Set 9:
CMB and Large Scale Structure



CMB Temperature Anisotropy

e WMAP measured the temperature anisotropy (first discovered by

OBE) from recombination:




CMB Temperature Anisotropy

e Power spectrum shows characteristic scales where the intensity of
variations peak - reveals geometry and contents of the universe:
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CMB Parameter Inferences

e Spectrum constrains the matter-energy contents of the universe

Parameter | First Year WMAPext Three Year Three Year Three Year+ALL
Mean Mean Mean (No SZ) Mean Mean
100,02 | 2.387015  2.32701% 2.234+0.08  2.229+0.073 | 2.186 4+ 0.068
Qnh? | 0.144730%  0.134739% | 0.126 +0.009  0.127775:5550 0.132410:0042
H, 7210 73+3 73.5 4+ 3.2 73.2+31 70.4+12
T 0177008 0.157097 0.088%392  0.089 + 0.030 0.0731 005
ng 0.99%957  0.98700% | 0.9614+0.017 0.958 +0.016 0.947 4 0.015
O, 0.207397  0.25700% | 0.234+0.035 0.2414+0.034 | 0.26840.018
o 092131 0.8475% | 0764005  0.76110%19 0.776700%
Parameter | First Year WMAPext | Three Year Three Year | Three Year + ALL
ML ML ML (No SZ) ML ML
10092, h° 2.30 2.21 2.23 2.22 2.19
Q,,h? 0.145 0.138 0.125 0.127 0.131
Hy 63 71 73.4 73.2 73.2
T 0.10 0.10 0.0904 0.091 0.0867
N 0.97 0.96 0.95 0.954 0.949
O, 0.32 0.27 0.232 0.236 0.259
o 0.88 0.82 0.737 0.756 0.783




Galaxy Redshift Surveys

e Galaxy redshift surveys (e.g. 2dF and SDSS) measure the three
dimensional distribution of galaxies today:
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Galaxy Power Spectrum
e SDSS LRG and Main power spectrum:
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Structure Formation

e Small perturbations from inflation over the course of the 14Gyr life
of the universe are gravitationally enhanced into all of the structure
seen today

e Cosmic microwave background shows a snapshot at a few hundred
thousand years old at recombination

e Discovery in 1992 of cosmic microwave background anisotropy
provided the observational breakthrough - convincing support for
adiabatic initial density fluctuations of amplitude 10~°

e Combine with galaxy clustering - large scale structure seen in
galaxy surveys - right amplitude given cold dark matter

e Following notes are at a slightly more advanced level than the
book and are provided here for completeness



Angular Power Spectrum

e Angular distribution of radiation is essentially the 3D temperature
field projected onto a shell at the distance from the observer to
recombination: called the last scattering surface

e Take the radiation distribution at last scattering to also be
described by an isotropic temperature fluctuation field ©(x) and
recombination to be instantaneous

O(h) = /dD Ox)5(D — D,)

where D is the comoving distance and D, denotes recombination.

e Describe the temperature field by its Fourier moments




Angular Power Spectrum

e Power spectrum
(O(k)"O(K)) = (27)"d(k — k') Pr(k)

ACQF = ]GSPT/QTFQ

e Temperature field

0(0) = [ O™

e Multipole moments ©(n) = >, O, Yo,

e Expand out plane wave in spherical coordinates

P — 4y i (kD )Y, (K) Yo (1)

m



Angular Power Spectrum

e Power spectrum

P .
Opm = / (27_‘_)3@(1()47”/ ]E(kD*)}/Em(k)

(O3 00m) = [ e AT kD)o (KDY, 09V (9P (1)

= 5gg/5mm/47'(' / dIn k]?(/{D*)A%(/{)

with [~ j7(z)dInz = 1/(20(¢ + 1)), slowly varying A7

e Angular power spectrum:

AmAZ((/D,) 2w
2000 4+1)  L(L+1)

Co = A% (¢/D,)



Thomson Scattering

e Thomson scattering of photons off of free electrons 1s the most
important CMB process with a cross section (averaged over
polarization states) of

87
o —
3Im?2

e Density of free electrons in a fully 1onized x. = 1 universe

— 6.65 x 10™%°cm?

ne = (1-7Y,/2)xz.ny = 107°Qh*(1 + 2)’cm ™,

where Y, ~ 0.24 is the Helium mass fraction, creates a high
(comoving) Thomson opacity

T = N.0Ta

where dots are conformal time 7 = [ dt/a derivatives and 7 is the
optical depth.



