuations between last scattering and the present in the same manner. This is generally called the

integrated Sachs-Wolfe (ISW) e�ect. Thus an isocurvature model which generates a scale invariant spectrum

of curvature fluctuations near horizon crossing yields a flat large scale anisotropy spectrum just as in the

familiar adiabatic case (Bennett, Stebbins & Bouchet 1992, Coulson et al. 1994, Pen, Spergel & Turok 1994).

Superhorizon isocurvature evolution makes the photon-baryon fluid more and more rare�ed inside

a potential well until photon pressure can successfully resist rare�cation. Since the �rst feature is the

turning point from the superhorizon behavior, it is not prominent in comparison to the 2Ψ Sachs-Wolfe

e�ect. However, the fluid then begins infall into the source wells. The driving e�ect of the photon-baryon

contribution to the potential wells now proceeds as in the adiabatic case to enhance the oscillation making

the second feature much more prominent than the �rst (see Fig. 3). Whereas the �rst peak has a height of

order 2Ψ at krs = �=2 and is small since compensation eliminates metric fluctuations above the horizon, the

second peak has a height of order 2Ψ at krs = 3�=2, which is signi�cantly larger since the photon-baryon

contribution adds to rather than cancels the source. As in the adiabatic case, baryon drag contributes an

O(RΨ) term that boosts the compressional phases. However in the isocurvature case, these are the even

peaks since compensation demands that if the �rst feature occurs near the horizon it represents rarefaction

inside the potential well. Thus, the second isocurvature peak is lifted even higher with respect to the �rst

by baryon drag.

How robust are these general tendencies? The prominence of the acoustic oscillations compared with the

large scale tail can be masked or altered by the presence of tilt or features in the initial k-spectrum as well as

by other e�ects from tensor and vector metric perturbations (e.g. Crittenden & Turok 1995). These e�ects

are however unlikely to obscure the distinctive alternating peak heights due to baryon drag. Unfortunately,

the baryon drag e�ect may be di�cult to observe if jRΨj(��) � j�0 + Ψj(��) � jΨj(� � 1=csk). Even with

high precision measurements, one must �rst remove the di�usion damping envelope in this case.
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Fig. 6.| Di�usion damping.

Although adiabatic and isocurvature models predict acoustic oscillations in di�erent positions, they both

su�er di�usion damping in the same way. The damping length is �xed by background assumptions, here

Ω0 = 1, h = 0:5, Ωb = 0:05 and standard recombination. These calculations were performed using a

full numerical integration of the Boltzmann equation with the code of Sugiyama (1995) as were results in

Figs. 7,8,10,11.

3.4. Damping Tail

Unless baryon drag dominates over the acoustic oscillation, as in the case that jRΨj(��)� j�0 +Ψj(��),
the damping leaves a clear signal in the CMB. To demonstrate this robustness to changes in the model for

the gravitational source, we compare in Fig. 6 the anisotropy power spectra of a standard inflationary model

with scale invariant curvature fluctuations at horizon crossing and a similar axionic isocurvature model. The

background parameters are set to be equal at Ω0 = 1:0, h = 0:5 and Ωb = 0:05. Notice that the damping

behavior is independent of the nature of the fluctuations.

The angular location of the damping tail is highly sensitive to the curvature which dominates projection

e�ects (see x5.3) but also to the thermal history which sets the maximum di�usion scale, the baryon content

Ωbh
2 which sets the mean free path of the photons, the matter content Ω0h

2 which sets the horizon scale. A

measurement of the damping scale alone would �x the combination of these quantities de�ned by Eq. (31).

More speci�cally, if last scattering occurs due to standard recombination, the wavelength kD at which the

acoustic amplitude falls to e−1 of its original amplitude can be �t by semianalytic techniques (HSc, Eq. E6)

to � 10%. Unfortunately, a measurement of kD cannot break the degeneracy in these quantities. If Ωbh
2

is constrained by BBN and Ω0h
2 by dynamical mass and Hubble constant measurements, it would provide

interesting constraints on the curvature of the universe as we shall show in x5.3. Furthermore with a

measurement of the acoustic peaks themselves, the degeneracy can potentially be removed in many models

for the source fluctuations (see x5.6).
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4. Uniqueness of the Inflationary Spectrum

The inflationary paradigm is the front running candidate for a mechanism of fluctuation generation in the

early universe: the perturbations in density which are the precursors of galaxies and CMB anisotropies today.

Are there unique signatures of inflation that can validate the paradigm? For a long time it was thought that

a nearly scale-invariant spectrum of anisotropies would provide evidence for inflation (Kolb & Turner 1990).

But then it was realized that models of structure formation based on topological defects also naturally formed

scale-invariant spectra (see x3.3 and Bennett, Stebbins & Bouchet 1992, Coulson et al. 1994, Pen, Spergel &

Turok 1994). From the other direction, �nding that the universe had non-vanishing spatial curvature once

seemed like a way to \disprove" inflation, however recently it has been shown that inflation could survive

such a revelation (Bucher, Goldhaber & Turok 1994, Yamamoto, Sasaki, & Tanaka 1995).

Currently the most popular means of \proving" inflation is to test the consistency relation between

the tensor (gravity wave) and scalar (density) modes. By measuring the detailed shape of the anisotropy

spectrum, one may infer the relative amplitudes of scalar and tensor perturbations. The ratio of tensor

to scalar contributions is proportional in slow-roll inflation to the slope of the tensor spectrum (Liddle &

Lyth 1993, Davis et al. 1992, Turner & White 1996). However this method of proof requires a precise

determination of the tensor to scalar ratio, which in turn requires a sizable fraction of the anisotropy be

contributed from tensor modes (White, Krauss & Silk 1995, Knox & Turner 1994). What one really desires

is a test based on the most basic ideas of the inflationary scenario that will be both observationally feasible

and able to survive the ingenuity of model builders.

The key feature of inflation for our purposes is that it provides a mechanism of connecting parts of

the universe at early times which are currently space-like separated. In fact, it can be shown that inflation

is the unique causal mechanism for correlating curvature perturbations on scales larger than the horizon

(Liddle 1995, Hu, Turner & Weinberg 1994). The possibility of a white noise spectrum of superhorizon

curvature perturbations is discussed in the Appendix, but is already observationally ruled out as a means

of structure formation. The question therefore arises, are there unique consequences of such super-horizon

curvature perturbations? If so, their observation would provide a \proof" of the inflationary paradigm.

4.1. Robustness of the Harmonic Series

We have seen in x3.1 that the harmonic series of acoustic peaks in a model with super-horizon curvature

fluctuations is given by the cosine series 1 : 2 : 3 � � � for the locations of the peaks. Compensated super-

horizon fluctuations follow the sine series 1 : 3 : 5 � � �. Thus by measuring the ratio of the �rst three peak

positions in ‘ space, these two possibilities may be distinguished. There are two concerns that need to be

addressed for this potential test of inflation. How robust is the harmonic prediction in the general class of

inflationary models? Can an isocurvature scenario where fluctuations are generated inside the horizon mimic

an inflationary series?

Let us consider the �rst question. Residual driving e�ects can distort the shapes and locations of the

�rst few peaks. Even for the pure adiabatic mode of x2.4, the peaks have not completely settled into their

asymptotic forms until krs � 1 and the peak positions follow the series in �0 + Ψ,

0:88 : 1:89 : 2:93 : 3:94 : 4:96 � � � : (36)

We will hereafter refer to these ratios as the \cosine series" despite the fact that it has not yet converged

upon an actual cosine oscillation by the �rst few peaks. In particular, the �rst peak is somewhat low in
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Fig. 7.| Relative peak locations and the harmonic series.

