Set 9:

CMB and Large Scale Structure

CMB Temperature Anisotropy

- WMAP measured the temperature anisotropy (first discovered by COBE) from recombination:

CMB Temperature Anisotropy

- Power spectrum shows characteristic scales where the intensity of variations peak - reveals geometry and contents of the universe:

CMB Parameter Inferences

- Spectrum constrains the matter-energy contents of the universe

Parameter	First Year Mean	WMAPext Mean	Three Year Mean (No SZ)	Three Year Mean	Three Year+ALL Mean
$100 \Omega_{b} h^{2}$	$2.38_{-0.12}^{+0.13}$	$2.32_{-0.11}^{+0.12}$	2.23 ± 0.08	2.229 ± 0.073	2.186 ± 0.068
$\Omega_{m} h^{2}$	$0.144_{-0.016}^{+0.016}$	$0.134_{-0.006}^{+0.006}$	0.126 ± 0.009	$0.1277_{-0.00079}^{+0.0080}$	$0.1324_{-0.0041}^{+0.0042}$
H_{0}	72_{-5}^{+5}	73_{-3}^{+3}	73.5 ± 3.2	$73.2_{-3.2}^{+3.1 .1}$	$70 . ._{-1.6}^{+1.5}$
τ	$0.17_{-0.07}^{+0.00}$	$0.15_{-0.07}^{+0.07}$	$0.088_{-0.030}^{+0.029}$	0.089 ± 0.030	$0.073_{-0.028}^{+0.027}$
n_{s}	$0.99_{-0.04}^{+0.04}$	$0.98_{-0.03}^{+0.03}$	0.961 ± 0.017	0.958 ± 0.016	0.947 ± 0.015
Ω_{m}	$0.29_{-0.07}^{+0.07}$	$0.25_{-0.03}^{+0.03}$	0.234 ± 0.035	0.241 ± 0.034	0.268 ± 0.018
σ_{8}	$0.92_{-0.1}^{+0.1}$	$0.84_{-0.06}^{+0.06}$	0.76 ± 0.05	$0.761_{-0.048}^{+0.049}$	$0.776_{-0.032}^{+0.031}$
Parameter	First Year	WMAPext	Three Year	Three Year	Three Year + ALL
	ML	ML	ML (No SZ)	ML	ML
$100 \Omega_{b} h^{2}$	2.30	2.21	2.23	2.22	2.19
$\Omega_{m} h^{2}$	0.145	0.138	0.125	0.127	0.131
H_{0}	68	71	73.4	73.2	73.2
τ	0.10	0.10	0.0904	0.091	0.0867
n_{s}	0.97	0.96	0.95	0.954	0.949
Ω_{m}	0.32	0.27	0.232	0.236	0.259
σ_{8}	0.88	0.82	0.737	0.756	0.783

Galaxy Redshift Surveys

- Galaxy redshift surveys (e.g. 2 dF and SDSS) measure the three dimensional distribution of galaxies today:

Galaxy Power Spectrum

- SDSS LRG and Main power spectrum:

Structure Formation

- Small perturbations from inflation over the course of the 14 Gyr life of the universe are gravitationally enhanced into all of the structure seen today
- Cosmic microwave background shows a snapshot at a few hundred thousand years old at recombination
- Discovery in 1992 of cosmic microwave background anisotropy provided the observational breakthrough - convincing support for adiabatic initial density fluctuations of amplitude 10^{-5}
- Combine with galaxy clustering - large scale structure seen in galaxy surveys - right amplitude given cold dark matter
- Following notes are at a slightly more advanced level than the book and are provided here for completeness

Angular Power Spectrum

- Angular distribution of radiation is essentially the 3D temperature field projected onto a shell at the distance from the observer to recombination: called the last scattering surface
- Take the radiation distribution at last scattering to also be described by an isotropic temperature fluctuation field $\Theta(\mathbf{x})$ and recombination to be instantaneous

$$
\Theta(\hat{\mathbf{n}})=\int d D \Theta(\mathbf{x}) \delta\left(D-D_{*}\right)
$$

where D is the comoving distance and D_{*} denotes recombination.

- Describe the temperature field by its Fourier moments

$$
\Theta(\mathbf{x})=\int \frac{d^{3} k}{(2 \pi)^{3}} \Theta(\mathbf{k}) e^{i \mathbf{k} \cdot \mathbf{x}}
$$

Angular Power Spectrum

- Power spectrum

$$
\begin{aligned}
\left\langle\Theta(\mathbf{k})^{*} \Theta\left(\mathbf{k}^{\prime}\right)\right\rangle & =(2 \pi)^{3} \delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right) P_{T}(k) \\
\Delta_{T}^{2} & =k^{3} P_{T} / 2 \pi^{2}
\end{aligned}
$$

- Temperature field

$$
\Theta(\hat{\mathbf{n}})=\int \frac{d^{3} k}{(2 \pi)^{3}} \Theta(\mathbf{k}) e^{i \mathbf{k} \cdot D_{*} \hat{\mathbf{n}}}
$$

- Multipole moments $\Theta(\hat{\mathbf{n}})=\sum_{\ell m} \Theta_{\ell m} Y_{\ell m}$
- Expand out plane wave in spherical coordinates

$$
e^{i \mathbf{k} D_{*} \cdot \hat{\mathbf{n}}}=4 \pi \sum_{\ell m} i^{\ell} j_{\ell}\left(k D_{*}\right) Y_{\ell m}^{*}(\mathbf{k}) Y_{\ell m}(\hat{\mathbf{n}})
$$

Angular Power Spectrum

- Power spectrum

$$
\begin{aligned}
& \Theta_{\ell m}=\int \frac{d^{3} k}{(2 \pi)^{3}} \Theta(\mathbf{k}) 4 \pi i^{\ell} j_{\ell}\left(k D_{*}\right) Y_{\ell m}(\mathbf{k}) \\
&\left\langle\Theta_{\ell m}^{*} \Theta_{\ell^{\prime} m^{\prime}}\right\rangle=\int \frac{d^{3} k}{(2 \pi)^{3}}(4 \pi)^{2}(i)^{\ell-\ell^{\prime}} j_{\ell}\left(k D_{*}\right) j_{\ell^{\prime}}\left(k D_{*}\right) Y_{\ell m}^{*}(\mathbf{k}) Y_{\ell^{\prime} m^{\prime}}(\mathbf{k}) P_{T}(k) \\
&=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} 4 \pi \int d \ln k j_{\ell}^{2}\left(k D_{*}\right) \Delta_{T}^{2}(k)
\end{aligned}
$$

with $\int_{0}^{\infty} j_{\ell}^{2}(x) d \ln x=1 /(2 \ell(\ell+1))$, slowly varying Δ_{T}^{2}