Tight Coupling Approximation
e Near recombination z ~ 10° and ,h* ~ 0.02, the (comoving)
mean free path of a photon

1
Ao = — ~ 2.5Mpc
T

small by cosmological standards!

e On scales A > A¢ photons are tightly coupled to the electrons by
Thomson scattering which in turn are tightly coupled to the
baryons by Coulomb interactions

e Specifically, their bulk velocities are defined by a single fluid
velocity v, = v, and the photons carry no anisotropy in the rest
frame of the baryons

e — No heat conduction or viscosity (anisotropic stress) in fluid



Zeroth Order Approximation

e Momentum density of a fluid is (p + p)v, where p is the pressure

e Neglect the momentum density of the baryons

(b + Do) _ Pt Do 3P
(py +Py)vy  py Dy Apy

0 2
~ 0.6 uh ( ¢ )
0.02 103
since p., o< T is fixed by the CMB temperature 7' = 2.73(1 + 2)K
— OK substantially before recombination

R

e Neglect radiation in the expansion

2
P _ 36 (Sl ( a )
Or 0.15 10—3

e Neglect gravity




Fluid Equations

e Density p, oc T* so define temperature fluctuation ©

0T

e Real space continuity equation transformed to Fourier space
V — ik

57 = —(1+w,)kv,
1

@ = —gk’l}fy

e Euler equation (neglecting gravity)



. a kc?
vy, = —(1 — BWV)EU +7 n w,ydy

3
Uy = kciz@ = 3c’k©



Oscillator: Take One

e Combine these to form the simple harmonic oscillator equation
O+ A2k =0
where the sound speed 1s adiabatic

2_51?_]&

C, = — = =
0p Py

here ¢? = 1/3 since we are photon-dominated

e General solution:

O(0)
kc,

O(n) = O(0) cos(ks) + sin(ks)

where the sound horizon is defined as s = [ c.dn



Harmonic Extrema

e All modes are frozen in at recombination (denoted with a subscript
x) yielding temperature perturbations of different amplitude for
different modes. For the adiabatic (curvature mode) O(0) = 0

O(n.) = O(0) cos(ks,)

e Modes caught in the extrema of their oscillation will have
enhanced fluctuations

k.S, = nmw

yielding a fundamental scale or frequency, related to the inverse
sound horizon

]{A:ﬂ'/s*

and a harmonic relationship to the other extrema as 1 : 2 : 3...



Peak LLocation

e The fundmental physical scale 1s translated into a fundamental
angular scale by simple projection according to the angular
diameter distance D 4

QA = )\A/DA
614 = ]CADA

e In a flat universe, the distance 1s ssmply D4 = D = 19 — 1. = 10,
the horizon distance, and k4 = 7/s, = V37 /My SO

(914%&
7o

e In a matter-dominated universe 1 o< a'/? so 04 ~ 1/30 ~ 2° or

gA ~ 200



Curvature

e In a curved universe, the apparent or angular diameter distance 1s
no longer the conformal distance D4 = Rsin(D/R) # D

e Objects in a closed universe are further than they appear!
gravitational lensing of the background...

e Curvature scale of the universe must be substantially larger than
current horizon

e Flat universe indicates critical density and implies missing energy
given local measures of the matter density “dark energy”

e D also depends on dark energy density {2pg and equation of state
W = Ppg/ PDE-

e Expansion rate at recombination or matter-radiation ratio enters
into calculation of £ 4.