In the ideal case, inflationary acoustic oscillations follow the cosine series and driven isocurvature models

a sine series (light dotted lines). The ISW e�ect, baryon drag and di�usion damping serve to distort the

peak locations. The isocurvature cases considered are: baryon isocurvature (HSb); textures (Crittenden &

Turok 1995); axionic isocurvature (Kawasaki, Sugiyama & Yanagida 1995) and hot dark matter isocurvature

(de Laix & Scherrer 1995). Numerical calculations (points) are normalized to the ideal predictions of

Eqs. (37) and (38) at the third peak and are speci�cally for Ω0 +Ω� = 1 though this constraint is irrelevant

for the peak rations. They demonstrate that the two cases remain quite distinct especially in the ratio

between the �rst and third peak.

‘ compared with the expectation from the higher peaks. Let us compare this prediction against actual

inflationary models from a numerical calculation (see Fig. 7, left panel, solid lines). All models do indeed

exhibit the harmonic structure predicted by Eq. (36). There is a slight shift of the �rst few peaks downward

in ‘ as Ω0h
2 is lowered. As noted by HSb, if the radiation is still dynamically important after last scattering,

the resultant ISW e�ect will shift power toward larger angles and distort the �rst peak. The even peaks are

also shifted upwards as Ω0h
2 increases to make potentials deeper and baryon drag more important. Still,

for reasonable matter content and a near BBN baryon content a ratio of 3rd to 1st peak of ‘3=‘1 � 3:3− 3:7

is a robust prediction of inflation. Furthermore the ratio of the �rst peak location to the peak spacing is

between ‘1=‘A � 0:7 − 0:9. The peak spacing is best measured by the prominent peaks, e.g. for inflation

‘A = (‘3 − ‘1)=2. The only caveat is that models with extremely high Ωbh
2
�> 0:04 and Ω0 � Ωb may be

dominated by the baryon drag e�ect. In this case, only the compression phases are visible as peaks in the

rms. Thus every other oscillation is unobservable and the series becomes 1 : 3 : 5 � � � like the isocurvature

spectrum. For a model with reasonable matter content Ω0h
2
�< 0:25, no value of Ωbh

2 entirely eliminates

the second peak. For Ω0h
2 = 0:64, the second peak disappears for 0:04 �< Ωbh

2
�< 0:5 and the fourth for

0:128 �< Ωbh
2
�< 0:32. Even in this extreme case, only a gross violation of BBN would entirely mask the

inflationary pattern. Thus the harmonic series is a robust prediction of inflation.
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Fig. 8.| Obscured isocurvature peak.

The �rst isocurvature \peak" appears as a shoulder and may be obscured especially in high baryon models

where the second peak is signi�cantly higher (left panel, arbitrary normalization). If the second peak starts

the harmonic series, the ratios (right panel, points) can be quite close to the cosine prediction (dotted lines).

The points are normalized to the cosine prediction at the third peak. These models can be distinguished by

the peak to spacing ratio and the morphology of the �rst compressional peak (2nd feature).

4.2. Uniqueness of the Harmonic Series

Is the cosine harmonic series a unique prediction of inflation? Just as in the inflationary case, for

isocurvature models residual driving e�ects create a downward shift from the 1 : 3 : 5 � � � pattern. Even a

pure driven isocurvature model with a source �s / x−1, which converges to the sine series for krs � 1 (see

x2.5), gives

0:85 : 2:76 : 4:83 : 6:89 : 8:91 � � � : (37)

We will hereafter refer to these ratios as the \sine series". How closely do real models follow this prediction?

For comparison, we show in the right panel of Fig. 7 the ratios of the peak locations for common isocurvature

models found in the literature: the baryon isocurvature (HSb), textures (Crittenden & Turok 1995), axionic

isocurvature (Kawasaki, Sugiyama & Yanagida 1995), HDM isocurvature (de Laix & Scherrer 1995). Notice

that these models roughly correspond to the sine series prediction. Thus in all inflationary models with

reasonable baryon content, the ratio of peak locations should be distinguishable from the current models

based on the isocurvature restriction. This suggests that to mimic inflation an isocurvature model would

have to either possess extreme conditions or �ne tuning.

Let us attempt to construct models which mimic inflation. Since the �rst inflationary peak appears

immediately after sound horizon crossing k = �=rs, it is di�cult to avoid or counter the driving e�ects which

produce the sine series. Can a series based on peaks arising after sound horizon crossing somehow mimic the

cosine series? Consider the possibility that the �rst isocurvature peak in the sine series Eq. (37) is missing

or cannot be observed. This is indeed likely in some models since the �rst peak can be quite low in intrinsic
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amplitude (see Fig. 8, x3.3 & x4.3). Furthermore, external e�ects such as tensor and vector modes which

naturally possess a feature on the horizon scale at last scattering might mask or distort the peak. In this

case, the observable peaks would follow the series: 2:8 : 4:8 : 6:9 � � � which is close enough to the cosine series

to cause some concern, especially if only the �rst two peaks are measured. More generally, one might have

a source that turns on only after sound horizon crossing so that the harmonic series is again shifted toward

smaller scales. These possibilities however create spectra which are not as close to the inflationary prediction

as they initially might appear.

The crucial point is that although the starting point of the harmonic series can change with the model,

its spacing cannot. The separation between the peaks is �xed by the sound horizon at last scattering.

Thus the harmonics cannot simply be scaled to match the inflationary prediction. The distinction is clearer

when we consider the ratio of the peak location to peak separation. The idealized inflationary prediction of

Eq. (36) requires a ratio of the �rst peak to the separation between peaks of ‘1=‘A � 0:88. If the second

peak of the isocurvature prediction Eqn. (37) is to be taken for a �rst peak, it gives a corresponding ratio of

‘1=‘A � 1:33. In other words, we expect a factor of 1.5 di�erence between the two cases. The uncertainty

displayed in the real models of Fig. 7 do not destroy the test. When comparing models with the same

values for Ω0h
2 the idealized expectation is validated, e.g. between inflation and axionic isocurvature with

Ω0h
2 = 0:25 and Ωbh

2 = 0:0125 there is a 1.4-1.5 di�erence in ‘1=‘A depending on which peaks are used to

measure the spacing. Even if the background parameters are unknown, to get the ratio as low as it is in the

highest inflationary case (‘1=‘A � 0:9 for Ω0h
2
�< 1), the �rst peak must be created around sound horizon

crossing.

The robustness of this test arises because the natural frequency of the oscillator is related to the sound

horizon. Thus the oscillations, if regular enough to be mistaken for inflation, must appear regularly spaced

with respect to that scale. It is of course in principle possible that the external source is periodic and

drives the oscillator at a di�erent frequency. It is amusing to note that even this rather unlikely scenario

can be distinguished. The damping tail provides a scale that is entirely independent on the nature of the

fluctuations. If the background parameters are known, the ratio of the damping scale to peak position

provides an additional consistency test for the inflationary scenario. In models where the fluctuation is

generated inside the sound horizon, the ratio ‘1=‘D increases. In particular, for the above case of a missing

�rst isocurvature peak, the ratio increases by a factor of 1:5 exactly as with the case of the peak-to-spacing

ratio.

