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We generalize the total angular momentum method for computing Cosmic Microwave Background
anisotropies to Friedman-Robertson-Walker (FRW) spaces with arbitrary geometries. This uni�es
the treatment of temperature and polarization anisotropies generated by scalar, vector and tensor
perturbations of the fluid, seed, or a scalar �eld, in a universe with constant comoving curvature. The
resulting formalism generalizes and simpli�es the calculation of anisotropies and, in its integral form,
allows for a fast calculation of model predictions in linear theory for any FRW metric. With this
work, the perturbation theory of CMB temperature and polarization anisotropy formation through
gravitational instability in an FRW universe may be considered complete.
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I. INTRODUCTION

The study of the Cosmic Microwave Background (CMB) radiation holds the key to understanding the seeds of the
structure we see around us in the universe, and could potentially enable precision measures for most of the important
cosmological parameters. For this reason, as well as because of its intrinsic interest, one would like a physically
transparent framework for the study of CMB anisotropies which is as general, powerful, and flexible as possible.

Theoretically the calculation of CMB anisotropies is \clean", involving as it does only linear perturbation theory.
However the calculations can become quite complex once one allows for the possiblilty of non-flat universes, non-scalar
perturbations to the metric, and polarization as well as temperature anisotropies. Recently Hu & White [1] presented
a formalism for calculating CMB anisotropies which treats all types of perturbations, temperature and polarization
anisotropies, and hierarchy and integral solutions on an equal footing. The formalism, named the total angular
momentum method, greatly simpli�es the physical interpretation of the equations and the form of their solutions (see
e.g. [2]). However it was presented in detail only for the case of flat spatial hypersurfaces. Here we generalize the
treatment for the curved spaces of open and closed Friedman-Robertson-Walker (FRW) universes.

Aspects of this method in open (hyperbolic, negatively curved) geometries have been introduced in Hu & White
[3] and Zaldarriaga, Seljak & Bertschinger [4] for the cases of tensor temperature and scalar polarization respectively.
The latter work also addressed methods for e�cient implementation through the line of sight integration technique
[5]. In this paper, we complete the total angular momentum method for arbitrary perturbation type and FRW metric,
paying particular attention to the case of open universes because of its strong observational motivation. As an example
we use this formalism to compute the temperature and polarization angular power spectra of both scalar and tensor
modes in critical density and open inflationary models. We incorporated the formalism into the CMBFAST code
of Seljak & Zaldarriaga [5], which has been made publically available. With this work, the perturbation theory of
CMB temperature and polarization anisotropy formation through gravitational instability in an FRW universe may
be considered complete.

The outline of the paper is as follows: we begin by establishing our notation for fluctuations about a FRW back-
ground cosmology in xII. We then present the Boltzmann equation in our formalism in xIII, which contains the main
results. We give some examples and discuss applications in xIV. Some of the more technical parts of the derivations
(the Einstein, radial and hierarchy equations) are presented in a series of three Appendices.

II. METRIC AND STRESS-ENERGY PERTURBATIONS

In this section, we discuss the representation of the perturbations for the cosmological fluids and the geometry of
space time. We start by de�ning the basis in which we shall expand such perturbations and their representation under
various gauge choices.

We assume that background is described by an FRW metric g�� = a2γ�� with scale factor a(t) and constant
comoving curvature K = −H2

0(1 − Ωtot) in the spatial metric γij . Here greek indices run from 0 to 3 while latin
indices run over the spatial part of the metric: i; j = 1; 2; 3. It is often convenient to represent the metric in spherical
coordinates where

γijdx
idxj = jKj−1

�
d�2 + sin2

K �(d�2 + sin2 � d�2)
�
; (1)

with

sinK(�) =
�

sinh(�) ; K < 0 ;
sin(�) ; K > 0 ; (2)

where the flat-limit expressions are regained as K ! 0 from above or below. The component corresponding to
conformal time

x0 � � =
Z

dt

a(t)
(3)

is γ00 = −1.
Small perturbations h�� around this FRW metric

g�� = a2(γ�� + h��) ; (4)

can be decomposed into scalar (m = 0, compressional), vector (m = �1, vortical) and tensor (m = �2, gravitational
wave) components from their transformation properties under spatial rotations [6, 1].
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A. Eigenmodes

In linear theory, each eigenmode of the Laplacian for the perturbation evolves independently, and so it is useful to
decompose the perturbations via the eigentensor Q(m), where

r2Q(m) � γijQ(m)
jij = −k2Q(m); (5)

with \j" representing covariant di�erentiation with respect to the three metric γij . Note that the eigentensor Q(m)

has jmj indices (suppressed in the above). Vector and tensor modes also satisfy the auxiliary conditions

Q
(�1)
i

ji = 0 ;

γijQ
(�2)
ij = Q

(�2)
ij

ji = 0 ; (6)

which represent the divergenceless and transverse-traceless conditions respectively, as appropriate for vorticity and
gravity waves. In flat space, these modes are particularly simple and may be expressed as

Q
(�m)
i1:::im

/ (ê1 � iê2)i1 : : : (ê1 � iê2)im exp(i~k � ~x) ; (K = 0; m � 0) ; (7)

where the presence of êi, which forms a local orthonormal basis with ê3 = k̂, ensures the divergenceless and transverse-
traceless conditions.

It is also useful to construct (auxiliary) vector and tensor objects out of the fundamental scalar and vector modes
through covariant di�erentiation

Q
(0)
i = −k−1Q

(0)
ji ; Q

(0)
ij = k−2Q

(0)
jij +

1
3
γijQ

(0) ; (8)

Q
(�1)
ij = −(2k)−1(Q(�1)

ijj +Q
(�1)
jji ): (9)

The completeness properties of these eigenmodes are discussed in detail in [6], where it is shown that in terms of
the generalized wavenumber

q =
p
k2 + (jmj+ 1)K ; � = q=jKj ; (10)

the spectrum is complete for

� � 0; K < 0 ;
= 3; 4; 5 : : :; K > 0 : (11)

A deceptive aspect of this labelling is that for an open universe the characteristic scale of the structure in a mode
is 2�=k and not 2�=q, so all functions have structure only out to the curvature scale even as q ! 0. We often go
between the variable sets (k; �), (q; �) and (�; �) for convenience.