- Angular power spectrum:

$$
C_{\ell}=\frac{4 \pi \Delta_{T}^{2}\left(\ell / D_{*}\right)}{2 \ell(\ell+1)}=\frac{2 \pi}{\ell(\ell+1)} \Delta_{T}^{2}\left(\ell / D_{*}\right)
$$

Thomson Scattering

- Thomson scattering of photons off of free electrons is the most important CMB process with a cross section (averaged over polarization states) of

$$
\sigma_{T}=\frac{8 \pi \alpha^{2}}{3 m_{e}^{2}}=6.65 \times 10^{-25} \mathrm{~cm}^{2}
$$

- Density of free electrons in a fully ionized $x_{e}=1$ universe

$$
n_{e}=\left(1-Y_{p} / 2\right) x_{e} n_{b} \approx 10^{-5} \Omega_{b} h^{2}(1+z)^{3} \mathrm{~cm}^{-3}
$$

where $Y_{p} \approx 0.24$ is the Helium mass fraction, creates a high (comoving) Thomson opacity

$$
\dot{\tau} \equiv n_{e} \sigma_{T} a
$$

where dots are conformal time $\eta \equiv \int d t / a$ derivatives and τ is the optical depth.

Tight Coupling Approximation

- Near recombination $z \approx 10^{3}$ and $\Omega_{b} h^{2} \approx 0.02$, the (comoving) mean free path of a photon

$$
\lambda_{C} \equiv \frac{1}{\dot{\tau}} \sim 2.5 \mathrm{Mpc}
$$

small by cosmological standards!

- On scales $\lambda \gg \lambda_{C}$ photons are tightly coupled to the electrons by Thomson scattering which in turn are tightly coupled to the baryons by Coulomb interactions
- Specifically, their bulk velocities are defined by a single fluid velocity $v_{\gamma}=v_{b}$ and the photons carry no anisotropy in the rest frame of the baryons
- \rightarrow No heat conduction or viscosity (anisotropic stress) in fluid

Zeroth Order Approximation

- Momentum density of a fluid is $(\rho+p) v$, where p is the pressure
- Neglect the momentum density of the baryons

$$
\begin{aligned}
R & \equiv \frac{\left(\rho_{b}+p_{b}\right) v_{b}}{\left(\rho_{\gamma}+p_{\gamma}\right) v_{\gamma}}=\frac{\rho_{b}+p_{b}}{\rho_{\gamma}+p_{\gamma}}=\frac{3 \rho_{b}}{4 \rho_{\gamma}} \\
& \approx 0.6\left(\frac{\Omega_{b} h^{2}}{0.02}\right)\left(\frac{a}{10^{-3}}\right)
\end{aligned}
$$

since $\rho_{\gamma} \propto T^{4}$ is fixed by the CMB temperature $T=2.73(1+z) \mathrm{K}$

- OK substantially before recombination
- Neglect radiation in the expansion

$$
\frac{\rho_{m}}{\rho_{r}}=3.6\left(\frac{\Omega_{m} h^{2}}{0.15}\right)\left(\frac{a}{10^{-3}}\right)
$$

- Neglect gravity

Fluid Equations

- Density $\rho_{\gamma} \propto T^{4}$ so define temperature fluctuation Θ

$$
\delta_{\gamma}=4 \frac{\delta T}{T} \equiv 4 \Theta
$$

- Real space continuity equation

$$
\begin{aligned}
\dot{\delta}_{\gamma} & =-\left(1+w_{\gamma}\right) k v_{\gamma} \\
\dot{\Theta} & =-\frac{1}{3} k v_{\gamma}
\end{aligned}
$$

- Euler equation (neglecting gravity)

$$
\begin{aligned}
& \dot{v}_{\gamma}=-\left(1-3 w_{\gamma}\right) \frac{\dot{a}}{a} v+\frac{k c_{s}^{2}}{1+w_{\gamma}} \delta_{\gamma} \\
& \dot{v}_{\gamma}=k c_{s}^{2} \frac{3}{4} \delta_{\gamma}=3 c_{s}^{2} k \Theta
\end{aligned}
$$

Oscillator: Take One

- Combine these to form the simple harmonic oscillator equation

$$
\ddot{\Theta}+c_{s}^{2} k^{2} \Theta=0
$$

where the sound speed is adiabatic

$$
c_{s}^{2}=\frac{\delta p}{\delta \rho}=\frac{\dot{p}_{\gamma}}{\dot{\rho}_{\gamma}}
$$

here $c_{s}^{2}=1 / 3$ since we are photon-dominated

- General solution:

$$
\Theta(\eta)=\Theta(0) \cos (k s)+\frac{\dot{\Theta}(0)}{k c_{s}} \sin (k s)
$$

where the sound horizon is defined as $s \equiv \int c_{s} d \eta$

Harmonic Extrema

- All modes are frozen in at recombination (denoted with a subscript *) yielding temperature perturbations of different amplitude for different modes. For the adiabatic (curvature mode) $\dot{\Theta}(0)=0$

$$
\Theta\left(\eta_{*}\right)=\Theta(0) \cos \left(k s_{*}\right)
$$

- Modes caught in the extrema of their oscillation will have enhanced fluctuations

$$
k_{n} s_{*}=n \pi
$$

yielding a fundamental scale or frequency, related to the inverse sound horizon

$$
k_{A}=\pi / s_{*}
$$

and a harmonic relationship to the other extrema as $1: 2: 3 \ldots$

Peak Location

- The fundmental physical scale is translated into a fundamental angular scale by simple projection according to the angular diameter distance D_{A}

$$
\begin{aligned}
\theta_{A} & =\lambda_{A} / D_{A} \\
\ell_{A} & =k_{A} D_{A}
\end{aligned}
$$

- In a flat universe, the distance is simply $D_{A}=D \equiv \eta_{0}-\eta_{*} \approx \eta_{0}$, the horizon distance, and $k_{A}=\pi / s_{*}=\sqrt{3} \pi / \eta_{*}$ so

$$
\theta_{A} \approx \frac{\eta_{*}}{\eta_{0}}
$$

- In a matter-dominated universe $\eta \propto a^{1 / 2}$ so $\theta_{A} \approx 1 / 30 \approx 2^{\circ}$ or

$$
\ell_{A} \approx 200
$$

Curvature

- In a curved universe, the apparent or angular diameter distance is no longer the conformal distance $D_{A}=R \sin (D / R) \neq D$
- Objects in a closed universe are further than they appear! gravitational lensing of the background...
- Curvature scale of the universe must be substantially larger than current horizon
- Flat universe indicates critical density and implies missing energy given local measures of the matter density "dark energy"
- D also depends on dark energy density Ω_{DE} and equation of state $w=p_{\mathrm{DE}} / \rho_{\mathrm{DE}}$.
- Expansion rate at recombination or matter-radiation ratio enters into calculation of k_{A}.