Therefore, the only way to mimic the inflationary series is to tune the behavior of the source at sound

horizon crossing so that it immediately generates a peak in the proper position but leaves no residual e�ects

that would distort the series of higher peaks. Although contrived, this is possible. In Fig. 9, we plot a source

given by Eq. (24) with p1 = 2, p2 = 1, and � = 0:05 with Ωb ! 0. In this case, we have constructed a source

which dies o� after x � �−1 such as to leave the oscillations in a nearly pure cosine mode. The �rst �ve

peaks follow a series 1 : 2:05 : 3:16 : 4:23 : 5:29, very close to the canonical inflationary prediction. Notice

however that the prediction is 180 degrees out of phase with the inflationary prediction. This is an important

fact that we will make use of in the next two sections. As we shall see, the crucial point is the e�ect of

compensation near sound horizon crossing. One should also bear in mind that we have tuned the source

to produce as pathological a case as possible. The cosine harmonic of peaks is essentially but not entirely

unique to the inflationary paradigm. Its con�rmation would strongly support the inflationary scenario.
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Fig. 9.| Pathological isocurvature model.

Here forced isocurvature fluctuations are tuned to match the locations of the inflationary prediction (upper

panel dotted lines) with vanishing baryon content R ! 0. Notice that even in this case the isocurvature

oscillations are out of phase with the inflationary prediction by 180 degrees. With the inclusion of baryon

drag, this leaves an observable signal in the rms.

4.3. First Peak

Can we employ additional information to eliminate the possibility that an isocurvature model might

mimic the inflationary model through the peak positions? Compensation from photon feedback discussed

in x2.4 and x3.3 provides an essential distinction. Near or above the horizon, the photons act to resist

any change in curvature produced by the source if the universe is radiation dominated (see Appendix for

relaxations of this assumption). Thus, the �rst peak in an isocurvature model, if it is su�ciently close to the

horizon to be confused with the inflationary prediction, must be anti-correlated with the source. In other

words, the �rst peak in the rms temperature represents the rarefaction stage inside the potential well of the

source rather than a compression phase as in the inflationary prediction.

Since the dilation e�ect _�0 = − _�, which causes �0 + Ψ � −2�, creates both the �rst peak and the

Sachs-Wolfe e�ect, the �rst feature in an isocurvature spectrum is not truly a peak but a smooth turnover

from the large scale behavior as discussed in x2.5 and x3.3. This point represents the epoch at which the

fluctuation ceases to follow the growth of the curvature and turns around to start the acoustic oscillation.

It creates the shoulder appearance of the �rst isocurvature feature (see e.g. Fig. 6 and Fig. 8). On the

other hand, the inflationary fluctuation in the e�ective temperature is proportional to cos(krs) and passes

through a zero at krs = �=2 before the �rst peak (see Fig. 3). The resultant spectrum thus exhibits a rather

sharp break between the gravitationally dominated Sachs-Wolfe tail and the �rst peak (see Fig. 6). The

gravitational nature of the �rst peak in an isocurvature model makes it substantially less prominent when

compared with the low-‘ tail. The �rst isocurvature peak also tends to be low with respect to the higher

peaks because it appears too close to horizon crossing to experience the full forcing e�ect by the source.
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Fig. 10.| Baryon drag in the inflationary model.

Baryon drag enhances the compressional, here odd, acoustic peaks. (a) Although di�usion damping at small

scales coupled with the intrinsically small baryon drag e�ect in low Ωbh
2 models hides the e�ect, the third

peak is clearly anomalously high in all but the most extreme case Ωbh
2 = 0:0025 which is in clear violation

of BBN constraints. (b) Lowering Ω0h
2 also reduces the e�ect by reducing the potential fluctuation Ψ.

Unfortunately these morphological distinctions are hard to quantify. Indeed, the sharp rise to the �rst

peak in the inflationary model can be masked by the presence of the integrated Sachs-Wolfe e�ect in a low

Ω0h
2 universe (HSa). In an isocurvature model, the prominence of the �rst feature can be enhanced by

a smooth bend in the power spectrum or vector and tensor modes. Nevertheless, the physical distinction

between the �rst adiabatic and isocurvature peaks does suggest a robust way of distinguishing the models

as we shall now discuss.

4.4. Relative Peak Heights

Whereas the inflationary spectrum obeys a compression-rarefaction-compression pattern an isocurvature

model displays a rarefaction-compression-rarefaction pattern. In the absence of baryons, there is no

observable distinction between compression and rarefaction since only the rms can be measured. However, as

we have seen in x2.7, baryons enhance the compression at the expense of rarefaction leading to an alternating

series of peaks in the rms. In fact, the example in Fig. 5 is the same pathological model of x4.2 which has

peaks at the inflationary locations by construction. Notice that for reasonable baryon content, the even

peaks are enhanced by the baryons, whereas the odd peaks are enhanced under the inflationary paradigm.

Since this non-monotonic peak pattern cannot be reproduced without introducing the appropriate features

in the initial k-spectrum of fluctuations, the pattern of anomalously high odd cosine peaks is a unique feature

of standard inflationary models.

Of course, an isocurvature model can also begin with a compression if the �rst peak is so low in amplitude

as to be unobservable (see Fig. 8). However, such a model cannot simultaneously create the peak positions

of the inflationary prediction. In fact, regardless of the peak positions, isocurvature models are still unlikely
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to mimic a strongly alternating heights pattern. Since the �rst compressional isocurvature peak occurs well

after horizon crossing, neither the potentials of the source nor the photon-baryon backreaction are large

enough to cause signi�cant baryon drag unless the baryon fraction is exceedingly high. In this case, the

behavior of the potential implies an anomalously high �rst compressional peak compared with the second

due to baryon drag from the residual self-gravity (see Fig. 8).

Although this pattern of peak locations and relative heights is unique, it is not an entirely robust

prediction of inflation. The intrinsic fractional e�ect at the mth peak is on the order

R(��)
Ψ(��; mkA)

Ψ(�i; mkA)
� R(��)T (mkA) (�� �> �eq) (38)

where T (k) is the matter transfer function (Bardeen et al. 1987). However, if the intrinsic e�ect is small,

complications such as possible smooth tilts in the initial spectrum and di�usion damping will make the signal

di�cult to observe (see Fig. 10). For Ω0h
2 � 0:25 this occurs if Ωbh

2
�< 0:007 and for BBN baryon content

for Ω0h
2
�< 0:1. Still, with high precision experiments, a su�ciently smooth initial spectrum, and known

thermal history, it is possible that even these extreme cases may be testable (Hu & White, in preparation).

On the other hand if R(��)T (mkA) � 1, baryon drag dominates and the even m peaks (rarefactions) no

longer appear as peaks in the rms (see Fig. 5). In this case, the oscillations are small compared with the

o�set and the distinction between compression and rarefaction stage is that they are maxima and minima of

the rms respectively. Since T (k) � T (0), a necessary but not su�cient condition for this to occur is R > 1

or a baryon content more than 3 times the BBN value.

4.5. Summary

In summary, inflationary models carry an acoustic signature with distinct properties that can distinguish

them from isocurvature models. The ratio of peak locations is a robust prediction of inflation. In particular,

the ratio of third to �rst peak location should be in the range ‘3=‘1 � 3:3 − 3:7 and the ratio of �rst

peak location to peak spacing should be between ‘1=‘A � 0:7 − 0:9. If this pattern is not observed in

the CMB, either inflation does not provide the main source of perturbations in the early universe or BBN

grossly underestimates the baryon fraction. The latter possibility is treated more fully in x5.6. Observational

con�rmation of the pattern would provide a plausibility proof for inflation. It would thus require �ne tuning

for an isocurvature model to reproduce this spectrum. To close this loophole in the test of inflation, the

relative peak heights can be observed. Assuming the location of the peaks follows the inflationary prediction,

we �nd that the high odd peak pattern of inflationary peaks is a unique prediction of inflation with a near

BBN baryon content. Thus the locations and relative peak heights can be used to \prove" the inflationary

paradigm. On the other hand, this signature relies on the baryon drag e�ect which may be small and

di�cult to observe in some exotic inflationary models. Moreover inflation does not preclude the presence of

isocurvature perturbations (Linde 1985, Yokoyama & Suto 1991). Disproof of inflation along these lines is

more di�cult, a common problem in cosmology!