B. Perturbation Representation

A general metric perturbation can be broken up into the normal modes of scalar (m = 0), vector (m = �1) and
tensor (m = �2) types,

h00 = −
X
m

2A(m)Q(m) ;

h0i = −
X
m

B(m)Q
(m)
i ;

hij =
X
m

2H(m)
L Q(m)γij + 2H(m)

T Q
(m)
ij : (12)

Note that scalar quantities cannot be formed from vector and tensor modes so that A(m) = 0 and H(m)
L = 0 for m 6= 0;

likewise vector quantities cannot be formed from tensor modes so that B(m) = 0 for jmj = 2.
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There remains gauge freedom associated with the coordinate choice for the metric perturbations (see Appendix
A 2). It is typically employed to eliminate two out of four of these quantities for scalar perturbations and one of the
two for vector perturbations. The metric is thus speci�ed by four quantities. Two popular choices are the synchronous
gauge, where

H
(0)
L = hL; H

(0)
T = hT ;

H
(1)
T = hV ; H

(2)
T = H; (13)

and the generalized (or conformal) Newtonian gauge, where

A(0) = Ψ ; B(1) = V ;

H
(0)
L = � ; H

(2)
T = H : (14)

Here and below, when only the m � 0 expressions are displayed, the m < 0 expressions should be taken to be identical
unless otherwise speci�ed.

The stress energy tensor can likewise be broken up into scalar, vector, and tensor contributions. Furthermore
one can separate fluid (f) contributions and seed (s) contributions. The latter is distinguished by the fact that the
net e�ect can be viewed as a perturbation to the background. Speci�cally T�� = �T�� + �T�� where �T 0

0 = −�f ,
�T 0
i = �T i

0 = 0 and �T ij = pf�
i
j is given by the fluid alone. The fluctuations can be decomposed into the normal modes

of xII A as

�T 0
0 = −

P
m[�f�

(m)
f + �s]Q(m);

�T 0
i =

P
m[(�f + pf)(v(m)

f − B(m)) + v
(m)
s ]Q(m)

i ;

�T i
0 = −

P
m[(�f + pf )v(m)

f + v
(m)
s ]Q(m)i;

�T ij =
P
m[�p(m)

f + ps�
i
j ]Q

(m) + [pf�
(m)
f + ps]Q(m)i

j :

(15)

Since �(m)
f = �p

(m)
f = 0 for m 6= 0, we hereafter drop the superscript from these quantities.

A minimally coupled scalar �eld ’ with Lagrangian

L = −1
2
p
−g [g��@�’@�’+ 2V (’)] (16)

can be treated in the same way with the associations

�� = p� + 2V =
1
2
a−2 _�2 + V ; (17)

for the background density and pressure. The fluctuations ’ = �+ �� are related to the fluid quantities as [17]

��� = �p� + 2V;��� = a−2( _� _��−A(0) _�2) + V;��� ;
(�� + p�)(v(0)

� − B
(0)) = a−2k _��� ;

p��
(0)
� = 0 : (18)

The evolution of the matter and metric perturbations follows from the Einstein equations G�� = 8�GT�� and
encorporates the continuity and Euler equations through the implied energy-momentum conservation T�� ;� = 0. We
give these relations explicitly for the scalar, vector and tensor perturbations in both Newtonian and synchronous
gauge in Appendix A (see also [7]).

These equations hold equally well for relativistic matter such as the CMB photons and the neutrinos. However
in that case they do not represent a closed system of equations (the equation of motion of the anisotropic stress
perturbations �(m)

f is unspeci�ed) and do not account for the higher moments of the distribution or for momentum
exchange between di�erent particle species. To include these e�ects, we require the Boltzmann equation which
describes the evolution of the full distribution function under collisional processes.
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III. BOLTZMANN EQUATION

The Boltzmann equation describes the evolution in time (�) of the spatial (~x) and angular (n̂) distribution of the
radiation under gravity and scattering processes. In the notation of [1], it can be written implicitly as

d

d�
~T (�; ~x; n̂) � @

@�
~T + ni~Tji = ~C[~T ] + ~G[h��] ; (19)

where ~T = (�; Q + iU;Q − iU) encapsulates the perturbation to the temperature � = �T=T and the polarization
(Stokes Q and U parameters) in units of the temperature fluctuation. The term ~C accounts for collisions, here
Compton scattering of the photons with the electrons, while the term ~G accounts for gravitational redshifts.

A. Metric and Scattering Sources

The gravitational term ~G is easily evaluated from the Euler-Lagrange equations for the motion of a massless particle
in the background given by g�� [6, 8, 9]:

~G[h��] =
�

1
2
ninj _hij + ni _h0i +

1
2
nih00ji ; 0 ; 0

�
: (20)

Note gravitational redshift a�ects di�erent polarization states alike. As should be expected, the modi�cation from
the flat space case involves the replacement of ordinary spatial derivatives with covariant ones.

