
Set 7:

Thermal History



Brief Thermal History



Distribution Function
• The distribution functionf gives the number of particles per unit

phase spaced3xd3q whereq is the momentum (conventional to
work in physical coordinates)

• Consider a box of volumeV = L3. Periodicity implies that the
allowed momentum states are given byqi = ni2π/L so that the
density of states is

dNs = g
V

(2π)3
d3q

whereg is the degeneracy factor (spin/polarization states)

• The distribution functionf(x,q, t) describes the particle
occupancy of these states, i.e.

N =

∫
dNsf = gV

∫
d3q

(2π)3
f



Bulk Properties
• Integrals over the distribution function define the bulk properties of

the collection of particles

• Number density

n(x, t) ≡ N/V = g

∫
d3q

(2π)3
f

• Energy density

ρ(x, t) = g

∫
d3q

(2π)3
E(q)f

whereE2 = q2 + m2



Bulk Properties
• Pressure: particles bouncing off a surface of areaA in a volume

spanned byLx: per momentum state

pq =
F

A
=

Npart

A

∆q

∆t
(∆q = 2|qx|, ∆t = 2Lx/vx)

=
Npart

V
|qx||vx| = f

|q||v|
3

= f
q2

3E

so that summed over states

p(x, t) = g

∫
d3q

(2π)3

|q|2

3E(q)
f



Liouville Equation
• Liouville theorem states that the phase space distribution function

is conserved along a trajectory in the absence of particle
interactions

Df

Dt
=

[
∂

∂t
+

dq

dt

∂

∂q
+

dx

dt

∂

∂x

]
f = 0

subtlety in expanding universe is that the de Broglie wavelength of
particles changes with the expansion so that

q ∝ a−1

• Homogeneous and isotropic limit

∂f

∂t
+

dq

dt

∂f

∂q
=

∂f

∂t
−H(a)

∂f

∂ ln q
= 0



Energy Density Evolution
• Integrate Liouville equation overg

∫
d3q/(2π)3E to form

∂ρ

∂t
= H(a)g

∫
d3q

(2π)3
Eq

∂

∂q
f

= H(a)g

∫
dΩ

(2π)3

∫
dqq3E

∂

∂q
f

= −H(a)g

∫
dΩ

(2π)3

∫
dq

d(q3E)

dq
f

= −H(a)g

∫
dΩ

(2π)3

∫
dq(3q2E + q3dE

dq
)f

(
dE

dq
=

d(q2 + m2)1/2

dq
=

1

2

2q

E
=

q

E
)

= −3H(a)g

∫
d3q

(2π)3
(E +

q2

3E
)f = −3H(a)(ρ + p)

as derived previously from energy conservation



Boltzmann Equation
• Boltzmann equation says that Liouville theorem must be modified

to account for collisions

Df

Dt
= C[f ]

• If collisions are sufficiently rapid, distribution will tend to thermal
equilibrium form



Poor Man’s Boltzmann Equation
• Non expanding medium

∂f

∂t
= Γ (f − feq)

whereΓ is some rate for collisions

• Add in expansion in a homogeneous medium

∂f

∂t
+

dq

dt

∂f

∂q
= Γ (f − feq)

(q ∝ a−1 → 1

q

dq

dt
= −1

a

da

dt
= H)

∂f

∂t
−H

∂f

∂ ln q
= Γ (f − feq)

• So equilibrium will be maintained if collision rate exceeds
expansion rateΓ > H



Thermal & Diffusive Equilibrium
• A gas in thermal & diffusive contact with a reservoir at

temperatureT

• Probability of system being in state of energyEi and numberNi

(Gibbs Factor)

P (Ei, Ni) ∝ exp[−(Ei − µNi)/T ]

whereµ is the chemical potential (defines the free energy “cost”
for adding a particle at fixed temperature and volume)

• Chemical potential appears when particles are conserved

• CMB photons can carry chemical potential if creation and
annihilation processes inefficient, as they are aftert ∼ 1yr.



Distribution Function
• Mean occupation of the state in thermal equilibrium

f ≡
∑

NiP (Ei, Ni)∑
P (Ei, Ni)

where the total energy is related to the particle energy as
Ei = NiE (ignoring zero pt)

• Density of (energy) states in phase space makes the net spatial
density of particles

n = g

∫
d3p

(2π)3
f

whereg is the number of spin states



Fermi-Dirac Distribution
• For fermions, the occupancy can only beNi = 0, 1

f =
P (E, 1)

P (0, 0) + P (E, 1)

=
e−(E−µ)/T

1 + e−(E−µ)/T

=
1

e(E−µ)/T + 1

• In the non-relativistic limit

E = (p2 + m2)1/2 ≈ m +
1

2

p2

m

andm � T so the distribution is Maxwell-Boltzmann

f = e−(m−µ)/T e−p2/2mT = e−(m−µ)/T e−mv2/2T



Bose-Einstein Distribution
• For bosons each state can have multiple occupation,

f =

d
dµ/T

∑∞
N=0(e

−(E−µ)/T )N∑∞
N=0(e

−(E−µ)/T )N
with

∞∑
N=0

xN =
1

1− x

=
1

e(E−µ)/T − 1

• Again, non relativistic distribution is Maxwell-Boltzmann

f = e−(m−µ)/T e−p2/2mT = e−(m−µ)/T e−mv2/2T

with a spatial number density

n = ge−(m−µ)/T

∫
d3p

(2π)3
e−p2/2mT

= ge−(m−µ)/T

(
mT

2π

)3/2



Ultra-Relativistic Bulk Properties
• Chemical potentialµ = 0, ζ(3) ≈ 1.202

• Number density

nboson = gT 3 ζ(3)

π2
ζ(n + 1) ≡ 1

n!