Doppler Effect

- Bulk motion of fluid changes the observed temperature via Doppler shifts

$$
\left(\frac{\Delta T}{T}\right)_{\mathrm{dop}}=\hat{\mathbf{n}} \cdot \mathbf{v}_{\gamma}
$$

- Averaged over directions

$$
\left(\frac{\Delta T}{T}\right)_{\mathrm{rms}}=\frac{v_{\gamma}}{\sqrt{3}}
$$

- Acoustic solution

$$
\begin{aligned}
\frac{v_{\gamma}}{\sqrt{3}} & =-\frac{\sqrt{3}}{k} \dot{\Theta}=\frac{\sqrt{3}}{k} k c_{s} \Theta(0) \sin (k s) \\
& =\Theta(0) \sin (k s)
\end{aligned}
$$

Doppler Peaks?

- Doppler effect for the photon dominated system is of equal amplitude and $\pi / 2$ out of phase: extrema of temperature are turning points of velocity
- Effects add in quadrature:

$$
\left(\frac{\Delta T}{T}\right)^{2}=\Theta^{2}(0)\left[\cos ^{2}(k s)+\sin ^{2}(k s)\right]=\Theta^{2}(0)
$$

- No peaks in k spectrum! However the Doppler effect carries an angular dependence that changes its projection on the sky $\hat{\mathbf{n}} \cdot \mathbf{v}_{\gamma} \propto \hat{\mathbf{n}} \cdot \hat{\mathbf{k}}$
- Coordinates where $\hat{\mathbf{z}} \| \hat{\mathbf{k}}$

$$
Y_{10} Y_{\ell 0} \rightarrow Y_{\ell \pm 10}
$$

recoupling $j_{\ell}^{\prime} Y_{\ell 0}$: no peaks in Doppler effect

Restoring Gravity

- Take a simple photon dominated system with gravity
- Continuity altered since a gravitational potential represents a stretching of the spatial fabric that dilutes number densities formally a spatial curvature perturbation
- Think of this as a perturbation to the scale factor $a \rightarrow a(1+\Phi)$ so that the cosmogical redshift is generalized to

$$
\frac{\dot{a}}{a} \rightarrow \frac{\dot{a}}{a}+\dot{\Phi}
$$

so that the continuity equation becomes

$$
\dot{\Theta}=-\frac{1}{3} k v_{\gamma}-\dot{\Phi}
$$

Restoring Gravity

- Gravitational force in momentum conservation $\mathbf{F}=-m \nabla \Psi$ generalized to momentum density modifies the Euler equation to

$$
\dot{v}_{\gamma}=k(\Theta+\Psi)
$$

- General relativity says that Φ and Ψ are the relativistic analogues of the Newtonian potential and that $\Phi \approx-\Psi$.
- In our matter-dominated approximation, Φ represents matter density fluctuations through the cosmological Poisson equation

$$
k^{2} \Phi=4 \pi G a^{2} \rho_{m} \Delta_{m}
$$

where the difference comes from the use of comoving coordinates for k (a^{2} factor), the removal of the background density into the background expansion $\left(\rho \Delta_{m}\right)$ and finally a coordinate subtlety that enters into the definition of Δ_{m}

Constant Potentials

- In the matter dominated epoch potentials are constant because infall generates velocities as $v_{m} \sim k \eta \Psi$
- Velocity divergence generates density perturbations as $\Delta_{m} \sim-k \eta v_{m} \sim-(k \eta)^{2} \Psi$
- And density perturbations generate potential fluctuations as $\Phi \sim \Delta_{m} /(k \eta)^{2} \sim-\Psi$, keeping them constant. Note that because of the expansion, density perturbations must grow to keep potentials constant.
- Here we have used the Friedman equation $H^{2}=8 \pi G \rho_{m} / 3$ and $\eta=\int d \ln a /(a H) \sim 1 /(a H)$
- More generally, if stress perturbations are negligible compared with density perturbations ($\delta p \ll \delta \rho$) then potential will remain roughly constant - more specifically a variant called the Bardeen or comoving curvature ζ is constant

Oscillator: Take Two

- Combine these to form the simple harmonic oscillator equation

$$
\ddot{\Theta}+c_{s}^{2} k^{2} \Theta=-\frac{k^{2}}{3} \Psi-\ddot{\Phi}
$$

- In a CDM dominated expansion $\dot{\Phi}=\dot{\Psi}=0$. Also for photon domination $c_{s}^{2}=1 / 3$ so the oscillator equation becomes

$$
\ddot{\Theta}+\ddot{\Psi}+c_{s}^{2} k^{2}(\Theta+\Psi)=0
$$

- Solution is just an offset version of the original

$$
[\Theta+\Psi](\eta)=[\Theta+\Psi](0) \cos (k s)
$$

- $\Theta+\Psi$ is also the observed temperature fluctuation since photons lose energy climbing out of gravitational potentials at recombination

Effective Temperature

- Photons climb out of potential wells at last scattering
- Lose energy to gravitational redshifts
- Observed or effective temperature

$$
\Theta+\Psi
$$

- Effective temperature oscillates around zero with amplitude given by the initial conditions
- Note: initial conditions are set when the perturbation is outside of horizon, need inflation or other modification to matter-radiation FRW universe.
- GR says that initial temperature is given by initial potential

Sachs-Wolfe Effect and the Magic 1/3

- A gravitational potential is a perturbation to the temporal coordinate [formally a gauge transformation]

$$
\frac{\delta t}{t}=\Psi
$$

- Convert this to a perturbation in the scale factor,

$$
t=\int \frac{d a}{a H} \propto \int \frac{d a}{a \rho^{1 / 2}} \propto a^{3(1+w) / 2}
$$

where $w \equiv p / \rho$ so that during matter domination

$$
\frac{\delta a}{a}=\frac{2}{3} \frac{\delta t}{t}
$$

- CMB temperature is cooling as $T \propto a^{-1}$ so

$$
\Theta+\Psi \equiv \frac{\delta T}{T}+\Psi=-\frac{\delta a}{a}+\Psi=\frac{1}{3} \Psi
$$