The Compton scattering term ~C was derived in [1, 4] in the total angular momentum language. Though the basic
result has long been known [10, 11], this representation has the virtue of explicitly showing that complications due
to the angular and polarization dependence of Compton scattering come simply through the quadrupole moments of
the distribution. Here

~C[~T ] = − _�
�
~T (n̂)−

�Z
dn̂0

4�
�0 + n̂ � ~vB ; 0; 0

��
+

_�
10

Z
dn̂0

2X
m=−2

P(m)(n̂; n̂0)~T (n̂0) ; (21)

where the di�erential cross section for Compton scattering is _� = ne�Ta where ne is the free electron number density
and �T is the Thomson cross section. The bracketted term in the collision integral describes the isotropization of the
photons in the rest frame of the electons. The last term accounts for the angular and polarization dependence of the
scattering with

P(m) =

0BBBB@
Ym2
0 Ym2 −

q
3
2 2Y

m
2
0 Ym2 −

q
3
2 −2Y

m
2
0 Ym2

−
p

6Ym2
0
2Y

m
2 3 2Y

m
2
0

2Y
m
2 3−2Y

m
2
0
2Y

m
2

−
p

6Ym2
0
−2Y

m
2 3 2Y

m
2
0
−2Y

m
2 3−2Y

m
2
0
−2Y

m
2 ;

1CCCCA ; (22)

where Y ml
0 � Ym�l (n̂0) and sY

m
l
0 � sY

m�
l (n̂0) and the unprimed harmonics have argument n̂. Here sY

m
l are the

spin-weighted spherical harmonics [12, 13, 14, 1].

B. Normal Modes

The temperature and polarization distributions are functions of the position ~x and the direction of propagation
of the photons ~n. They can be expanded in modes which account for both the local angular and spatial variations:
sG

m
l (~x; n̂), i.e.

�(�; ~x; n̂) =
Z

d3q

(2�)3

X
l

2X
m=−2

�(m)
l 0G

m
l ;

(Q� iU)(�; ~x; n̂) =
Z

d3q

(2�)3

X
l

2X
m=−2

(E(m)
l � iB(m)

l ) �2G
m
l ;

(23)
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with spin s = 0 describing the temperature fluctuation and s = �2 describing the polarization tensor. El and Bl
are the angular moments of the electric and magnetic polarization components. It is apparent that the e�ects of the
local scattering process ~C is most simply evaluated in a representation where the separation of the local angular and
spatial distribution is explicit [1], with the former being an expansion in sY

m
l . The subtlety lies in relating the local

basis at two di�erent coordinate points, say the last scattering event and the observer.
In flat space, the representation is straightforward since the parallel transport of the angular basis in space is trivial.

The result is a product of spin-weighted harmonics for the local angular dependence and plane waves for the spatial
dependence:

sG
m
l (~x; n̂) = (−i)l

r
4�

2l+ 1
[ sY

m
l (n̂)] exp(i~k � ~x) ; (K = 0) : (24)

Here we seek a similar construction in an curved geometry. We will see that this construction greatly simpli�es the
scalar harmonic treatment of [15, 16, 4] and extends it to vector and tensor temperature [3] modes as well as all
polarization modes.

To generalize these modes to the curved geometry, we wish to replace the plane wave with some spatially dependent
phase factor exp[i�(~x;~k)] related to the eigenfunctions Q(m) of xII A while keeping the same local angular dependence
(see Eq. C2). By virtue of this requirement, the Compton scattering terms, which involve only the local angular
dependence, retain the same form as in flat space. In Appendix C, we derive sG

m
l by recursion from covariant

contractions of the fundamental basis Q(m). The result is a recursive de�nition of the basis

ni( sG
m
l )ji =

q

2l+ 1
�
s�
m
l ( sG

m
l−1)− s�

m
l+1( sG

m
l+1)

�
− i qms

l(l + 1) sG
m
l ; (25)

constructed from the lowest l-mode of Eq. (B2) with the coupling coe�cient

s�
m
l =

s�
(l2 −m2)(l2 − s2)

l2

� �
1− l2

q2
K

�
: (26)

The structure of this relation is readily apparent. The recursion relation expresses the addition of angular momentum
and is the de�ning equation in the total angular momentum method. It says the \total" local angular dependence
at (say) the origin is the sum of the local angular dependence at distant points (\spin" angular momentum) plus the
angular variations induced by the spatial dependence of the mode (\orbital" angular momentum).

The recursion relation represents the addition of angular momentum for the case of an in�nitesimal spatial sepa-
ration. Here the leading order spatial variation is the gradient [ni( sGml )ji] term which has an angular structure of a
dipole Y 0

1 . The �rst term on the rhs of equation (26) arises from the Clebsch-Gordan relation that couples the orbital
Y 0

1 with the intrinsic sY
m
l to form l� 1 states,r

4�
3
Y 0

1 ( sY
m
l ) = sc

m
lp

(2l+ 1)(2l− 1)

(
sY

m
l−1

�
+ sc

m
l+1p

(2l+ 1)(2l+ 3)

(
sY

m
l+1

�
− ms

l(l + 1)
(sY ml ) (27)

where the coupling coe�cient is sc
m
l =

p
(l2 −m2)(l2 − s2)=l2.

The second term on the rhs of the coupling equation (26) accounts for geodesic deviation factors in the conversion of
spatial structure into orbital angular momentum. Consider �rst a closed universe with radius of curvature R = K−1=2.
Suppressing one spatial coordinate, we can analyze the problem as geometry on the 2-sphere with the observer situated
at the pole. Light travels on radial geodesics or great circles of �xed longitude. A physical scale � at �xed latitude
(given by the polar angle �) subtends an angle � = �=R sin�. In the small angle approximation, a Euclidean analysis
would infer a distance related by

D(d) =R sin� = K−1=2 sin� ; (K > 0); (28)

called here the angular diameter distance. For negatively curved or open universes, a similar analysis implies

D(d) = jKj−1=2 sinh� ; (K < 0): (29)

Thus the angular scale corresponding to an eigenmode of wavelength � is

� =
�

R sinh�
� 1
� sinh�

: (30)
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For an in�nitesimal change �, orbital angular momentum of order l is stimulated when

� � 1
��

[1 +O(�2�2)] ;

� � l

q
[1 +O(l2K=q2)] ; (31)

which explains the factors of l2K=q2 in the coupling term in a curved geometry. We shall see in xIII D that these
in�nitesimal additions of angular momentum and geodesic deviation may be encorporated into a single step by �nding
the integral solutions to the coupling equation (25).