∫ ∞

0

dx
xn

ex − 1

nfermion =
3

4
gT 3 ζ(3)

π2

• Energy density

ρboson = gT 4 3

π2
ζ(4) = gT 4π2

30

ρfermion =
7

8
gT 4 3

π2
ζ(4) =

7

8
gT 4π2

30

• Pressureq2/3E = E/3 → p = ρ/3, wr = 1/3



Entropy Density
• Second law of thermodynamics

dS =
1

T
(dρ(T )V + p(T )dV )

so that

∂S

∂V

∣∣∣
T

=
1

T
[ρ(T ) + p(T )]

∂S

∂T

∣∣∣
V

=
V

T

dρ

dT

• SinceS(V, T ) ∝ V is extensive

S =
V

T
[ρ(T ) + p(T )] σ = S/V =

1

T
[ρ(T ) + p(T )]



Entropy Density
• Integrability conditiondS/dV dT = dS/dTdV relates the

evolution of entropy density

dσ

dT
=

1

T

dρ

dT
dσ

dt
=

1

T

dρ

dt
=

1

T
[−3(ρ + p)]

d ln a

dt
d ln σ

dt
= −3

d ln a

dt
σ ∝ a−3

comoving entropy density is conserved in thermal equilibrium

• For ultra relativisitic bosonsσboson = 3.602nboson; for fermions
factor of7/8 from energy density.

g∗ =
∑

bosons

gb +
7

8

∑
gf



Neutrino Freezeout
• Neutrino equilibrium maintained by weak interactions, e.g.

e+ + e− ↔ ν + ν̄

• Weak interaction cross sectionT10 = T/1010K ∼ T/1MeV

σw ∼ G2
F E2

ν ≈ 4× 10−44 T 2
10cm

2

• RateΓ = nνσw = H atT10 ∼ 3 or t ∼ 0.2s

• After neutrino freezeout, electrons and positrons annihilate
dumping their entropy into the photons

• Beforeg∗: γ, e+, e− = 2 + 7
8
(2 + 2) = 11

2

• After g∗: γ = 2; so conservation of entropy gives

g∗T
3
∣∣∣
initial

= g∗T
3
∣∣∣
final

Tν =

(
4

11

)1/3

Tγ



Relic Neutrinos
• Relic number density (zero chemical potential; now required by

oscillations & BBN)

nν = nγ
3

4

4

11
= 112cm−3

• Relic energy density assuming one species with finitemν :
ρν = mνnν

ρν = 112
mν

eV
eV cm−3 ρc = 1.05× 104h2 eVcm−3

Ωνh
2 =

mν

93.7eV

• Candidate for dark matter? an eV mass neutrino goes non
relativistic aroundz ∼ 1000 and retains a substantial velocity
dispersionσν .



Hot Dark Matter
• Momenta for a nonrelativistic species redshifts like temperature

for a relativistic one, so average momentum is still given by

〈q〉 = 3Tν = mσν

σν = 3
( mν

1eV

)−1
(

Tν

1eV

)
= 3

( mν

1eV

)−1
(

Tν

104K

)
= 6× 10−4

( mν

1eV

)−1

= 200km/s
( mν

1eV

)−1

on order the rotation velocity of galactic halos and higher at higher
redshift - small objects can’t form: top down structure formation –
not observed – must not constitute the bulk of the dark matter



Cold Dark Matter
.

• Problem with
neutrinos is they decouple
while relativistic and hence
have a comparable number
density to photons - for
a reasonable energy density,
the mass must be small

• The equilibrium distribution
for a non-relativistic species
declines exponentially beyond the mass threshold

n = g(
mT

2π
)3/2e−m/T



Cold Dark Matter
• Freezeout when annihilation rate equal expansion rateΓ ∝ σA,

increasing annihilation cross section decreases abundance

• Appropriate candidates supplied by supersymmetry

• Alternate solution: keep light particle but not created in thermal
equilibrium, axion dark matter