5. Robustness of the Curvature Measurement

Acoustic oscillations in the CMB provide an interesting and unique opportunity to measure the curvature

of the universe. Features in the spectrum supply standard rulers with which to make a classical test of the

geometry (Doroshkevich, Zel’dovich & Sunyaev 1978, Sugiyama & Gouda 1992, Kamionkowski, Spergel &
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Fig. 11.| Standard rulers and the angular diameter distance.

Acoustic features in the CMB, in particular the peak locations and the damping tail, act as standard rulers

with which a measurement of the curvature can be made. Thin solid lines represent the Ω0 = 1, � = 0

calculation scaled in ‘ to account for the projection in the Ω0 = 0:1 open and � models.

Sugiyama 1994, Hu & White 1996). If the inflationary scenario is correct, the curvature can be measured to

a few percent essentially from the location of the �rst acoustic peak. However, is the curvature measurement

robust to changes in the underlying model? Clearly, the location of the �rst peak does not contain

enough information. Isocurvature models predict peak locations with a di�erent relation to the sound

horizon. Radical changes in the baryon content from its BBN value and the thermal history from standard

recombination can shift their positions. What additional information is required to ensure that the curvature

measurement is robust?

5.1. Angular Diameter Distance

It is instructive �rst to review the general case for measuring the curvature by the angular diameter

distance test. For de�niteness and simplicity, let us take the inflationary example. Here the acoustic spectrum

in k is purely a function of Ωbh
2 and Ω0h

2. The implied fluctuations on the last scattering surface are viewed

as anisotropies on the sky today via the projection

‘feature(K;�) = kfeaturer�(K;�); (39)

where the comoving angular diameter distance to the last scattering surface is

r�(K;�) = jKj−1=2 sinh[jKj1=2(�0 − ��)]: (40)

for K < 0 negatively curved universes. For K > 0, merely replace sinh ! sin. The functional dependence

arises since �0(K;�;Ω0h
2) and ��(Ω0h

2;Ωbh
2) and we are considering Ω0h

2 and Ωbh
2 �xed for now. In
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general, negative curvature moves the acoustic features to smaller angles since a �xed physical scale then

subtends a smaller angle on the sky. A cosmological constant moves features to larger angles due to a

decrease in the current horizon size from the rapid expansion.

In Fig. (11), we display an example. By holding Ωbh
2 and Ω0h

2 constant, the acoustic features are �xed

in physical space and the shift in ‘ is entirely due to the projection. Shifting the canonical Ω0 = 1:0 model by

the angular diameter distance scaling of an Ω0 = 0:1 model, we see that Eq. (40) accurately accounts for the

e�ect. Notice that K and � are degenerate with respect to the acoustic signature. One cannot in principle

measure them independently from these features. The degeneracy is broken at larger angular scales by the

ISW e�ect (HSb). Moreover for realistic Ω0, � introduces little ambiguity in the curvature measurement.

It is clear that either the peaks or the damping tail can be used as standard rulers to probe the curvature

in this simple case. We shall now consider the bene�ts and drawbacks of each in the more general setting

where the model for the perturbations and the background are not known a priori. We then turn to what

can be learned about the model for the perturbations and how this additional information can be used to

re�ne the measurement of the curvature.

5.2. Acoustic Peaks

The physical scale associated with the acoustic peaks is the sound horizon at last scattering.

Unfortunately however, the exact relation between the peak locations and the sound horizon typically varies

by a factor of 2 depending on the model. In this section, we discuss a how the peak spacing can be used as

a measurement of the spatial curvature which is far less dependent on the model for the fluctuations.

As discussed in x3.1, once the source has switched o� inside the horizon the acoustic peaks follow a phase

shifted harmonic series. The key point is that regardless of the phase, the peaks are spaced by kA = �=rs.

Hence if the sound horizon at last scattering is known, the spacing provides us with an angular diameter

distance test of the curvature. In making this measurement, the higher peaks form a better probe than the

lower peaks, since the latter can be shifted due to residual driving e�ects and metric fluctuations between

last scattering and the present. The peak spacings �‘ for the models of Fig. 7 are shown in Table 1 and

should be compared with the prediction �‘ = ‘A � kAr�. As can be seen, the spacing becomes more regular

and approaches the expected value after the �rst peak separation ‘2−‘1. In the inflationary case shown here,

baryon drag suppresses the even peaks and distorts their locations. For best accuracy, one should employ

the spacings of the prominent peaks for the test, e.g. ‘A = (‘3 − ‘1)=2 in the inflationary case. In general,

three peaks will be necessary to assure accuracy of the test.

How well can this test measure the curvature given realistic uncertainties in Ωbh
2 and Ω0h

2 through h

which a�ect the physical scale of the sound horizon at last scattering (see Fig. 12)? If the baryon content is

near or less than the BBN limit Ωbh
2
�< 0:05, it has only a small e�ect since the photons dominate the fluid

at last scattering. The Hubble constant has a relatively larger e�ect but even so a measurement of a peak

spacing ‘A � 290 would require Ω0 + Ω� �> 0:7 if 0:4 � h � 0:8. Note that the dependence on the Hubble

constant becomes weaker as it increases to make the universe more matter dominated at last scattering.

The main drawback of this method is that it may be di�cult to apply in models where the forced e�ects

continue well after horizon crossing. In this case, the peak spacing may not become regular until the higher

peaks. Near the di�usion scale, the power in the CMB fluctuations is exponentially damped. Foregrounds

become more di�cult to subtract on these smaller scales and gravitational lensing by large scale structure
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(see e.g. Seljak 1996) can wash out the oscillations to some extent. It is even possible that stochastic metric

perturbations would leave the spectrum with no distinct peaks (see x2.6, Magueijo et al. 1996). In these

cases, we must turn to the damping tail to measure the curvature.

5.3. Damping Tail

The di�usion damping length provides a standard ruler for the curvature measurement that is the most

robust against changes in the model for the fluctuations (see also Hu & White 1996). As discussed in x3.4,

its location is dependent only on background parameters. However, it is more sensitive to changes in Ωbh
2

and the thermal history due to its dependence on the Compton mean free path at last scattering. Fig. 12b

displays the location of the damping tail ‘D de�ned as the multipole number at which the acoustic e�ect

drops by e−2 in power. It is related to the damping wavenumber Eq. (31) by the simple projection of

Eq. (39). Here the thermal history has been �xed to follow standard recombination. By applying reasonable

constraints on the other parameters, the damping scale becomes a sensitive probe of the curvature. Even

allowing for a factor of 4 uncertainty in Ωbh
2, an open model of Ω0 �< 0:5 can be distinguished from a flat

Ω0 + Ω� = 1 universe. An additional uncertainty arises from the Hubble constant which changes the age

of the universe and expansion rate at last scattering and hence the di�usion scale. In Fig. 12, we show the

uncertainty from h if Ωbh
2 is �xed by BBN. Again open universes with Ω0 �< 0:5 can be distinguished from

the flat cases for reasonable values of h amounting to a factor of 4 ambiguity in Ω0h
2.