C. Evolution Equations

It is now straightforward to rewrite the Boltzmann equation (19) as the evolution equations for the amplitudes of
the normal modes of the temperature and polarization ~T

(m)
l = (�(m)

l ; E
(m)
l ; B

(m)
l ). The gravitational sources and

scattering sources of these equations follow from Eq. (20) and (21) by noting that the spin harmonics are orthogonal,Z
dΩ ( sY

m
l )( sY

m0

l0
�) = �l;l0 �mm0 : (32)

The term ni ~Tji is evaluated by use of the coupling relation Eq. (25) for ni( sG
m
l )ji. It represents the fact that spatial

gradients in the distribution become orbital angular momentum as the radiation streams along its trajectory ~x(n̂). For
example, a temperature variation on a distant surface surrounding the observer appears as an anisotropy on the sky.
This process then simply reflects a projection relation that relates distant sources to present day local anisotropies.

With these considerations, the temperature fluctuation evolves as

_�(m)
l = q

"
0�
m
l

(2l− 1)
�(m)
l−1 −

0�
m
l+1

(2l + 3)
�(m)
l+1

#
− _��(m)

l + S
(m)
l ; (l � m); (33)

and the polarization as

_E(m)
l = q

"
2�
m
l

(2l− 1)
E

(m)
l−1 −

2m
l(l + 1)

B
(m)
l − 2�

m
l+1

(2l+ 3)
E

(m)
l+1

#
− _� [E(m)

l +
p

6P (m)�l;2] ;

_B(m)
l = q

"
2�
m
l

(2l− 1)
B

(m)
l−1 +

2m
l(l+ 1)

E
(m)
l − 2�

m
l+1

(2l+ 3)
B

(m)
l+1

#
− _�B(m)

l : (34)

The temperature fluctuation sources in Newtonian gauge are

S
(0)
0 = _��(0)

0 − _� ; S
(0)
1 = _�v(0)

B + kΨ ; S
(0)
2 = _�P (0) ;

S
(1)
1 = _�v(1)

B + _V ; S
(1)
2 = _�P (1) ;

S
(2)
2 = _�P (2) − _H ;

(35)

and in synchronous gauge,

S
(0)
0 = _��(0)

0 − _hL ; S
(0)
1 = _�v(0)

B ; S
(0)
2 = _�P (0) − 2

3

p
1− 3K=k2 _hT ;

S
(1)
1 = _�v(1)

B ; S
(1)
2 = _�P (1) −

p
3

3

p
1− 2K=k2 _hV ;

S
(2)
2 = _�P (2) − _H ;

(36)

The l = m = 2 source doesn’t contain a curvature factor because we have recursively de�ned the basis functions in
terms of the lowest member, which is l = 2 in this case. In the above

P (m) =
1
10

h
�(m)

2 −
p

6E(m)
2

i
: (37)
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and note that the photon density and velocities are related to the l = 0; 1 moments as

�γ = 4�(0)
0 , v

(m)
γ = �(m)

1 ; (38)

whereas the anisotropic stresses are given by

�(m)
γ Q

(m)
ij = 12

Z
dΩ
4�

(ninj −
1
3
γij)�(m); (39)

which relates them to the quadrupole moments (l = 2) as

(1 − 3K=k2)1=2�(0)
γ =

12
5

�(0)
2 ; (1− 2K=k2)1=2�(1)

γ =
8
p

3
5

�(1)
2 ; �(2)

γ =
8
5

�(2)
2 : (40)

The evolution of the metric and matter sources are given in Appendices A 3|A 5.

D. Integral Solutions

The Boltzmann equations have formal integral solutions that are simple to write down. The hierarchy equations
for the temperature distribution Eq. (33) merely express the projection of the various plane wave temperature sources
S

(m)
l 0G

m
l on the sky today (see Eq. (36)). Likewise Eq. (34) expresses the projection of −

p
6P (m) _�e−� �2G

m
l .

The projection is obtained by separating the total angular dependence of the mode from its decomposition in
spherical coordinates: i.e. into radial functions times spin harmonics sY

m
l . We discuss their explicit construction in

Appendix B. The full solution immediately follows by integrating the projected source over the radial coordinate,

�(m)
l (�0; q)
2l+ 1

=
Z �0

0

d� e−�
X
j

S
(m)
j �

(jm)
l ;

E
(m)
l (�0; q)
2l+ 1

=
Z �0

0

d� _�e−� (−
p

6P (m)) �(m)
l ;

B
(m)
l (�0; q)
2l + 1

=
Z �0

0

d� _�e−� (−
p

6P (m))�(m)
l ; (41)

where the arguments of the radial functions (�l; �l; �l) are the distance to the source � =
p
−K(�0 − �) and the

reduced wavenumber � = q=
p
−K (see Appendix B for explicit forms).

The interpretation of these equations is also readily apparent from their form and construction. The decomposition
of sG

m
j into radial and spherical parts encapsulates the summation of spin and orbital angular momentum as well

as the geodesic deviation factors described in xIII B. The di�erence between the integral solution and the di�erential
form is that in the former case the coupling is performed in one step from the source at time � and distance �(�) to
the present, while in the latter the power is steadily transferred to higher l as the time advances.

Take the flat space case. The intrinsic local angular momentum at the point (�; n̂) is sY
m
j but must be added to the

orbital angular momentum from the plane wave which can be expanded in terms of jlY 0
l . The result is a sum of jl−jj

to l + j angular momentum states with weights given by Clebsch-Gordan coe�cients. Alternately a state of de�nite
angular momentum involves a sum over the same range in the spherical Bessel function. These linear combinations
of Bessel functions are exactly the radial functions in Eq. (41) for the flat limit [1].