Big Bang Nucleosynthesis
• Most of light element synthesis can be understood through nuclear

statistical equilibrium and reaction rates

• Equilibrium abundance of species with mass numberA and charge
Z (Z protons andA− Z neutrons)

nA = gA(
mAT

2π
)3/2e(µA−mA)/T

• In chemical equilibrium with protons and neutrons

µA = Zµp + (A− Z)µn

nA = gA(
mAT

2π
)3/2e−mA/T e(Zµp+(A−Z)µn)/T



Big Bang Nucleosynthesis
• Eliminate chemical potentials withnp, nn

eµp/T =
np

gp

(
2π

mpT

)3/2

emp/T

eµn/T =
nn

gn

(
2π

mnT

)3/2

emn/T

nA = gAg−Z
p gZ−A

n (
mAT

2π
)3/2

(
2π

mpT

)3Z/2(
2π

mnT

)3(A−Z)/2

× e−mA/T e(Zµp+(A−Z)µn)/T nZ
p nA−Z

n

(gp = gn = 2; mp ≈ mn = mb = mA/A)

(BA = Zmp + (A− Z)mn −mA)

= gA2−A

(
2π

mbT

)3(A−1)/2

A3/2nZ
p nA−Z

n eBA/T



Big Bang Nucleosynthesis
• Convenient to define abundance fraction

XA ≡ A
nA

nb

= AgA2−A

(
2π

mbT

)3(A−1)/2

A3/2nZ
p nA−Z

n n−1
b eBA/T

= AgA2−A

(
2πn

2/3
b

mbT

)3(A−1)/2

A3/2eBA/T XZ
p XA−Z

n

(nγ =
2

π2
T 3ζ(3) ηbγ ≡ nb/nγ)

= A5/2gA2−A

[(
2πT

mb

)3/2
2ζ(3)ηbγ

π2

]A−1

eBA/T XZ
p XA−Z

n



Deuterium
• DeuteriumA = 2, Z = 1, g2 = 3, B2 = 2.225 MeV

X2 =
3

π2

(
4πT

mb

)3/2

ηbγζ(3)eB2/T XpXn

.

• Deuterium
“bottleneck” is mainly
due to the low baryon-photon
number of the universe
ηbγ ∼ 10−9, secondarily due
to the low binding energyB2



Deuterium
• X2/XpXn ≈ O(1) atT ≈ 100keV or109 K, much lower than the

binding energyB2

• Most of the deuterium formed then goes through to helium via
D + D → 3He + p, 3He + D → 4He + n

• Deuterium freezes out as number abundance becomes too small to
maintain reactionsnD = const. The deuterium freezeout fraction
nD/nb ∝ η−1

bγ ∝ (Ωbh
2)−1 and so is fairly sensitive to the baryon

density.

• Observations of the ratio in quasar absorption systems give
Ωbh

2 ≈ 0.02



Helium
.

• Essentially all neutrons
around during nucleosynthesis
end up in Helium

• In equilibrium,
the neutron-to-proton
ratio is determined
by the mass difference
Q = mn −mp = 1.293 MeV

nn

np

= exp[−Q/T ]



Helium
• Equilibrium is maintained through weak interactions, e.g.

n ↔ p + e− + ν̄, ν + n ↔ p + e−, e+ + n ↔ p + ν̄ with rate

Γ

H
≈ T

0.8MeV

• Freezeout fraction

nn

np

= exp[−1.293/0.8] ≈ 0.2

• Finite lifetime of neutrons brings this to∼ 1/7 by 109K

• Helium mass fraction

YHe =
4nHe

nb

=
4(nn/2)

nn + np

=
2nn/np

1 + nn/np

≈ 2/7

8/7
≈ 1

4



Helium
• Depends mainly on the expansion rate during BBN - measure

number of relativistic species

• Traces of7Li as well. Measured abundances in reasonable
agreement with deuterium measureΩbh

2 = 0.02



Light Elements

Burles, Nollett, Turner (1999)



Recombination
• Maxwell-Boltzmann distribution determines the equilibrium

distribution for reactions, e.g. big-bang nucleosynthesis,
recombination:

p + e− ↔ H + γ

npne

nH

≈ e−B/T

(
meT

2π

)3/2

e(µp+µe−µH)/T

whereB = mp + me −mH = 13.6eV is the binding energy,
gp = ge = 1

2
gH = 2, andµp + µe = µH in equilibrium

• Define ionization fraction

np = ne = xenb

nH = ntot − nb = (1− xe)nb



Recombination
• Saha Equation

nenp

nHnb

=
x2

e

1− xe

=
1

nb

(
meT

2π

)3/2

e−B/T

• Naive guess ofT∗ = B wrong due to the low baryon-photon ratio
– T∗ ≈ 0.3eV so recombination atz∗ ≈ 1000

• But thephoton-baryon ratiois very low

ηbγ ≡ nb/nγ ≈ 3× 10−8Ωbh
2



Recombination
• Eliminatein favor ofηbγ andB/T through

nγ = 0.244T 3 ,
me

B
= 3.76× 104

• Big coefficient

xe
2

1− xe

= 3.16× 1015

(
B

T

)3/2

e−B/T

T = 1/3eV → xe = 0.7, T = 0.3eV → xe = 0.2

• Further delayedby inability to maintain equilibrium since net is
through2γ process and redshifting out of line



Recombination
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