There is one caveat to this proposal for measuring the curvature. It must �rst be established that

the damping tail is indeed due to photon di�usion and not due to some intrinsic fall o� in the source or

secondary e�ect between recombination and the present. To test this assumption, one must measure the

shape of the damping tail. Di�usion damping leads to a near exponential fall o� in the anisotropy rather

than the power law behavior expected in the alternate possibilities. Thus it will be necessary to follow the

damped oscillations into the di�usion regime to establish its exponential character. Even in a flat universe

the damping tail is at arcminute scales. Detailed measurements of the primary signal may or may not

be observationally feasible due to possible foreground and secondary e�ects, most notably the ISW e�ect.

Models with large small scale metric fluctuations may also have their e�ective temperature at last scattering

dominated by baryon drag rather than acoustic oscillations. This too would mask the exponential signature.

Of course, if acoustic peaks in the angular power spectrum are also measured, then it is almost assured that

a break in the acoustic spectrum is due to di�usion.

Model 1-2 2-3 3-4 4-5

Inf 288 259 297 277

HDM 204 282 272 295

Tex 221 286 287 285

Axi 204 295 275 298

Table 1: The spacing between peaks for the suite of models in Fig. 7 with the same background parameters

Ω0 = 1, Ωb = 0:05, h = 0:5 and standard recombination. The spacing becomes more regular for the higher

peaks and converges toward the expected value of 290. The spacing yields a measure of the curvature of the

universe that is nearly independent of the model for the fluctuations.
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Fig. 12.| Peak spacing and damping scale as a function of Ω0.

Even allowing for uncertainties in the baryon content (solid shading, h = 0:5) and Hubble constant (dashed

shading, Ωbh
2 = 0:0125), open models with Ω0 �

< 0:5 can be distinguished from flat (Ω0 +Ω� = 1) � models

through either scale. The damping scale is entirely independent of the model for the fluctuations but may

be more di�cult to measure than the peak spacing.

5.4. Exotic Baryon Content

Thus far, we have mainly considered the robustness of the curvature measurement to exotic sources

of gravitational perturbations. It is also possible that the background itself exhibits an exotic nature. In

particular, we have been implicitly assuming that the baryon content is within a factor of several of its BBN

value and the thermal history follows standard recombination. Let us now consider how the possibility of

exotic background properties may be handled, beginning with the baryon content.

If the baryon content is far from the BBN prediction of Ωbh
2 � 0:01{0.02, but known the approach to

measuring the curvature is unchanged since both the sound horizon and damping scale are known as well.

It may be the case however that the prediction is violated by observations that do not then constrain Ωbh
2

su�ciently. If it is low, the peak spacing still provides a good measurement of the curvature. In this limit,

the sound horizon at a �xed redshift becomes independent of the baryon content and the only variation

with Ωbh
2 is a weak dependence on the redshift of last scattering (see Fig. 13a). However, the peaks must

still be measured for this test to work. With a low baryon content, the Compton mean free path and hence

the di�usion length at last scattering increases making the higher peaks di�cult to observe. The ratio of

the damping tail to the peak-spacing ‘D=‘A provides a rough model independent estimate of the number of

peaks that are potentially observable and is displayed in Fig. 13a (c.f. Fig. 5). Two peaks and hence the

peak spacing is likely to be observable as long as Ωbh
2
�> 0:001, which is close to the stellar mass density

Ωstars � 0:004 for a reasonable Hubble constant. Thus the peak spacing should provide a test of the curvature

even under the most extreme conditions. On the other hand, a curvature measurement from the damping

tail alone could fall victim to this exotic possibility. However, the severely truncated acoustic spectrum in

this case should prevent such a misinterpretation of the position of the damping tail.

In the case of an extremely high baryon content, the situation is reversed. The damping tail now provides
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Fig. 13.| Exotic baryon and radiation content.

(a) The sound horizon which forms the basis of the peak-spacing test is independent of Ωbh
2 for values near

BBN or lower, whereas the damping tail is insensitive to high Ωbh
2. In either limit a robust test exists.

The ratio of tail to peak-spacing ‘D=‘A can detect an exotic baryon content. (b) Changing the radiation

content, e.g. by altering the number of relativistic neutrinosN� , a�ects the expansion rate and thus the two

physical scales weakly. Cases extreme enough to a�ect the scales signi�cantly can also be distinguished by

‘D=‘A.

the more robust estimate. Since the e�ects of a delay in last scattering and a decrease in the Compton mean

free path tend to cancel, the physical scale is nearly independent of the baryon content for high values (see

Fig. 13). On the other hand, if the baryon content is raised more than a factor of 5 over the BBN value,

the sound speed and hence the sound horizon at last scattering decreases. Thus the peak spacing alone is

an unreliable test of the curvature if the baryon content is extremely high (Ωbh
2
�> 0:06) but unknown.

Is there a model-independent measure of the baryon content that can test for anomalous values? It

should be clear from the discussion above that the ratio of the damping tail to peak-spacing is highly

sensitive to Ωbh
2. It is also a function of Ω0h

2 but since Ω0 must be consistent with the inferred curvature

only uncertainties in the Hubble constant enter if Ω� = 0. The ratio is double valued so that its measurement

would allow both a high and low baryon content solution (see Fig. 13a). As we shall see in x5.6, baryon

drag provides a distinction between the two extremes from a measurement of the relative heights of the

peaks. In summary, an exotic baryon content is detectable and does not present a problem for the curvature

measurement if both the peak spacing and damping tail can be measured.

5.5. Exotic Thermal History

Exotic thermal histories are another possibility. By thermal history, we refer to both the thermodynamics

of the expansion and the ionization history. Massive decaying particles can create an epoch of matter

domination before last scattering which changes the age of the universe at last scattering and hence both

the sound horizon and the di�usion scale (White, Gelmini & Silk 1995, Bardeen, Bond & Efstathiou 1987).
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Fig. 14.| Exotic ionization history

We show the damping and peak-separation scales in a model with instantaneous recombination at z� . For a

gradual recombination, a lower ‘D=‘A will always result. The di�usion scale at last scattering by de�nition

approaches the sound horizon in the limit that no recombination (NR) occurred. Assuming instantaneous

recombination, the ratio ‘D=‘A roughly corresponds to the number of observable peaks and can be used to

discriminate against exotic ionization histories. Here Ω0h
2 = 0:25;Ωbh

2 = 0:0125.

A less exotic example of the latter e�ect is provided by any model which changes the epoch of equality.

Let us take the a simple but illustrative example of a change in the energy density in relativistic species.

This can arise for example by changing the number of relativistic neutrinos or their temperature. In Fig. 13b,

we plot the sound horizon, damping scale and the ratio between the two as a function of the fractional increase

in the radiation density �r=�γ . The standard thermal history with three relativistic neutrinos predicts

�r=�γ = 1:68. Raising the radiation content increases the expansion rate and thus decreases both the sound

horizon and di�usion scale at last scattering. Its e�ects are relatively weak unless the standard prediction

grossly underestimates the radiation content. Because the di�usion scale is essentially the geometric mean

of the horizon and Compton mean free path, it is a weaker function of the radiation content. Hence, if the

universe really has a su�ciently exotic history to change the two physical scales at last scattering, it should

be detectable in the ratio of tail location to peak spacing ‘D=‘A.