Doppler Eftect

e Bulk motion of fluid changes the observed temperature via

(AT) )
S — nNn-v
1 dop !

e Averaged over directions

(AT > vy
T rms \/§
e Acoustic solution

D —ﬁ@ = —3ch O(0)sin(ks)

V3 k k
= O(0)sin(ks)

Doppler shifts



Doppler Peaks?

e Doppler effect for the photon dominated system 1s of equal
amplitude and 7 /2 out of phase: extrema of temperature are
turning points of velocity

e Effects add in quadrature:

T

e No peaks in k spectrum! However the Doppler effect carries an

<£> = 07(0)[cos*(ks) + sin®(ks)] = ©%(0)

angular dependence that changes its projection on the sky
n-v,xn-k
e Coordinates where z || k

Y10Y£0 — YEilO

recoupling j,Yy: no peaks in Doppler effect



Restoring Gravity

e Take a simple photon dominated system with gravity

e Continuity altered since a gravitational potential represents a
stretching of the spatial fabric that dilutes number densities —
formally a spatial curvature perturbation

e Think of this as a perturbation to the scale factor a — a(1 + ®) so
that the cosmogical redshift 1s generalized to
a a

a a

so that the continuity equation becomes

. 1 .
@: —gkvv—q)



Restoring Gravity

e (Gravitational force in momentum conservation F = —mVW
generalized to momentum density modifies the Euler equation to

0 = k(O + 0)

e General relativity says that ® and W are the relativistic analogues
of the Newtonian potential and that & ~ —W.

e In our matter-dominated approximation, ¢ represents matter
density fluctuations through the cosmological Poisson equation

k*® = 4nGa’p,\,,

where the difference comes from the use of comoving coordinates
for k (a® factor), the removal of the background density into the
background expansion (pA,,) and finally a coordinate subtlety that
enters into the definition of A,



Constant Potentials

e In the matter dominated epoch potentials are constant because
infall generates velocities as v,,, ~ knWV

e Velocity divergence generates density perturbations as
A, ~ —knv, ~ —(kn)*W

e And density perturbations generate potential fluctuations as
d ~ A,,/(kn)* ~ —V, keeping them constant. Note that because
of the expansion, density perturbations must grow to keep
potentials constant.

e Here we have used the Friedman equation H? = 87Gp,, /3 and
n= [dlna/(aH)~1/(aH)

e More generally, 1f stress perturbations are negligible compared
with density perturbations ( 0p < dp ) then potential will remain

roughly constant — more specifically a variant called the Bardeen
or comoving curvature ( 1s constant



Oscillator: Take Two

e Combine these to form the simple harmonic oscillator equation

. L2 .
@+éﬁ@:—§m—¢

e In a CDM dominated expansion ® = ¥ = 0. Also for photon
domination ¢? = 1/3 so the oscillator equation becomes

O+ U+ Ak + W) =0
e Solution is just an offset version of the original
O+ Ul(n) =[O + V](0) cos(ks)

e O + W is also the observed temperature fluctuation since photons
lose energy climbing out of gravitational potentials at
recombination



Effective Temperature

e Photons climb out of potential wells at last scattering
e Lose energy to gravitational redshifts

e Observed or effective temperature

O+ WV
e Effective temperature oscillates around zero with amplitude given
by the initial conditions

e Note: 1nitial conditions are set when the perturbation 1s outside of
horizon, need inflation or other modification to matter-radiation
FRW universe.

e GR says that initial temperature 1s given by initial potential



Sachs-Wolfe Eftect and the Magic 1/3

e A gravitational potential 1s a perturbation to the temporal
coordinate [formally a gauge transformation]

ot
t
e Convert this to a perturbation in the scale factor,

A 3(1-+w)/2
ol ap1/2

where w = p/p so that during matter domination

=V

oa 20t
a 3t
o CMB temperature is cooling as T o< a™ ! s0

5T 5 1
O+v="qU=—240=_U
A a 3



Baryon Loading
e Baryons add extra mass to the photon-baryon fluid
e Controlling parameter 1s the momentum density ratio:
Rpr+pb%?)OQbh2( a )
Py + Py 10-3

of order unity at recombination

e Momentum density of the joint system 1s conserved

(py + Py) vy + (b + Do) s = (Py + Dy + po + py) 0y
— (1 + R) (:07 =+ pv)vvb

where the controlling parameter 1s the momentum density ratio:

Pv + Po
Py T P
of order unity at recombination

R =

~ 2 (4
~ 300" (155



New Euler Equation

e Momentum density ratio enters as

(14 R)vyp] =kO + (1 4+ R)kEV
e Photon continuity remains the same

. I |
© = —g?},yb—q)

e Modification of oscillator equation

(14 RO + é/@?@ _ —%kQ(l L R)T - [(1+ R)®]



Oscillator: Take Three

e Combine these to form the not-quite-so simple harmonic oscillator

equation
d : k2 d .
2 —2 27.2 2 9
—(c, O kO = ——V — ci—(c. " P
CS d/r] (CS ) _|_ CS 3 CS d/r} (CS )
where ¢ = py/pp
2o 1
31+ R

e In a CDM dominated expansion ® = U = 0 and the adiabatic
approximation R /R < w = ke,

O+ (1+ R)V|(n) =04+ (14 R)¥](0)cos(ks)



Baryon Peak Phenomenology

e Photon-baryon ratio enters in three ways

e Overall larger amplitude:

0 + (14 R)T)(0) = %(1 +3R)T(0)

e Even-odd peak modulation of effective temperature

O + Vlpears = [£(1 +3R) — 3R] é‘If(O)

© 4+ 0]y~ [0+ W], = [-6R)3¥(0)

e Shifting of the sound horizon down or /4 up

lyxV1I+ R

e Actual effects smaller since /X evolves



Photon Baryon Ratio Evolution

e Oscillator equation has time evolving mass

d :
c?d—n(cf@) +c2k*0 =0

e Effective mass is is m.z = 3¢, * = (1 + R)
e Adiabatic invariant

E 1 1
— = §meﬁwA2 = 5308_2/@03142 o A*(1 + R)1/2 = const.
W

e Amplitude of oscillation A o< (1 + 1)~/ decays adiabatically as
the photon-baryon ratio changes



Oscillator: Take Three and a Half

e The not-quite-so simple harmonic oscillator equation 1s a forced
harmonic oscillator
k* d

((38_2@) —+ C§k2@ = —g\If — Czd—n(cs_2q))

d

¢ —

dn
changes 1n the gravitational potentials alter the form of the

acoustic oscillations

e If the forcing term has a temporal structure that is related to the
frequency of the oscillation, this becomes a driven harmonic
oscillator

e Term involving W 1s the ordinary gravitational force

e Term involving ® involves the ® term in the continuity equation as
a (curvature) perturbation to the scale factor



Potential Decay

e Matter-to-radiation ratio

P 24th2( a )
Pr 103

of order unity at recombination in a low {2,,, universe

e Radiation 1s not stress free and so impedes the growth of structure

E*® = 4nGa’p, A\,

4

A, ~ 40 oscillates around a constant value, p, o< a~" so the

Netwonian curvature decays.

e General rule: potential decays if the dominant energy component
has substantial stress fluctuations, i.e. below the generalized sound
horizon or Jeans scale



Radiation Driving

e Decay 1s timed precisely to drive the oscillator - close to fully
coherent

0+ W](n) = [O + U](0) + AT — AD
_ %xp(@) _20(0) = gqf(())

e 5x the amplitude of the Sachs-Wolfe effect!

e Coherent approximation is exact for a photon-baryon fluid but
reality 1s reduced to ~ 4 x because of neutrino contribution to
radiation

e Actual initial conditions are © + ¥ = W /2 for radiation
domination but comparison to matter dominated SW correct



Damping
e Tight coupling equations assume a perfect fluid: no viscosity, no

heat conduction

e Fluid imperfections are related to the mean free path of the
photons 1n the baryons