Baryon Loading

- Baryons add extra mass to the photon-baryon fluid
- Controlling parameter is the momentum density ratio:

$$
R \equiv \frac{p_{b}+\rho_{b}}{p_{\gamma}+\rho_{\gamma}} \approx 30 \Omega_{b} h^{2}\left(\frac{a}{10^{-3}}\right)
$$

of order unity at recombination

- Momentum density of the joint system is conserved

$$
\begin{aligned}
\left(\rho_{\gamma}+p_{\gamma}\right) v_{\gamma}+\left(\rho_{b}+p_{b}\right) v_{b} & \approx\left(p_{\gamma}+p_{\gamma}+\rho_{b}+\rho_{\gamma}\right) v_{\gamma} \\
& =(1+R)\left(\rho_{\gamma}+p_{\gamma}\right) v_{\gamma b}
\end{aligned}
$$

where the controlling parameter is the momentum density ratio:

$$
R \equiv \frac{p_{b}+\rho_{b}}{p_{\gamma}+\rho_{\gamma}} \approx 30 \Omega_{b} h^{2}\left(\frac{a}{10^{-3}}\right)
$$

of order unity at recombination

New Euler Equation

- Momentum density ratio enters as

$$
\left[(1+R) v_{\gamma b}\right]^{\cdot}=k \Theta+(1+R) k \Psi
$$

- Photon continuity remains the same

$$
\dot{\Theta}=-\frac{k}{3} v_{\gamma b}-\dot{\Phi}
$$

- Modification of oscillator equation

$$
[(1+R) \dot{\Theta}]^{\cdot}+\frac{1}{3} k^{2} \Theta=-\frac{1}{3} k^{2}(1+R) \Psi-[(1+R) \dot{\Phi}]
$$

Oscillator: Take Three

- Combine these to form the not-quite-so simple harmonic oscillator equation

$$
c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Theta}\right)+c_{s}^{2} k^{2} \Theta=-\frac{k^{2}}{3} \Psi-c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Phi}\right)
$$

where $c_{s}^{2} \equiv \dot{p}_{\gamma b} / \dot{\rho}_{\gamma b}$

$$
c_{s}^{2}=\frac{1}{3} \frac{1}{1+R}
$$

- In a CDM dominated expansion $\dot{\Phi}=\dot{\Psi}=0$ and the adiabatic approximation $\dot{R} / R \ll \omega=k c_{s}$

$$
[\Theta+(1+R) \Psi](\eta)=[\Theta+(1+R) \Psi](0) \cos (k s)
$$

Baryon Peak Phenomenology

- Photon-baryon ratio enters in three ways
- Overall larger amplitude:

$$
[\Theta+(1+R) \Psi](0)=\frac{1}{3}(1+3 R) \Psi(0)
$$

- Even-odd peak modulation of effective temperature

$$
\begin{aligned}
{[\Theta+\Psi]_{\text {peaks }} } & =[\pm(1+3 R)-3 R] \frac{1}{3} \Psi(0) \\
{[\Theta+\Psi]_{1}-[\Theta+\Psi]_{2} } & =[-6 R] \frac{1}{3} \Psi(0)
\end{aligned}
$$

- Shifting of the sound horizon down or ℓ_{A} up

$$
\ell_{A} \propto \sqrt{1+R}
$$

- Actual effects smaller since R evolves

Photon Baryon Ratio Evolution

- Oscillator equation has time evolving mass

$$
c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Theta}\right)+c_{s}^{2} k^{2} \Theta=0
$$

- Effective mass is is $m_{\text {eff }}=3 c_{s}^{-2}=(1+R)$
- Adiabatic invariant

$$
\frac{E}{\omega}=\frac{1}{2} m_{\mathrm{eff}} \omega A^{2}=\frac{1}{2} 3 c_{s}^{-2} k c_{s} A^{2} \propto A^{2}(1+R)^{1 / 2}=\text { const }
$$

- Amplitude of oscillation $A \propto(1+R)^{-1 / 4}$ decays adiabatically as the photon-baryon ratio changes

Oscillator: Take Three and a Half

- The not-quite-so simple harmonic oscillator equation is a forced harmonic oscillator

$$
c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Theta}\right)+c_{s}^{2} k^{2} \Theta=-\frac{k^{2}}{3} \Psi-c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \Phi\right)
$$

changes in the gravitational potentials alter the form of the acoustic oscillations

- If the forcing term has a temporal structure that is related to the frequency of the oscillation, this becomes a driven harmonic oscillator
- Term involving Ψ is the ordinary gravitational force
- Term involving Φ involves the $\dot{\Phi}$ term in the continuity equation as a (curvature) perturbation to the scale factor

Potential Decay

- Matter-to-radiation ratio

$$
\frac{\rho_{m}}{\rho_{r}} \approx 24 \Omega_{m} h^{2}\left(\frac{a}{10^{-3}}\right)
$$

of order unity at recombination in a low Ω_{m} universe

- Radiation is not stress free and so impedes the growth of structure

$$
k^{2} \Phi=4 \pi G a^{2} \rho_{r} \Delta_{r}
$$

$\Delta_{r} \sim 4 \Theta$ oscillates around a constant value, $\rho_{r} \propto a^{-4}$ so the Netwonian curvature decays.