The use of ‘D=‘A as a probe of the thermal history is especially powerful for models which delay last

scattering signi�cantly. This might occur due to energy injection near z � 103 from particle decays or

non-linear fluctuations. Since the Compton mean free path grows as the universe expands, the di�usion

scale can approach the horizon scale (see Fig. 14). Here full ionization is assumed until a redshift z�, when

recombination is taken to occur instantaneously. Instant recombination is not realistic; however it provides

an upper limit on ‘D . The ratio of ‘D=‘A in Fig. 14 then measures the delay in recombination. Under

the instantaneous recombination assumption it corresponds to the number of observable peaks. The actual

observable value for any given model will be lowered in a manner dependent on the details of recombination.
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Even if recombination never occured the Compton mean free path will eventually reach the horizon size

due to dilution in the electron number density from the expansion. At this point the universe is e�ectively

transparent and the photons free stream to the present. Since by de�nition the di�usion length roughly

corresponds to the horizon scale at this epoch, ‘D=‘A � 1 and no acoustic oscillations are apparent. Thus

recombination is a necessary condition for the acoustic signature to be observable. In fact for practical

purposes, we require at least two observable peaks. For Ω0h
2 = 0:25 and Ωbh

2 = 0:0125, this translates

to recombination by z� = 175. For comparison, late reionization after standard recombination does not

destroy the acoustic signal unless the optical depth through the reionized epoch is greater than unity:

zreion �> 100(Ω0h
2=0:25)1=3(Ωbh

2=0:0125)−2=3.

Although there is not enough information in the one number ‘D=‘A to reconstruct all possible exotic

thermal histories, it is possible to determine that some exotic model is necessary if ‘D=‘A is not � 4 − 5.

Further work on the damping tail is necessary before this constraint can be tightened (Hu & White, in

preparation). In this case, we trade precise knowledge of the curvature for evidence that exotic physics is

required in the early universe. On the other hand, if the deviation is known to occur due to a speci�c cause

such as early energy injection or delays in equality, then the curvature can once again be obtained. Moreover,

with this information from both the damping tail and the peaks, we cannot mistakenly infer a value of the

curvature due to exotic baryon content or thermal history.

5.6. Toward Reconstructing the Model

The previous sections considered constraints on the curvature that could be made with minimal

knowledge of the model for the perturbations. However we would ideally like to learn as much as possible

about both questions from the CMB spectrum. In this section, we shall outline a program for measuring the

curvature by �rst establishing the basic model for structure formation. Model properties such as the relative

peak heights simplify the task of measuring the curvature since they provide extra clues. As noted in xx5.2

{ 5.3, this may be the only way to proceed if it proves impossible to measure the higher acoustic peaks and

damping scale.

We de�ne the basic model possibilities by their dominant mechanism for forming anisotropies:

1. Inflation: correlated superhorizon curvature fluctuations. Although inflation may also produce

isocurvature initial conditions, we class them separately.

2. Driven isocurvature (e.g. axionic and baryonic isocurvature, textures, etc.): photon-compensated

initial conditions. We allow for the possibility that the �rst peak is obscured (see x4.2) especially in

high baryon cases where it is strongly suppressed with respect to the second peak.

3. Forced isocurvature (e.g. possibly strings): forces after but temporally correlated with horizon

crossing.

4. Stochastic isocurvature (e.g. possibly strings): random sub-horizon forces.

5. Reionized: any of the above in which the di�usion length and horizon length coincide, e.g. fully

ionized models.

Each of these models can have anomalously high (low) baryon content de�ned as Ωbh
2 signi�cantly larger

(smaller) than the big bang nucleosynthesis (BBN) value of 1-2%. They can also be low in dark matter
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(CDM) such that Ω0 � Ωb. It is possible, though unlikely, that the model may be a mixture of \inflation"

(as de�ned above) and driven isocurvature scenarios.

For de�niteness, we hereafter discount the possibility of an exotic thermal history as treated in x5.5,

except for the case of late reionization which is plausible in many models. Furthermore, we assume that the

Hubble constant and � are su�ciently constrained to make the confusion they introduce to the curvature

measurement irrelevant (see e.g. Fig. 12). We however relax the BBN constraints on Ωbh
2 as this can lead

to a qualitatively distinct acoustic pattern.

There are four tests that we can apply to �x the model and the curvature, based on the acoustic

signatures discussed in x3.

1. Peak positions test: measure the locations and spacings between the peaks in ‘. Three useful items

can be extracted from this test:

Peak ratios: Ratios probe the nature of the model. We de�ne the distinguishing feature of a \cosine"

series as a ratio of third to �rst peaks of ‘3=‘1 � 3 − 4 and that of a \sine" of � 5. Note that a true

sine oscillation with missing �rst peak might be observationally classed as a cosine.

Peak spacings: If they are regular, they provide an angular diameter distance test. The physical scale

corresponds to kA = �=rs if both compressional and rarefactional peaks are measured or 2�=rs for the

compressional ones.

Peak-to-spacing ratio: Since the peak spacing is �xed by the sound horizon, its ratio with respect to

the �rst peak location provides a sensitive probe of the model. Inflation predicts ‘1=‘A � 0:7− 0:9.

2. Relative height test: determine if any of the peaks are anomalously high with respect to a smooth

underlying spectrum. Heights probe the baryon content and forcing mechanism.

3. Tail-to-spacing test: measure the ratio of tail to peak-spacing ‘D=‘A. If the peak spacing is regular,

the ratio measures the baryon content Ωbh
2 (and/or identi�es exotic thermal histories).

4. Damping tail test: measure the shape and absolute location of the damping tail as described in x5.3.

The shape con�rms its acoustic nature and the location provides an angular diameter distance test.

As we shall see, in most cases not all four tests are necessary. In contrast to x5.3, we shall here adopt the

philosophy that information from the damping tail only be used if all other tests are ambiguous. If the

baryon content is assumed to be known from nucleosynthesis, most of the tests involving the damping tail

are generally unnecessary. On the other hand, the damping scale ideally should still be measured since it

provides a valuable consistency check on both the baryon content and the thermal history assumption. Let us

outline the program as a flow chart. It starts with the suite of peak position tests. There are 4 possibilities:

A. The peak ratios form a cosine series.

Apply the relative heights test.

1. High odd peaks forming a smooth sequence: inflation with BBN or high Ωbh
2. Tail-to-spacing �xes

Ωbh
2. Spacing measures the curvature.

2. High odd peaks with anomalously high �rst peak: high Ωbh
2 driven isocurvature with �rst peak

obscured. Tail-to-spacing �xes Ωbh
2. Spacing measures curvature.
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3. High even peaks: tuned forced isocurvature with near BBN Ωbh
2. Spacing measures the curvature

4. Monotonic: BBN or lower Ωbh
2. Spacing measures curvature.

a. Peak-to-spacing ratio < 1: low CDM inflation. Tail-to-spacing can also measure Ωbh
2.

b. Peak-to-spacing ratio > 1: driven isocurvature with obscured �rst peak. Tail-to-spacing can also

measure Ωbh
2.

B. The peak ratios form a sine series.

Apply the relative heights test.

1. High even peaks: driven isocurvature model with high Ωbh
2. Tail-to-spacing �xes Ωbh

2. Spacing or

damping tail measures curvature.

2. High second peak: driven isocurvature model with BBN Ωbh
2 or lower. Spacing measures curvature.

Tail-to-spacing can also measure Ωbh
2.

3. Monotonic: high Ωbh
2, high CDM inflation. Tail-to-spacing �xes Ωbh

2 and half-spacing determines

curvature.

C. Neither cosine nor sine

1. Peaks follow phase shifted harmonic: Coherent and tuned superposition of inflationary and driven

isocurvature (cf. x3.1). Tail-to-spacing �xes Ωbh
2. Spacing measures curvature.

2. Peaks follow a cosine harmonic with gaps 1 : 3 : 4 : 5: High Ωbh
2, relatively high Ω0=Ωb inflation.

Tail-to-spacing �xes Ωbh
2. Spacing of higher peaks or half-spacing across the gap measures curvature.