For an open geometry, the same analysis follows save that the spherical Bessel function must be replaced by a
hyperspherical Bessel function (also called ultra-spherical Bessel functions) in the manner described in Appendix B.
The qualitative aspect of this modi�cation is clear from considering the angular diameter distance arguments of xIII B.
The peak in the Bessel function picks out the angle which a scale k−1 �

p
−K�−1 subtends at distance d � �=

p
−K .

A spherical Bessel function peaks when its argument kd � l or �=d � � in the small angle approximation. The
hyperspherical Bessel function peaks at kD = � sinh� � l for � � 1 or �=D � � in the small angle approximation.
The main e�ect of spatial curvature is simply to shift features in l-space with the angular diameter distance, i.e. to
higher l or smaller angles in open universes. Similar arguments hold for closed geometries [16]. By virtue of this fact
the division of polarization into E and B-modes remains the same as that in flat space. More speci�cally, for a single
mode the ratio in power is given by
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P
l[l�

(m)
l ]2P

l[l�
(m)
l ]2

=

( 0; m = 0;
6; m = �1;
8=13; m = �2;

(42)

at �xed source distance � with � sinK �� 1.
The integral solutions (41) are the basis of the \line of sight" method [5, 13] for rapid numerical calculation of CMB

spectra, which has been employed in CMBFAST. The numerical implementation of equations (41) requires an e�cient
way of calculating the radial functions (�l; �l; �l). This is best done acting the derivatives of the hyperspherical Bessel
function in the radial equations (B3)-(B5) and (B11) on the sources through integration by parts. The remaining
integrals can be e�ciently calculated with the techniques of [4] for generating hyperspherical Bessel functions. The
tensor CMBFAST code has now been modi�ed to use the formalism described in this paper and the results have been
cross-checked against solutions of the Boltzmann hierarchy equations (33)-(34) with very good agreement.

E. Power Spectra

The �nal step in calculating the anisotropy spectra is to integrate over the k-modes. The power spectra of tem-
perature and polarization anisotropies today are de�ned as, e.g. C��

l �
〈
jalmj2

�
for � =

P
almY

m
l with the average

being over the (2l + 1) m-values. In terms of the moments of the previous section

(2l+ 1)2CX eXl =
2
�

Z
dq

q

2X
m=−2

q3 X
(m)�
l

eX(m)
l ; (43)

where X takes on the values �, E and B for the temperature, electric polarization and magnetic polarization evaluated
at the present. For a closed geometry, the integral is replaced by a sum over q=jKj = 3; 4; 5 : : : Note that there is no
cross correlation C�B

l or CEBl due to parity.
We caution the reader that power spectra for the metric fluctuation sources Ph(q) = hh�(q)h(q)i must be de�ned in

a similar fashion for consistency and choices between various authors di�er by factors related to the curvature (see [19]
for further discussion). To clarify this point, the initial power spectra of the metric fluctuations for a scale-invariant
spectrum of scalar modes and minimal inflationary gravity wave modes [3] are

P�(q) / 1
q(q2 + 1)

;

PH(q) / (q2 + 4)
q3(q2 + 1)

tanh(�q=2) ; (44)

where the normalization of the power spectrum comes from the underlying theory for the generation of the pertur-
bations. This proportionality constant is related to the amplitude of the matter power spectrum on large scales or
the energy density in long-wavelength gravitational waves [19]. The vector perturbations have only decaying modes
and so are only present in seeded models. The other initial conditions follow from detailed balance of the evolution
equations and gauge transformations (see Appendix A).

Our conventions for the moments also di�er from those in [13, 14]. They are related to those of [13] by1

(2l+ 1)�(S)
Tl = �(0)

l =(2�)3=2 ;

(2l + 1)�(T )
Tl =

p
2�(2)

l =(2�)3=2 ; (45)

where the factor of
p

2 in the latter comes from the quadrature sum over equal m = 2 and −2 contributions.
Similar relations for �(S;T )

(E;B)l occur but with an extra minus sign so that CC;l = −C�E
l with the other power spectra

unchanged. The output of CMBFAST continues to be CC;l with the sign convention of [13]. In the notation of [14],
the temperature power spectra agree but for polarization CEE;BBl = CG;Cl =2 and C�E

l = −CTGl =
p

2.

1Footnote 3 of [1] incorrectly gives the relation between � and �T .
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FIG. 1. The scalar (left) and tensor (right) angular power spectra for anisotropies in a critical density model (thick lines)
and an open model (thin lines) with Ω0 = 0:4. Solid lines are C��

l , dashed CEEl and dotted CBBl .
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FIG. 2. The scalar (left) and tensor (right) temperature-polarization cross correlation C�E
l with the same parameters and

notation as Fig. 1 (thick: flat; thin open). Dotted lines represent negative correlation.

IV. RESULTS

We now employ the formalism developed here to calculate the scalar and tensor temperature and polarization power
spectra for two CDM models one with critical density and one with Ω0 = 1 −ΩK = 0:4 with initial conditions given
by Eq. (44). In general, there are two classes of e�ects: the geometrical and dynamical aspects of curvature.

On intermediate to small scales (large l), only geometrical aspects of curvature a�ect the spectra. Changes in the
angular diameter distance to last scattering move features in the low-Ω0 models to smaller angular scales (higher l)
as discussed in xIII. Since the low-l tail of the E-mode polarization is growing rapidly with l, shifting the features
to higher l results in smaller large-angle polarization in an open model for both scalar and tensor anisotropies. The
suppression is larger in the case of scalars than tensors since the low-l slope is steeper [1].