- General rule: potential decays if the dominant energy component has substantial stress fluctuations, i.e. below the generalized sound horizon or Jeans scale

Radiation Driving

- Decay is timed precisely to drive the oscillator - close to fully coherent

$$
\begin{aligned}
{[\Theta+\Psi](\eta) } & =[\Theta+\Psi](0)+\Delta \Psi-\Delta \Phi \\
& =\frac{1}{3} \Psi(0)-2 \Psi(0)=\frac{5}{3} \Psi(0)
\end{aligned}
$$

- $5 \times$ the amplitude of the Sachs-Wolfe effect!
- Coherent approximation is exact for a photon-baryon fluid but reality is reduced to $\sim 4 \times$ because of neutrino contribution to radiation
- Actual initial conditions are $\Theta+\Psi=\Psi / 2$ for radiation domination but comparison to matter dominated SW correct

Damping

- Tight coupling equations assume a perfect fluid: no viscosity, no heat conduction
- Fluid imperfections are related to the mean free path of the photons in the baryons

$$
\lambda_{C}=\dot{\tau}^{-1} \quad \text { where } \quad \dot{\tau}=n_{e} \sigma_{T} a
$$

is the conformal opacity to Thomson scattering

- Dissipation is related to the diffusion length: random walk approximation

$$
\lambda_{D}=\sqrt{N} \lambda_{C}=\sqrt{\eta / \lambda_{C}} \lambda_{C}=\sqrt{\eta \lambda_{C}}
$$

the geometric mean between the horizon and mean free path

- $\lambda_{D} / \eta_{*} \sim$ few $\%$, so expect the peaks :> 3 to be affected by dissipation

Equations of Motion

- Continuity

$$
\dot{\Theta}=-\frac{k}{3} v_{\gamma}-\dot{\Phi}, \quad \dot{\delta}_{b}=-k v_{b}-3 \dot{\Phi}
$$

where the photon equation remains unchanged and the baryons follow number conservation with $\rho_{b}=m_{b} n_{b}$

- Euler

$$
\begin{aligned}
& \dot{v}_{\gamma}=k(\Theta+\Psi)-\frac{k}{6} \pi_{\gamma}-\dot{\tau}\left(v_{\gamma}-v_{b}\right) \\
& \dot{v}_{b}=-\frac{\dot{a}}{a} v_{b}+k \Psi+\dot{\tau}\left(v_{\gamma}-v_{b}\right) / R
\end{aligned}
$$

where the photons gain an anisotropic stress term π_{γ} from radiation viscosity and a momentum exchange term with the baryons and are compensated by the opposite term in the baryon Euler equation

Viscosity

- Viscosity is generated from radiation streaming from hot to cold regions
- Expect

$$
\pi_{\gamma} \sim v_{\gamma} \frac{k}{\dot{\tau}}
$$

generated by streaming, suppressed by scattering in a wavelength of the fluctuation. Radiative transfer says

$$
\pi_{\gamma} \approx 2 A_{v} v_{\gamma} \frac{k}{\dot{\tau}}
$$

where $A_{v}=16 / 15$

$$
\dot{v}_{\gamma}=k(\Theta+\Psi)-\frac{k}{3} A_{v} \frac{k}{\frac{\tau}{\tau}} v_{\gamma}
$$

Oscillator: Penultimate Take

- Adiabatic approximation $(\omega \gg \dot{a} / a)$

$$
\dot{\Theta} \approx-\frac{k}{3} v_{\gamma}
$$

- Oscillator equation contains a $\dot{\Theta}$ damping term

$$
c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Theta}\right)+\frac{k^{2} c_{s}^{2}}{\dot{\tau}} A_{v} \dot{\Theta}+k^{2} c_{s}^{2} \Theta=-\frac{k^{2}}{3} \Psi-c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Phi}\right)
$$

- Heat conduction term similar in that it is proportional to v_{γ} and is suppressed by scattering $k / \dot{\tau}$. Expansion of Euler equations to leading order in $k \dot{\tau}$ gives

$$
A_{h}=\frac{R^{2}}{1+R}
$$

since the effects are only significant if the baryons are dynamically important

Oscillator: Final Take

- Final oscillator equation

$$
c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Theta}\right)+\frac{k^{2} c_{s}^{2}}{\dot{\tau}}\left[A_{v}+A_{h}\right] \dot{\Theta}+k^{2} c_{s}^{2} \Theta=-\frac{k^{2}}{3} \Psi-c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Phi}\right)
$$

- Solve in the adiabatic approximation

$$
\begin{gather*}
\Theta \propto \exp \left(i \int \omega d \eta\right) \\
-\omega^{2}+\frac{k^{2} c_{s}^{2}}{\dot{\tau}}\left(A_{v}+A_{h}\right) i \omega+k^{2} c_{s}^{2}=0 \tag{1}
\end{gather*}
$$

Dispersion Relation

- Solve

$$
\begin{aligned}
\omega^{2} & =k^{2} c_{s}^{2}\left[1+i \frac{\omega}{\dot{\tau}}\left(A_{v}+A_{h}\right)\right] \\
\omega & = \pm k c_{s}\left[1+\frac{i}{2} \frac{\omega}{\dot{\tau}}\left(A_{v}+A_{h}\right)\right] \\
& = \pm k c_{s}\left[1 \pm \frac{i}{2} \frac{k c_{s}}{\dot{\tau}}\left(A_{v}+A_{h}\right)\right]
\end{aligned}
$$

- Exponentiate

$$
\begin{align*}
\exp \left(i \int \omega d \eta\right) & =e^{ \pm i k s} \exp \left[-k^{2} \int d \eta \frac{1}{2} \frac{c_{s}^{2}}{\dot{\tau}}\left(A_{v}+A_{h}\right)\right] \\
& =e^{ \pm i k s} \exp \left[-\left(k / k_{D}\right)^{2}\right] \tag{2}
\end{align*}
$$

- Damping is exponential under the scale k_{D}

Diffusion Scale

- Diffusion wavenumber

$$
k_{D}^{-2}=\int d \eta \frac{1}{\dot{\tau}} \frac{1}{6(1+R)}\left(\frac{16}{15}+\frac{R^{2}}{(1+R)}\right)
$$

- Limiting forms

$$
\begin{aligned}
\lim _{R \rightarrow 0} k_{D}^{-2} & =\frac{1}{6} \frac{16}{15} \int d \eta \frac{1}{\dot{\tau}} \\
\lim _{R \rightarrow \infty} k_{D}^{-2} & =\frac{1}{6} \int d \eta \frac{1}{\dot{\tau}}
\end{aligned}
$$

- Geometric mean between horizon and mean free path as expected from a random walk

$$
\lambda_{D}=\frac{2 \pi}{k_{D}} \sim \frac{2 \pi}{\sqrt{6}}\left(\eta \dot{\tau}^{-1}\right)^{1 / 2}
$$

Thomson Scattering

- Polarization state of radiation in direction $\hat{\mathbf{n}}$ described by the intensity matrix $\left\langle E_{i}(\hat{\mathbf{n}}) E_{j}^{*}(\hat{\mathbf{n}})\right\rangle$, where \mathbf{E} is the electric field vector and the brackets denote time averaging.
- Differential cross section

$$
\frac{d \sigma}{d \Omega}=\frac{3}{8 \pi}\left|\hat{\mathbf{E}}^{\prime} \cdot \hat{\mathbf{E}}\right|^{2} \sigma_{T},
$$

where $\sigma_{T}=8 \pi \alpha^{2} / 3 m_{e}$ is the Thomson cross section, $\hat{\mathbf{E}}^{\prime}$ and $\hat{\mathbf{E}}$ denote the incoming and outgoing directions of the electric field or polarization vector.