Damping tail also measures curvature.

3. First few peaks irregular followed by a regular series. Forced isocurvature model with horizon crossing

e�ects and BBN or lower Ωbh
2. Peak spacing measures curvature. Tail-to-spacing ratio can also

measure the Ωbh
2.

4. Somewhat irregular peaks o�set by smooth function (e.g. Fig. 3). Forced isocurvature model

with e�ects well after horizon crossing and high Ωbh
2. Take average value of half-peak spacing.

Tail-to-(average)-spacing �xes Ωbh
2. Average spacing measures curvature.

5. Random locations: Forced isocurvature model with rapidly varying metric well after horizon crossing.

Tail-to-spacing ratio constrains Ωbh
2. Damping tail constrains curvature.

D. No peaks.

Damping tail test.

1. Exponential fall o�: Stochastic isocurvature model. Location of damping tail measures the curvature

if Ωbh
2 is known.

2. Power law fall o�: Reionized or stochastic isocurvature model with peak source amplitude far inside

horizon and high Ωbh
2. No robust constraints on the curvature are possible.
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Thus, in all but the last case the acoustic signature constrains the curvature. If the baryon content can

also either be measured from the signature itself or is known from external constraints such as BBN, highly

accurate measurements of the curvature are possible. Once the basic nature of the model and background

is determined through this program, detailed modeling of the fundamental source for the fluctuations that

formed large scale structure may begin.

6. Conclusions

We have generalized the formalism of HSa to include backreaction e�ects and examined the uniqueness

and robustness of acoustic signatures in the CMB. By clarifying the role of compensation and feedback in

the evolution of fluctuations, we have shown that the phase of the oscillation, and hence the ratios of peak

locations, distinguishes inflation from \typical" isocurvature models. Speci�cally, two robust test are the

ratio of third to �rst peaks and �rst to peak-spacing. Our analysis also provides a better understanding of

the structure of the peaks in these models. However since it is possible to imagine isocurvature models which

are tuned to mimic the inflationary pattern of peaks, we have stressed the importance of baryon drag, which

allows us to distinguish compressions from rarefactions in potential wells. This can help lift the confusion

between adiabatic models and these contrived isocurvature models. Although the level of drag does not

make this distinction clear for all possible baryon densities, it is observable for the value predicted by big

bang nucleosynthesis. Further understanding of the di�usion damping of anisotropies will allow us to extend

the lower limit of baryon densities for which we can distinguish the rarefaction and compression peaks.

We focus on the importance of the damping tail as a measure of spatial curvature which is independent

of the model for structure formation, and discuss the robustness of curvature measurements from the CMB.

Even in the case where no acoustic peaks are seen (e.g. possibly string models) the damping scale can be

estimated under mild assumptions about the thermal history and baryon content. A more precise test is

possible if the acoustic peaks are regularly spaced as indeed expected of models without extreme behavior at

small scales. Either approach allows one to infer the physical scale of the acoustic feature(s). Its projection

onto the sky allows us to perform a classical angular diameter distance test to determine the curvature of

the universe. In the process of carrying out these tests of the curvature, the general nature of the model for

the fluctuations can be reconstructed as well as the baryon content of the universe.

All of these studies focus on the tale told by the CMB spectrum taken as a whole. In particular, the

acoustic pattern, which arise from forced oscillations in the photon-baryon fluid before recombination, leaves

a distinct signature from which we may begin to reconstruct the cosmological mdoel.
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A. Causality and Compensation

In this Appendix, we clarify the role of causality in limiting the behavior of fluctuations outside the

horizon and its dependence on gauge. We show that only inflation can correlate the curvature fluctuations

above the horizon assuming general relativity is the correct description of gravity. Moreover in the main

text, we employed only the mechanism of compensation, i.e. the response of the photon-baryon fluid to

a source, and not the full causal constraints which limit the behavior of the source as well. This proved

su�ciently powerful to produce the distinctions in the acoustic signature under the additional assumption

that the compensation is provided by the photons. In this case, the feedback from the photon self-gravity

produces the key ingredient in making many of the signatures robust. Since in the standard FRW model,

the universe is radiation dominated until near recombination, this additional assumption is automatically

satis�ed.1 There are however exotic models where this assumption is not satis�ed. For example, a decaying

massive particle could cause the universe to undergo a period of matter domination before recombination. For

this kind of situation, we need to examine the general case of compensation and additional causal constraints

on the model.

Causality implies initial compensation in density fluctuations above the horizon since the stress-energy

tensor is conserved. Heuristically, the conservation law implies that changes in energy density at any location

arise from \flows" of energy density current across surfaces, or from displacements of fluid elements. Since

fluid elements cannot be displaced \beyond" the horizon, this severely constrains the behavior of fluctuations

at k� � 1. However, because the stress-energy tensor obeys covariant conservation, the exact form of causal

constraints on the density perturbation depends on the representation of the metric, i.e. the gauge.

We have seen in Eq. (1) that density perturbations can also change due to the \stretching" e�ects from

changes in the metric. A clever choice of gauge can eliminate such e�ects. Let us examine the evolution of

the density fluctuation in its local rest frame. Note that this does not coincide with hypersurfaces with zero

bulk velocity for the total matter VT unless g0i vanishes. In the literature, this has been called the comoving

gauge (Bardeen 1980), velocity-orthogonal isotropic gauge (Kodama & Sasaki 1984) and total matter gauge

(HSb). It represents the metric fluctuations as

g00 = −a2(1 + 2�Q);

g0j = a2VT k
−1Qjj;

gij = a2(1 + 2�Q)γij ;

(A1)

where j represents a covariant derivative with respect to γij and recall Q is the kth eigenfunction of the

normal mode decomposition. These quantities are related to their Newtonian counterparts by a gauge

transformation ~x� = x� + �x�. If the line element ds2 is to remain unchanged (to �rst order in �x),

~g�� = g�� + g���x
�
;� + g���x

�
;� − g��;��x

�: (A2)

A similar relation follows for the stress energy tensor T�� and relates the matter quantities. For densities,

it is simpler to note that it arises from a combination of a shift in time slicing and the background density

evolution: ~�iQ = �iQ− ( _�i=�i)�x
0. These relations imply that from the Newtonian gauge, the rest frame is

1 Note that the universe need only be radiation dominated when the fluctuation was well outside the horizon, not at last

scattering itself. This is of course not satis�ed in models with signi�cant reionization, but in this case acoustic oscillations are

not observable anyway.
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reached by the coordinate shift �x� = (VT =k;~0)Q, and the perturbation quantities are related by

� = Ψ− _VT =k−
_a

a
VT =k;

� = �−
_a

a
VT =k;

�T = �T + 3(1 + wT )
_a

a
VT =k;

(A3)

where wi = pi=�i and subscript T denotes quantities of the total fluid from a sum over the particle

constituents. Here we have used the background evolution equation _�i=�i = −3(1 +wi)( _a=a). Note that the

velocity VT is the same in the Newtonian and rest frame gauges since its transformation properties depend

on �xi. The familiar quantity � is the curvature of the spatial hypersurfaces in this gauge (Bardeen 1980).