The presence of curvature also a�ects the late-time dynamics and initial power spectra. As is well known, the scalar
temperature power spectrum exhibits an enhancement of power at low multipoles due to the integrated Sachs-Wolfe
(ISW) e�ect during curvature domination. This does not a�ect the polarization, assuming no reionization, as it is
generated at last scattering. However it does a�ect the temperature-polarization cross correlation (see Fig. 2). In an
open universe, the largest scales (lowest l) pick up unequal-time correlations with the ISW contributions which are of
opposite sign to the ordinary Sachs-Wolfe contribution. This reverses the sign of the correlation and formally violates
the predictions of [20]. In practice this e�ect is unobservable due to the smallness of signal. Even minimal amounts
of reionization will destroy this e�ect.

Open universe modi�cations to the initial power spectrum are potentially observable in the large angle CMB
spectrum. Unfortunately subtle di�erences in the temperature power spectrum can be lost in cosmic variance. While
polarization provides extra information, in the absence of late reionization the large-angle polarization is largely
a projection of small scale fluctuations. Nonetheless in our universe (where reionization occured before redshift
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z � 5) the large-angle polarization is sensitive to the primoridial power spectrum at the curvature scale. Thus if the
fluctuations which gave rise to the large-scale structure and CMB anisotropy in our universe were generated by an
open inflationary scenario based on bubble nucleation, a study of the large-angle polarization can in principle teach
us about the initial nucleation event [19].

In summary, we have completed the formalism for calculating and interpreting temperature and polarization
anisotropies in linear theory from arbitary metric fluctuations in an FRW universe. The results presented here
are new for non-flat vector and tensor (polarization) perturbations and we have calculated the scalar and tensor
temperature and polarization contributions for open inflationary spectra. The open tensor perturbation equations
have been added to CMBFAST which is now publically available.

Acknowledgments: We thank the Aspen Center for Physics where a portion of this work was completed. W.H was
supported by the W.M. Keck Foundation and M.Z. by NASA Grant NAG5-2816.

APPENDIX A: EINSTEIN EQUATIONS

In this Appendix, we complete the Boltzmann equations of xIII. by giving the Einstein equations for the metric
and the matter. We begin with the background evolution and then proceed to the fluctuations. It is occasionally
convenient to shift between di�erent representations or gauges and thus we �rst discuss the transformations that link
them. We then derive and present the Einstein equations for scalar, vector and tensor perturbations in a universe
with constant comoving curvature in the synchronous and Newtonian gauges (see also [7]).

1. Background Evolution

The Einstein equations G�� = 8�GT�� express the metric evolution in terms of the matter sources. The background
evolution equations are

_�f
�f

+ 3(1 + wf)
_a
a

= 0 ;

�̈+ 2
_a
a

_�+ a2V;� = 0 ; (A1)

for the fluid and scalar �eld components respectively and�
_a
a

�2

+K =
8�G

3
a2(�f + �� + �v) ; (A2)

where wf = pf=�f and ��(�) was given in Eq. (17) and �v = 3H2
0Ω�=8�G is the vacuum energy.

2. Gauge Transformations

To represent the perturbations we must make a gauge choice. A gauge transformation is a change in the correspon-
dence between the perturbation and the background represented by the coordinate shifts

~� = � + TQ(m);

~xi = xi + LQ
(m)
i :

(A3)

T corresponds to a choice in time slicing and L a choice of spatial coordinates. Since scalar and vector quantities
cannot be formed from tensor modes (m = �2), no gauge freedom remains there. Under the condition that metric
distances be invariant, they transform the metric as [17]
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~A(m) = A(m) − _T − _a
a
T ;

~B(m) = B(m) + _L+ kT ;

~H(m)
L = H

(m)
L − k

3
L− _a

a
T ;

~H(m)
T = H

(m)
T + kL : (A4)

The stress-energy perturbations in di�erent gauges are similarly related by the gauge transformations

~�f = �f + 3(1 +wf )
_a
a
T ;

~�pf = �pf + 3c2f�f (1 +wf)
_a
a
T ;

~v(m)
f = v

(m)
f + _L ;

~�(m)
f = �

(m)
f : (A5)

Note that the anisotropic stress is gauge-invariant. Seed perturbations are also gauge-invariant to lowest order,
whereas a scalar �eld transforms as

~�� = ��− _�T : (A6)

The relation between the synchronous and Newtonian gauge equations follow from these relations.

3. Scalar Einstein Equations

With the form of the scalar metric and stress energy tensor given in Eqs. (A4) and (15), the \Poisson" equations
become in the Newtonian gauge

(k2 − 3K)� = 4�Ga2

�
(�f �f + �s) + 3

_a
a

[(�f + pf)v(0)
f + v(0)

s ]=k
�
;

k2(Ψ + �) = −8�Ga2
�
pf�

(0)
f + �

(0)
s

�
;

(A7)

and in the synchronous gauge

(k2 − 3K)(hL +
1
3
hT ) + 3

_a
a

_hL = 4�Ga2[�f �f + �s] ;

_hL +
1
3

(1− 3K=k2) _hT = −4�Ga2[(�f + pf)v(0)
f + v(0)

s ]=k ;

ḧL +
_a
a

_hL = −4�Ga2[
1
3
�f �f + �pf +

1
3
�s + ps] ;

ḧT +
_a
a

_hT − k2(hL +
1
3
hT ) = −8�Ga2[pf�

(0)
f + �(0)

s ] : (A8)

Two out of four of the synchronous gauge equations are redundant.
The corresponding evolution of the matter is given by covariant conservation of the stress energy tensor T�� :

_�f = −(1 + wf)kv(0)
f − 3

_a
a
�wf + S� ;h

(1 +wf )v(0)
f

i_
= −(1 + wf)

_a
a

(1− 3wf)v(0)
f + wfk

�
�pf=pf −

2
3

(1− 3K=k2)�(0)
f

�
+ S(0)

v ; (A9)

for the fluid part. The gravitational sources are

S� = −3(1 +wf ) _� ; S
(0)
v = (1 + wf)kΨ ; (Newtonian);

S� = −3(1 +wf ) _hL ; S
(0)
v = 0 ; (synchronous):