- Summed over angle and incoming polarization

$$
\sum_{i=1,2} \int d \hat{\mathbf{n}}^{\prime} \frac{d \sigma}{d \Omega}=\sigma_{T}
$$

Polarization Generation

- Heuristic: incoming radiation shakes an electron in direction of electric field vector $\hat{\mathbf{E}}^{\prime}$
- Radiates photon with polarization also in direction $\hat{\mathbf{E}}^{\prime}$
- But photon cannot be longitudinally polarized so that scattering into 90° can only pass one polarization
- Linearly polarized radiation like polarization by reflection
- Unlike reflection of sunlight, incoming radiation is nearly isotropic
- Missing linear polarization supplied by scattering from direction orthogonal to original incoming direction
- Only quadrupole anisotropy generates polarization by Thomson scattering

Acoustic Polarization

- Break down of tight-coupling leads to quadrupole anisotropy of

$$
\pi_{\gamma} \approx \frac{k}{\dot{\tau}} v_{\gamma}
$$

- Scaling $k_{D}=\left(\dot{\tau} / \eta_{*}\right)^{1 / 2} \rightarrow \dot{\tau}=k_{D}^{2} \eta_{*}$
- Know: $k_{D} s_{*} \approx k_{D} \eta_{*} \approx 10$
- So:

$$
\begin{aligned}
\pi_{\gamma} & \approx \frac{k}{k_{D}} \frac{1}{10} v_{\gamma} \\
\Delta_{P} & \approx \frac{\ell}{\ell_{D}} \frac{1}{10} \Delta_{T}
\end{aligned}
$$

Acoustic Polarization

- Gradient of velocity is along direction of wavevector, so polarization is pure E-mode
- Velocity is 90° out of phase with temperature - turning points of oscillator are zero points of velocity:

$$
\Theta+\Psi \propto \cos (k s) ; \quad v_{\gamma} \propto \sin (k s)
$$

- Polarization peaks are at troughs of temperature power

Cross Correlation

- Cross correlation of temperature and polarization

$$
(\Theta+\Psi)\left(v_{\gamma}\right) \propto \cos (k s) \sin (k s) \propto \sin (2 k s)
$$

- Oscillation at twice the frequency
- Correlation: radial or tangential around hot spots
- Partial correlation: easier to measure if polarization data is noisy, harder to measure if polarization data is high S / N or if bands do not resolve oscillations
- Good check for systematics and foregrounds
- Comparison of temperature and polarization is proof against features in initial conditions mimicking acoustic features

CMB Normalization

- Normalization of potential, hence inflationary power spectrum, set by CMB observations, aka COBE or WMAP normalization
- Angular power spectrum:

$$
C_{\ell}=\frac{4 \pi \Delta_{T}^{2}\left(\ell / D_{*}\right)}{2 \ell(\ell+1)}=\frac{2 \pi}{\ell(\ell+1)} \Delta_{T}^{2}\left(\ell / D_{*}\right)
$$

- $\ell(\ell+1) C_{\ell} / 2 \pi=\Delta_{T}^{2}$ is commonly used \log power
- Sachs-Wolfe effect says $\Delta_{T}^{2}=\Delta_{\Phi}^{2} / 9, \Phi=\frac{3}{5} \zeta$ initial
- Observed number at recombination

$$
\begin{aligned}
\Delta_{T}^{2} & =\left(\frac{28 \mu \mathrm{~K}}{2.725 \times 10^{6} \mu \mathrm{~K}}\right)^{2} \\
\Delta_{\Phi}^{2} & \approx\left(3 \times 10^{-5}\right)^{2} \\
\Delta_{\zeta}^{2} & \approx\left(5 \times 10^{-5}\right)^{2}
\end{aligned}
$$

COBE vs WMAP Normalization

- Given that the temperature response to an inflationary initial perturbation is known for all k through the Boltzmann solution of the acoustic physics, one can translate Δ_{T}^{2} to Δ_{ζ}^{2} at the best measured $k \approx \ell / D_{*}$.
- The CMB normalization was first extracted from COBE at $\ell \sim 10$ or $k \sim H_{0}$. A low ℓ normalization point suffers from cosmic variance: only $2 \ell+1$ samples of a given ℓ mode.
- WMAP measures very precisely the first acoustic peak at $\ell \approx 200$. This is the current best place to normalize the spectrum $(k \sim 0.02$ Mpc^{-1}).
- To account for future improvements, WMAP chose $k=0.05$ Mpc^{-1} as the normalization point. Taking out the CMB transfer function $\Delta_{\zeta}^{2}(k=0.05)=\left(5.07 \times 10^{-5}\right)^{2}$ consistent with a scale invariant spectrum from $0.0002-0.05 \mathrm{Mpc}^{-1}$

Transfer Function

- Transfer function transfers the initial Newtonian curvature to its value today (linear response theory)

$$
T(k)=\frac{\Phi(k, a=1)}{\Phi\left(k, a_{\text {init }}\right)} \frac{\Phi\left(k_{\mathrm{norm}}, a_{\mathrm{init}}\right)}{\Phi\left(k_{\mathrm{norm}}, a=1\right)}
$$

- Conservation of Bardeen curvature: Newtonian curvature is a constant when stress perturbations are negligible: above the horizon during radiation and dark energy domination, on all scales during matter domination
- When stress fluctuations dominate, perturbations are stabilized by the Jeans mechanism
- Hybrid Poisson equation: Newtonian curvature, comoving density perturbation $\Delta \equiv(\delta \rho / \rho)_{\text {com }}$ implies Φ decays

$$
\left(k^{2}-3 K\right) \Phi=4 \pi G \rho \Delta \sim \eta^{-2} \Delta
$$

Transfer Function

- Freezing of Δ stops at $\eta_{\text {eq }}$

$$
\Phi \sim\left(k \eta_{\mathrm{eq}}\right)^{-2} \Delta_{H} \sim\left(k \eta_{\mathrm{eq}}\right)^{-2} \Phi_{\mathrm{init}}
$$