Applying the gauge transformation Eq. (A3) to the Newtonian gauge equations or writing the Einstein

equations in this gauge (see HSb, Eq. (16), Kodama & Sasaki 1984 Eq. 4.7), we obtain the evolution equation

for the curvature,

_� =
_a

a
� = −

_a

a

wT

1 + wT

�
�pT

pT
−

2

3
�T

�
: (A4)

Unless wT = −1 as in the case of the de Sitter phase, the rest frame curvature remains constant in the

absence of isotropic (pressure) or anisotropic stress perturbations. The isotropic stress perturbation can be

broken up into an adiabatic and non-adiabatic part

�pT
pT

= c2Tw
−1
T �T + ΓT ; (A5)

with the sound speed of the total fluid given by c2T = _pT = _�T . The adiabatic pressure perturbation is related

to the curvature fluctuation by a factor of (k�)2 through the Poisson equation and hence is a negligible source

for (k�)2 � 1. The generalized compensation law is therefore that component evolution must balance at

k� � 1 to keep the rest frame curvature constant in the absence of non-adiabatic isotropic stress (\entropy")

or anisotropic stress perturbations. Note that unlike the adiabatic isotropic stress, both of these sources are

the same in any frame and admit no gauge ambiguity.

Since the continuity equation in this gauge is

d

d�

�
�i

1 +wi

�
= −(kVi + 3 _�); (A6)

for each of the individual particle species, the rest frame density perturbation obeys an ordinary conservation

law if these stresses are absent ( _� = 0). In other words, the number density of each of the particle constituents

only changes through their bulk motion. Thus we see that the causal constraint is simplest in the rest frame.

Note that Eqs. (A6) and (A4) imply that although density fluctuations can change purely due to an evolving

equation of state, this does not a�ect the curvature fluctuation � above the horizon.

Now let us consider the source of curvature fluctuations from non-adiabatic pressure perturbations. The

analysis also applies to anisotropic stress perturbations. The curvature fluctuation generated by pressure

perturbations is of order �pT =(pT +�T ). This fact is somewhat counterintuitive since the physical mechanism

that converts a pressure fluctuation to a density fluctuation is the movement of matter which is impossible

beyond the horizon. Let us examine its qualitative origin. Causality constraints in Fourier space do not

require no evolution for k� � 1. In physical space, motion of matter through length scales up to � cause a

suppressed evolution of the Fourier amplitude. A change in momentum density of the fluid is caused by the
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pressure gradient and generates a bulk velocity of order (k�)�pT =(pT + �T ). This then forms a kinematic

density fluctuation from the continuity equation (A6) of order (k�)2�pT =(pT +�T ) or a curvature fluctuation

of order �pT =(pT + �T ). Thus the residual curvature fluctuation induced by motion of matter inside the

horizon is generically of order wT =(1 +wT ) times the pressure perturbation.

Causality implies that before matter has had a chance to move around, the universe must obey the

isocurvature condition � = 0 or �T = 0.2 If the condition is met by balancing perturbations in the di�erent

components of the fluid, a non-adiabatic pressure fluctuation generically arises

pTΓT � �pT − c
2
T ��T =

X
(c2i − c

2
T )��i; (A7)

if the equation of state of the balancing components di�er. As we have seen, ΓT can produce a curvature

fluctuation even at k� � 1. How does this possibility a�ect our arguments concerning the uniqueness

of the inflationary spectrum? First, we need to relate the rest frame curvature to the Newtonian

curvature. Employing the continuity equation (Kodama & Sasaki 1984, Eq. 4.7) in Eq. (A3), we �nd

(Lyth 1985, Mukhanov, Feldman & Brandenberger 1992)

� = � +
2

3

1

1 +wT

�
� +

a

_a
_�
�
; (A8)

in the absence of anisotropic stress. If the equation of state is constant and � evolves as a power law, � / �.

The two curvature fluctuations are comparable except in the degenerate case where � = 0 and

_�

�
= −

_a

a
[
3

2
(1 +wT ) + 1]: (A9)

In fact, this is the case of the source-free decaying mode described by Eq. (14). The decaying mode thus

carries no curvature perturbation in the rest frame. The other case in which � and � behave di�erently is

through a change in the equation of state. For example, through the matter radiation transition wT goes

from 1=3 ! 0. Although � remains constant in the absence of stress perturbations, � drops by a factor of

9=10 through the transition. For most purposes however, we can think of � and � as nearly interchangeable.

The mechanism by which non-adiabatic pressure perturbations generate curvature fluctuations is of

course already implicitly encorporated in our analysis and is the cause of the curvature not being strictly

zero outside at k� � 1 but merely suppressed. In the photon dominated limit, only a small pressure

fluctuation is needed to compensate a rather large density fluctuation in the source. Thus, the curvature

generated by this e�ect is negligible. In the matter dominated limit, pressure fluctuations cannot move a

large amount of energy density as exhibited by the wT=(1 + wT ) suppression. However, as the universe

changes from radiation to matter domination a relatively signi�cant curvature fluctuation can be generated.

The baryon isocurvature model provides a concrete example. In this case, the non-adiabatic pressure

perturbation is

ΓT = −
1− 3wT
1 +wT

S; (A10)

where recall that S = �(nb=nγ) = �b − 3�0 is the entropy fluctuation. Notice that the pressure fluctuation

is small as long as the universe is radiation dominated wT = 1=3. The evolution equations may be exactly

solved in the k� � 1 limit such that the Newtonian curvature is � = 1
8 (a=aeq)S in the radiation-dominated

limit and 1
5S in the matter dominated limit (see HSb, Eq. 27). Notice that the curvature is a constant in

2 More precisely �T = 0 aside from a � = 0 decaying mode [see Eq. (A9)].
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the matter dominated limit even outside the horizon. Around equality, pressure perturbations of order S

generate curvature fluctuations of the same order. Since in the matter dominated limit, pressure is no longer

e�ective, this curvature fluctuation is frozen in.

If one considers the evolution of a single k-mode, distinguishing between this and the inflationary

case would be di�cult since they both exhibit a constant curvature fluctuation above the horizon. In the

standard scenario, this is not a problem since the matter-radiation transition cannot occur early enough

without overclosing the universe (Ω0h
2 � 1). Note that the curvature fluctuation must be constant well

before horizon crossing for all observable scales in order to mimic inflation. However it is possible with

decaying massive particle scenarios for the universe to undergo a period of matter-domination before the

ordinary radiation-dominated epoch.

In this case, the spectrum of non-adiabatic pressure perturbations implied by causality serves to

distinguish the model from inflation. Causality forbids spatial correlations in the spectrum of such

perturbations, so jΓT (k)j2 and hence j�(k)j2 are constant in k, i.e. white noise (or steeper if symmetries

can be imposed), before horizon crossing. Notice that this agrees with the familiar result that the density

perturbations generated by the motion of matter have a j�T j2 / k4 tail for k�� 1 (Zel’dovich 1965, Robinson

& Wandelt 1996). This translates to a steeply rising spectrum of acoustic fluctuations compared with the

inflationary case of an approximately scale invariant spectrum j�(�i; k)j2 / k−3. Thus acoustic modes

associated with a constant curvature perturbation outside the horizon generated from an isocurvature initial

condition are both easily distinguished from inflation and observationally ruled out! The most general

isocurvature spectrum with scale invariant curvature perturbations at horizon crossing is j�(�; k)j2 =

F (k�)k−3. With the requirement of white noise perturbations outside the horizon, � must grow as �3=2

before horizon crossing. Since only models like these, with curvature fluctuations growing until horizon

crossing, require observation of the acoustic signature to distinguish them from inflation, our assumption in

the main text is justi�ed. It is of course still possible that tuned e�ects around horizon crossing can mimic

an inflationary spectrum in such a exotic scenario where the regulatory e�ects of photon feedback are absent.

However, since both tuning and a drastic modi�cation of the thermal history is necessary, we do not consider

this possibility to be worth considering.
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