(A10)
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These equations remain true for each fluid individually in the absence of momentum exchange, e.g. for the cold dark
matter. The baryons have an additional term to the Euler equation due to momentum exchange from Compton
scattering with the photons. For a given velocity perturbation the momentum density ratio between the two fluids is

R � �B + pB
�γ + pγ

� 3�B
4�γ

: (A11)

A comparison with photon Euler equation (33; l = 1) gives the source modi�cation for the baryon Euler equation

S(0)
v ! S(0)

v +
_�
R

(�(0)
1 − v

(0)
B ) : (A12)

For a seed source, the conservation equations become

_�s = −3
_a
a

(�s + ps) − kv(0)
s ;

_v(0)
s = −4

_a
a
v(0)
s + k

�
ps −

2
3

(1− 3K=k2)�(0)
s

�
; (A13)

independent of gauge since the metric fluctuations produce higher order terms.
Finally for a scalar �eld, ’ = �+ ��, the conservation equations become

�̈�+ 2
_a
a

_��+ (k2 + a2V;��)�� = S� ; (A14)

where

S� =

8<: ( _Ψ− 3 _�) _�− 2a2V;�Ψ ; (Newtonian),

−3 _hL _� ; (synchronous),
(A15)

are the gravitational sources.

4. Vector Einstein Equations

The vector metric source evolution is similarly constructed from a \Poisson" equation: in the generalized Newtonian
gauge

_V + 2
_a
a
V = −8�Ga2(pf�

(1)
f + �(1)

s )=k ; (A16)

and for the synchronous gauge,

ḧV + 2
_a
a

_hV = −8�Ga2(pf�
(1)
f + �(1)

s )=k2 : (A17)

Likewise momentum conservation implies the Euler equation

_v(1)
f = −(1− 3c2f)

_a
a
v

(1)
f −

1
2
k

wf
1 +wf

(1− 2K=k2)�(1)
f + S(1)

v ; (A18)

where recall c2f = _pf= _�f is the sound speed and the gravitational sources are

S(1)
v =

(
_V + (1− 3c2f)

_a
a
V ; (Newtonian),

0 ; (synchronous).
(A19)

The seed Euler equation is given by

_v(1)
s = −4

_a
a
v(1)
s −

1
2
k(1− 2K=k2)�(1)

s ; (A20)

Again, the �rst of these equations remains true for each fluid individually save for momentum exchange terms. The
baryon Euler equation has an additional term in the source of the same form as Eq. (A12) with m = 0! m = 1.
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5. Tensor Einstein Equations

The Einstein equations tell us that the tensor metric source is governed by

Ḧ + 2
_a
a

_H + (k2 + 2K)H = 8�Ga2[pf�
(2)
f + �(2)

s ] ; (A21)

for all gauges.

APPENDIX B: RADIAL FUNCTIONS

It often useful to represent the eigenmodes in a spherical coordinate system (�; �; �) where � is the radial coordinate
scaled to the curvature radius. Here we explicitly write down the forms and properties of the radial modes in an open
geometry and describe the modi�cations necessary to treat closed geometries.

By separation of variables in the Laplacian, we can write

sG
m
j =

X
l

(−i)l
p

4�(2l+ 1) s�
(jm)
l (�; �) sY

m
l (n̂) ; (B1)

and the goal is to �nd explicit expressions for s�
(jm)
l . Here the l-weights are set to reproduce the flat space conventions

of spherical Bessel functions (see also [1]). We proceed by analyzing the lowest j = min(jsj; jmj) harmonic

0G
m
j = ni1 : : :nijmjQ

(m)
i1:::ijmj

;

�2G
m
2 / (m̂1 � im̂2)i1(m̂1 � im̂2)i2Q(m)

i1i2
; (B2)

where m̂1 and m̂2 form a right-handed orthonormal basis with n̂. We can now determine s�
(jm)
l from the radial

representation of Q(m) [18]

�
(00)
l (�; �) = ��l (�) ;

�
(11)
l (�; �) =

s
l(l + 1)

2(�2 + 1)
csch���l (�) ;

�
(22)
l (�; �) =

s
3
8

(l + 2)(l2 − 1)l
(�2 + 4)(�2 + 1)

csch2���l (�) ; (B3)

for 0�
(mm)
l = �

(mm)
l ; similarly for �2�

(2m)
l = �

(m)
l � i�(m)

l ,

�
(0)
l (�; �) =

s
3
8

(l + 2)(l2 − 1)l
(�2 + 4)(�2 + 1)

csch2���l (�) ;

�
(1)
l (�; �) =

1
2

s
(l − 1)(l + 2)

(�2 + 4)(�2 + 1)
csch� [coth���l (�) + ��l

0(�)] ;

�
(2)
l (�; �) =

1
4

s
1

(�2 + 4)(�2 + 1)
�
��l
00(�) + 4coth���l

0(�)−
(
�2 − 1− 2coth2�

�
��l (�)

�
; (B4)

and

�
(0)
l (�; �) = 0 ;

�
(1)
l (�; �) =

1
2

s
(l − 1)(l + 2)�2

(�2 + 4)(�2 + 1)
csch���l (�) ;

�
(2)
l (�; �) =

1
2

s
�2

(�2 + 4)(�2 + 1)
[��l
0(�) + 2coth���l (�)] ; (B5)
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form > 0. Form < 0, �(−m)
l = −�(m)

l while the other two functions remain the same. Here ��l (�) is the hyperspherical
Bessel function whose properties are discussed extensively by [6].