- Transfer function has a k^{-2} fall-off beyond $k_{\text {eq }} \sim \eta_{\text {eq }}^{-1}$

$$
\eta_{\mathrm{eq}}=15.7\left(\Omega_{m} h^{2}\right)^{-1}\left(\frac{T}{2.7 K}\right)^{2} \mathrm{Mpc}
$$

- Small correction since growth with a smooth radiation component is logarithmic not frozen
- Transfer function is a direct output of an Einstein-Boltzmann code

Fitting Function

- Alternately accurate fitting formula exist, e.g. pure CDM form:

$$
\begin{aligned}
T(k(q)) & =\frac{L(q)}{L(q)+C(q) q^{2}} \\
L(q) & =\ln (e+1.84 q) \\
C(q) & =14.4+\frac{325}{1+60.5 q^{1.11}} \\
q & =k / \Omega_{m} h^{2} \mathrm{Mpc}^{-1}\left(T_{\mathrm{CMB}} / 2.7 K\right)^{2}
\end{aligned}
$$

- In $h \mathrm{Mpc}^{-1}$, the critical scale depends on $\Gamma \equiv \Omega_{m} h$ also known as the shape parameter

Transfer Function

- Numerical calculation

Baryon Wiggles

- Baryons caught up in the acoustic oscillations of the CMB and impart acoustic wiggles to the transfer function. Density enhancements are produced kinematically through the continuity equation $\delta_{b} \sim(k \eta) v_{b}$ and hence are out of phase with CMB temperature peaks
- Dissipation of the acoustic oscillations eliminates both the CMB and baryon perturbations - known as Silk damping for the baryons. This suppression and the general fact that baryons are caught up with photons was one of the main arguments for CDM
- Detected first (so far only) in the SDSS LRG survey.
- An excellent standard ruler for angular diameter distance $D_{A}(z)$ since it does not evolve in redshift in linear theory
- Radial extent of wiggles gives $H(z)$ (not yet seen in data)

Massive Neutrinos

- Neutrino dark matter suffers similar effects and hence cannot be the main component of dark matter in the universe
- Relativistic stresses of a light neutrino slow the growth of structure
- Neutrino species with cosmological abundance contribute to matter as $\Omega_{\nu} h^{2}=\sum m_{\nu} / 94 \mathrm{eV}$, suppressing power as $\Delta P / P \approx-8 \Omega_{\nu} / \Omega_{m}$
- Current data from SDSS galaxy survey and CMB indicate $\sum m_{\nu}<1.7 \mathrm{eV}(95 \% \mathrm{CL})$ and with $\mathrm{Ly} \alpha$ forest $<0.42 \mathrm{eV}$.

Growth Function

- Same physics applies to the dark energy dominated universe
- Under the dark energy sound horizon or Jeans scale, dark energy density frozen. Potential decays at the same rate for all scales

$$
G(a)=\frac{\Phi\left(k_{\text {norm }}, a\right)}{\Phi\left(k_{\text {norm }}, a_{\text {init }}\right)} \quad \prime \equiv \frac{d}{d \ln a}
$$

- Continuity + Euler + Poisson

$$
G^{\prime \prime}+\left(1-\frac{\rho^{\prime \prime}}{\rho^{\prime}}+\frac{1}{2} \frac{\rho_{c}^{\prime}}{\rho_{c}}\right) G^{\prime}+\left(\frac{1}{2} \frac{\rho_{c}^{\prime}+\rho^{\prime}}{\rho_{c}}-\frac{\rho^{\prime \prime}}{\rho^{\prime}}\right) G=0
$$

where ρ is the Jeans unstable matter and ρ_{c} is the critical density

Dark Energy Growth Suppression

- Pressure growth suppression: $\delta \equiv \delta \rho_{m} / \rho_{m} \propto a G$
$\frac{d^{2} G}{d \ln a^{2}}+\left[\frac{5}{2}-\frac{3}{2} w(z) \Omega_{D E}(z)\right] \frac{d G}{d \ln a}+\frac{3}{2}[1-w(z)] \Omega_{D E}(z) G=0$,
where $w \equiv p_{D E} / \rho_{D E}$ and $\Omega_{D E} \equiv \rho_{D E} /\left(\rho_{m}+\rho_{D E}\right)$ with initial conditions $G=1, d G / d \ln a=0$
- As $\Omega_{D E} \rightarrow 0 g=$ const. is a solution. The other solution is the decaying mode, elimated by initial conditions
- As $\Omega_{D E} \rightarrow 1 g \propto a^{-1}$ is a solution. Corresponds to a frozen density field.

Power Spectrum Normalization

- Present (or matter dominated) vs inflationary initial conditions (normalized by CMB):

$$
\Delta_{\Phi}^{2}(k, a) \approx \frac{9}{25} \Delta_{\zeta_{i}}^{2}\left(k_{\mathrm{norm}}\right) G^{2}(a) T^{2}(k)\left(\frac{k}{k_{\mathrm{norm}}}\right)^{n-1}
$$

- Density field

$$
\begin{aligned}
k^{2} \Phi & =4 \pi G a^{2} \Delta \rho_{m} \\
& =\frac{3}{2} H_{0}^{2} \Omega_{m} \frac{\Delta \rho_{m}}{\rho_{m}} \frac{1}{a} \\
\Delta_{\Phi}^{2} & =\frac{9}{4}\left(\frac{H_{0}}{k}\right)^{4} \Omega_{m}^{2} a^{-2} \Delta_{m}^{2} \\
\Delta_{m}^{2} & =\frac{4}{25} \Delta_{\zeta_{i}}^{2}\left(k_{\text {norm }}\right) \Omega_{m}^{-2} a^{2} G^{2}(a) T^{2}(k)\left(\frac{k}{k_{\text {norm }}}\right)^{n-1}\left(\frac{k}{H_{0}}\right)^{4}
\end{aligned}
$$

Antiquated Normalization Conventions

- Current density field on the horizon scale $k=H_{0}$

$$
\delta_{H}^{2}=\frac{4}{25} \Delta_{\zeta_{i}}^{2}\left(k_{\mathrm{norm}}\right) \Omega_{m}^{-2} a^{2} G^{2}(a)=\left(2 G(1) / \Omega_{m} \times 10^{-5}\right)
$$

- σ_{8}, RMS of density field filtered by tophat of $8 h^{-1} \mathrm{Mpc}$

Power Spectrum

- SDSS data

- Power spectrum defines large scale structure observables: galaxy clustering, velocity field, $\operatorname{Ly} \alpha$ forest clustering, cosmic shear

Velocity field

- Continuity gives the velocity from the density field as

$$
\begin{aligned}
v & =-\dot{\Delta} / k=-\frac{a H}{k} \frac{d \Delta}{d \ln a} \\
& =-\frac{a H}{k} \Delta \frac{d \ln (a G)}{d \ln a}
\end{aligned}
$$

- In a Λ CDM model or open model $d \ln (a G) / d \ln a \approx \Omega_{m}^{0.6}$
- Measuring both the density field and the velocity field (through distance determination and redshift) allows a measurement of Ω_{m}
- Practically one measures $\beta=\Omega_{m}^{0.6} / b$ where b is a bias factor for the tracer of the density field, i.e. with galaxy numbers $\delta n / n=b \Delta$
- Can also measure this factor from the redshift space power spectrum - the Kaiser effect where clustering in the radial direction is apparently enhanced by gravitational infall

Redshift Space Power Spectrum

- Kaiser effect is separable from the real space clustering if one measures modes parallel and transverse to the line of sight. Redshift space distortions only modify the former
- 2D power spectrum in "s" or redshift space

$$
P_{s}\left(k_{\perp}, k_{\|}\right)=\left[1+\beta\left(\frac{k_{\|}}{k}\right)^{2}\right]^{2} b^{2} P(k)
$$

where $k^{2}=k_{\|}^{2}+k_{\perp}^{2}$ and k_{\perp} is a 2D vector transverse to the line of sight

Power Spectrum Errors

- The precision with which the power spectrum can be measured is ultimately limited by sample variance from having a finite survey volume $V=L^{3}$. This is basically a mode counting argument. The errors on the power spectrum are given by

$$
\left(\frac{\Delta P_{s}}{P_{s}}\right)^{2}=\frac{2}{N_{k}}
$$

where N_{k} is the number of modes in a range of $\Delta k_{\perp}, \Delta k_{\|}$. This is determined by the k-space volume and the fundamental mode of the box $k_{0}=2 \pi / L$ which sets the cell size in the volume

$$
\left(\frac{\Delta P_{s}}{P_{s}}\right)^{2}=\frac{2}{\frac{V}{(2 \pi)^{3}} 2 \pi k_{\perp} \Delta k_{\perp} \Delta k_{\|}}
$$

Lyman- α Forest

- QSO spectra absorbed by neutral hydrogen through the Ly α transition.
- The optical depth to absorption is (with $d s$ in physical scale)

$$
\tau(\nu)=\int d s x_{\mathrm{HI}} n_{b} \sigma_{\alpha} \sim \int d s x_{\mathrm{HI}} n_{b} \Gamma \phi(\nu) \lambda^{2}
$$

where x_{HI} is the neutral fraction, $\Gamma=6.25 \times 10^{8} s^{-1}$ is the transition rate and $\lambda=1216 \mathrm{~A}$ is the Ly α wavelength and $\phi(\nu)$ is the Lorentz profile. For radiation at a given emitted frequency ν_{0} above the transition, it will redshift through the transition

- Resonant transition: lack of complete absorption, known as the lack of a Gunn-Peterson trough indicates that the universe is nearly fully ionized $x_{\mathrm{HI}} \ll 1$ out to the highest redshift quasar $z \sim 6$; indications that this is near the end of the reionization epoch

Lyman- α Forest

- In ionization equilibrium, the Gunn-Peterson optical depth is a tracer of the underlying baryon density which itself is a tracer of the dark matter $\tau_{G P} \propto \rho_{b}^{2} T^{-0.7}$ with $T\left(\rho_{b}\right)$.

$$
\frac{d\left(1-x_{\mathrm{HI}}\right)}{d t}=-x_{\mathrm{HI}} \int d \nu \frac{4 \pi J_{\nu}}{h \nu} \sigma_{\nu}+\left(1-x_{\mathrm{HI}}\right)^{2} n_{b} R
$$

where σ_{ν} is the photoionization cross section (sharp edge at threshold and falling in frequency means $J_{\nu} \approx J_{21}$) and $R \propto T^{-0.7}$ is the recombination coefficient.

- Given an equation of state from simulations of $p \propto \rho^{\gamma}$

$$
x_{\mathrm{HI}} \propto \frac{\rho_{b} R}{J_{21}} \propto \frac{\rho_{b} T^{-0.7}}{J_{21}}, \quad \tau_{G P} \propto \frac{\rho_{b}^{2-0.7(\gamma-1)}}{J_{\mathrm{HI}}}
$$

- Clustering in the $\mathrm{Ly} \alpha$ forest reflects the underlying power spectrum modulo an overall ionization intensity J_{21}

Gravitational Lensing

- Gravitational potentials along the line of sight $\hat{\mathbf{n}}$ to some source at comoving distance D_{s} lens the images according to (flat universe)

$$
\phi(\hat{\mathbf{n}})=2 \int d D \frac{D_{s}-D}{D D_{s}} \Phi(D \hat{\mathbf{n}}, \eta(D))
$$

remapping image positions as

$$
\hat{\mathbf{n}}^{I}=\hat{\mathbf{n}}^{S}+\nabla_{\hat{\mathbf{n}}} \phi(\hat{\mathbf{n}})
$$

- Since absolute source position is unknown, use image distortion defined by the Jacobian matrix

$$
\frac{\partial n_{i}^{I}}{\partial n_{j}^{S}}=\delta_{i j}+\psi_{i j}
$$

Weak Lensing

- Small image distortions described by the convergence κ and shear components $\left(\gamma_{1}, \gamma_{2}\right)$

$$
\psi_{i j}=\left(\begin{array}{cc}
\kappa-\gamma_{1} & -\gamma_{2} \\
-\gamma_{2} & \kappa+\gamma_{1}
\end{array}\right)
$$

where $\nabla_{\hat{\mathbf{n}}}=D \nabla$ and

$$
\psi_{i j}=2 \int d D \frac{D\left(D_{s}-D\right)}{D_{s}} \nabla_{i} \nabla_{j} \Phi(D \hat{\mathbf{n}}, \eta(D))
$$

- In particular, through the Poisson equation the convergence (measured from shear) is simply the projected mass

$$
\kappa=\frac{3}{2} \Omega_{m} H_{0}^{2} \int d D \frac{D\left(D_{s}-D\right)}{D_{s}} \frac{\Delta(D \hat{\mathbf{n}}, \eta(D))}{a}
$$