The overall normalization of the modes here has been altered from those of [6, 18] in the case of vector and tensor
temperature modes such that

s�
(jm)
l (0; �) =

1
2l+ 1

�l;j ; (B6)

where the di�erence lies in the lack of curvature dependence in the relation. Our choice simpli�es the equations since
it preserves the flat space form of the equations locally around the origin. It also de�nes the normalization of the
polarization modes with respect to Q(m)

ij through Eq. (B2).
The properties of the hyperspherical Bessel functions imply useful properties for the radial functions. For our

purposes, the important relations they obey are:

d

d�
��l =

1
2l+ 1

h
l
p
�2 + l2��l−1 − (l+ 1)

p
�2 + (l+ 1)2��l+1

i
;

coth���l =
1

2l+ 1

hp
�2 + l2��l−1 +

p
�2 + (l + 1)2��l+1

i
; (B7)

which de�ne the series in terms of its �rst member

��0 =
sin ��
� sinh�

: (B8)

Notice that limK!0 ��l (�) = jl(kr).
From the recursion relations of ��l one establishes the corresponding relations for the radial function

d

d�
[ s�

(jm)
l ] =

�

2l+ 1

n
s�
m
l

h
s�

(jm)
l−1

i
− s�

m
l+1

h
s�

(jm)
l+1

io
− i �ms

l(l + 1)

h
s�

(jm)
l

i
; (B9)

for the lowest j, where recall

s�
m
l =

s�
(l2 −m2)(l2 − s2)

l2

��
1 +

l2

�2

�
: (B10)

The construction of the higher sG
m
l via the recursion relation of Eq. (25) also returns the higher radial harmonics.

A few useful ones are

�
(10)
l (�; �) =

r
1

�2 + 1
��l
0(�) ;

�
(20)
l (�; �) =

1
2

s
1

(�2 + 4)(�2 + 1)
�
3��l

00(�) + (�2 + 1)��l (�)
�
;

�
(21)
l (�; �) =

s
3
2

l(l + 1)
(�2 + 4)(�2 + 1)

[csch���l (�)]0 : (B11)

Furthermore, the recursion relation obeyed by the higher radial harmonics is the same as Eq. (B9), by virtue of
Eq. (C5) and explicit substitution of the radial form Eq. (C3). This j-independence of the recursion relation implies
that �(jm)

l is a solution to the temperature hierarchy Eq. (33) for any j and aids in the construction of the integral
solutions in xIII D.

Finally, the radial functions for a closed geometry follow by replacing all �2 + n, where n is integer, with �2 − n
and trigonometric functions with hyperbolic trigonometric functions (see [6, 18] for details).

APPENDIX C: DERIVATION OF THE NORMAL MODES

We would like to describe the spatial and angular dependence of the normal modes sG
m
l (~x; n̂) in a coordinate-free

way by constructing them out of covariant derivatives of Q(m) contracted with some orthonormal basis (n̂; m̂1; m̂2).
The lowest j = max(jmj; jsj) modes can be written as [3, 4],
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0G
m
j = ni1 : : : nijmjQ

(m)
i1:::ijmj

;

�2G
m
2 / (m̂1 � im̂2)i1(m̂1 � im̂2)i2Q(m)

i1i2
; (C1)

and satisfy (Appendix B),

sG
m
l (~x; n̂) = (−i)l

r
4�

2l+ 1
[ sY

m
l (n̂)] exp[i�(~x;~k)] ; (C2)

with l = j. We demand that the higher l-modes also do so, to maintain the division of spin and orbital angular
momentum de�ned in flat space [1].

We begin the construction by choosing some arbitrary point ~x0, and using a spherical coordinate system around it,
~x − ~x0 =

p
−K �(−n̂). Now n̂ de�nes both the intrinsic angular coordinate system and the angular coordinates for

the spatial location ~x(�; n̂). This reduction in the dimension of the space is su�cient since the end goal is to derive
how the intrinsic and orbital angular dependence in the same direction n̂ adds. In physical terms, only those photons
directed toward the observer can contribute to the local angular dependence there. First expand the lowest mode in
spin-spherical harmonics

sG
m
j (�; n̂; �) =

X
l

(−i)l
p

4�(2l + 1) s�
(jm)
l (�; �) sY

m
l (n̂) ; (C3)

where recall that the dimensionless wavenumber is � = q=
p
−K. We obtain the explicit expressions for s�

(jm)
l and

their recursion relations in Appendix B by simple comparison between equations (C1) and (C3). At the origin they
satisfy

s�
(jm)
l (0; �) =

1
2l+ 1

�l;j ; (C4)

which both �xes the normalization of the modes and manifestly obeys Eq. (C2). As � ! 0 only the local angular
dependence remains, as expressed in the Kronecker delta of Eq. (C4). Because the spatial variation of the normal
mode Q(m) across a shell at �xed radius � must be added to the local dependence, even a mode of �xed j has a sum
over all l in its angular dependence which contributes at any other point.

This generation of higher l structure as � increases suggests that we can use the radial structure of sG
m
j to generate

the higher l modes. From the radial recursion relation for s�
(jm)
l Eq. (B9), let us make the ansatz

1p
−K

ni( sG
m
l )ji =

�

2l + 1
�
s�
m
l sG

m
l−1 − s�

m
l+1 sG

m
l+1

�
− i �ms

l(l + 1) s
Gml : (C5)

That this series generates modes with the desired properties can be shown by returning to the spherical coordinate
system. By explicit substitution of the radial form for sG

m
j of Eq. (C3) and by noting that in this coordinate system

1p
−K

ni( sG
m
l )ji = − d

d�
( sG

m
l ) ; (C6)

we obtain

sG
m
l (0; n̂) = (−i)l

r
4�

2l+ 1
[ sY

m
l (n̂)] ; (C7)

(up to a phase factor) as desired. Since we have shown this for an arbitrary point, it is clear that Eq. (C2) holds in
general. Note that this construction requiresZ

dΩ
4�

��[ sGm1
l1

]� [ sG
m2
l2

]
�� =

1
2l1 + 1

�l1;l2 �m1;m2 ; (C8)

for all ~x, as in the flat case of Eq. (24), and de�nes our normalization convention.
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