L' where 7 = n.ora

Ao =T
1s the conformal opacity to Thomson scattering

e Dissipation is related to the diffusion length: random walk
approximation

Ap = VNI = /1n/ e Ao = V1o

the geometric mean between the horizon and mean free path

e \p/n,. ~ few %, so expect the peaks :> 3 to be affected by
dissipation



Equations of Motion

e Continuity

@:—§U7—®, 5[9:—/{2}5—3(1)

where the photon equation remains unchanged and the baryons
follow number conservation with p, = myny

e Euler
. k .
v, = k(@4 V) — 6™~ T(vy — Vp)
vy = —gvb—kk\lf#—%(vv — )/ R

where the photons gain an anisotropic stress term 7., from radiation
viscosity and a momentum exchange term with the baryons and
are compensated by the opposite term 1n the baryon Euler equation



Viscosity

e Viscosity 1s generated from radiation streaming from hot to cold
regions

e Expect

k
T~ Y U~
Y 77_

generated by streaming, suppressed by scattering in a wavelength
of the fluctuation. Radiative transfer says

k
7Tfy ~ ZAU?J,Y ;

where A, = 16/15

k k
’l.}fy — k(@ —|— \If) — §AU—,U7

T



Oscillator: Penultimate Take
e Adiabatic approximation (w > a/a)

: k
O ~ —g’l}fy
e Oscillator equation contains a O damping term
d : k% k* d :
2 —2 s 2 2 2 —2
— O A,©+Ek%°c,© = ——VU — ¢l — o
CS dT] (CS ) —|_ 7_ —I_ CS 3 CS dT] (CS )

e Heat conduction term similar in that it 1s proportional to v., and is
suppressed by scattering % /7. Expansion of Euler equations to
leading order in k7 gives

R2
T 1+R
since the effects are only significant if the baryons are dynamically

Ap

important



Oscillator: Final Take

e Final oscillator equation

k*c? k* d

5 d

—(c; %0 S[A, + ALO + k2O = —— U — 2—(c; 2
Qg (70) + A+ A0+ G0 =~ — ()
e Solve 1n the adiabatic approximation
O x exp(i/wdn)
k2 c?
—w® A 2 (A, + Ap)iw + ke =0 (1)

+



Dispersion Relation

e Solve

= k22 {1 + z‘f.(A,,, + Ah)}

1 W
— t+ke, [1+=-—(A, + A
W C _ —|—27_( + h)]

I 1 ke
— tkc, |1 £+ = SAU A
| ;5 (At h)]

e Exponentiate

1 2
exp(i/wdn) = T ex Xp —kQ/dU§CT.S(Av + Ap)]

= " exp[—(k/kp)? 2)

e Damping 1s exponential under the scale £ p



Diffusion Scale

e Diffusion wavenumber

k2]/d 11 16 R
b= YR T R\ T 1+ R)

e Limiting forms

116 [ 1

lim k) = = — [ di~

A N
1 [ 1

lim kp2 == [ di-

R D 60/ e

e Geometric mean between horizon and mean free path as expected
from a random walk

2T 2T
Ap = 5~ ()2

kp /6



Thomson Scattering

e Polarization state of radiation in direction n described by the
intensity matrix ( F;(n)E?(n)), where E is the electric field vector
and the brackets denote time averaging.

e Differential cross section

do
df)

where o = 8ma?/3m, is the Thomson cross section, E' and E

3 . .
= —W]E’-E\QJT,

denote the incoming and outgoing directions of the electric field or
polarization vector.

e Summed over angle and incoming polarization

> [l

1=1,2



Polarization Generation

e Heuristic: incoming radiation shakes an electron in direction of
electric field vector E

e Radiates photon with polarization also 1n direction E/

e But photon cannot be longitudinally polarized so that scattering
into 90° can only pass one polarization

e Linearly polarized radiation like polarization by reflection
e Unlike reflection of sunlight, incoming radiation 1s nearly isotropic

e Missing linear polarization supplied by scattering from direction
orthogonal to original incoming direction

e Only quadrupole anisotropy generates polarization by Thomson
scattering



Acoustic Polarization

Break down of tight-coupling leads to quadrupole anisotropy of

k
7T,y ~ ;/U'Y
Scaling kp = (7/n.)Y? — 7 = k%,
Know: kps,. =~ kpn, ~ 10

So:



Acoustic Polarization

e Gradient of velocity 1s along direction of wavevector, so
polarization 1s pure f~-mode

e Velocity 1s 90° out of phase with temperature — turning points of
oscillator are zero points of velocity:

© + VU  cos(ks); v, o sin(ks)

e Polarization peaks are at troughs of temperature power



Cross Correlation

e Cross correlation of temperature and polarization

(© 4+ ¥)(v,) x cos(ks)sin(ks) o sin(2ks)
e Oscillation at twice the frequency

e Correlation: radial or tangential around hot spots

e Partial correlation: easier to measure if polarization data 1s noisy,
harder to measure if polarization data is high S/ or if bands do
not resolve oscillations

e Good check for systematics and foregrounds

e Comparison of temperature and polarization 1s proof against
features 1n 1nitial conditions mimicking acoustic features



CMB Normalization

e Normalization of potential, hence inflationary power spectrum, set
by CMB observations, aka COBE or WMAP normalization

e Angular power spectrum:

C4xAZ(¢/D,)  2m
Ce= 200 + 1) _€(€+1)AT(€/D*)

o /(L + 1)Cy/2m = A% is commonly used log power
o Sachs-Wolfe effect says A7 = A% /9, & = 2( initial

e Observed number at recombination

2
A2 _ 28K
T 6
2.725 x 10°uK

A3 ~ (3 x 107°)?
Az~ (5 x 107°)°




COBE vs WMAP Normalization

e Given that the temperature response to an inflationary initial
perturbation is known for all £ through the Boltzmann solution of

the acoustic physics, one can translate A% to Ag at the best
measured k ~ ¢/ D,.

e The CMB normalization was first extracted from COBE at £ ~ 10
or k ~ Hy. A low ¢ normalization point suffers from cosmic
variance: only 2¢ + 1 samples of a given £ mode.

e WMAP measures very precisely the first acoustic peak at £ ~ 200.

This is the current best place to normalize the spectrum (k£ ~ 0.02
Mpc™).

e To account for future improvements, WMAP chose k£ = 0.05

Mpc~—! as the normalization point. Taking out the CMB transfer

function AZ(k = 0.05) = (5.07 x 107°)* consistent with a scale

invariant spectrum from 0.0002 — 0.05 Mpc ™!



Transfer Function

e Transfer function transfers the initial Newtonian curvature to its
value today (linear response theory)

(I)(]f, a = 1) (I)(knorma ainit)
(I)(]C, ainit) (I)<knorm7 a — 1)

e Conservation of Bardeen curvature: Newtonian curvature 1s a

T(k) =

constant when stress perturbations are negligible: above the
horizon during radiation and dark energy domination, on all scales
during matter domination

e When stress fluctuations dominate, perturbations are stabilized by
the Jeans mechanism

e Hybrid Poisson equation: Newtonian curvature, comoving density
perturbation A = (dp/p)com implies @ decays

(k* — 3K)® = 47GpA ~ n A



Transfer Function

Freezing of A stops at 7

O ~ (Fneq) A ~ (F1eq) ™ Pinie

Transfer function has a &~ fall-off beyond k., ~ ne—ql

T \?2
Neq = 15.7(th2)_1 (—2 7K) Mpc

Small correction since growth with a smooth radiation component
1s logarithmic not frozen

Transfer function is a direct output of an Einstein-Boltzmann code



Fitting Function

e Alternately accurate fitting formula exist, e.g. pure CDM form:

B L(q)
T = T 7 ce

L(q) = In(e + 1.84q)
325
1+ 60.5¢*11
q = k/Qnh*Mpce ™ (Toms/2.7K)?

C(q) =144+

o In h Mpc!, the critical scale depends on I = Q,,,h also known as
the shape parameter



Transfer Function

e Numerical calculation

. :_.

(k)

wiggles

0.01 E

el
k (h—1 Mpc)



Baryon Wiggles

e Baryons caught up in the acoustic oscillations of the CMB and
impart acoustic wiggles to the transfer function. Density
enhancements are produced kinematically through the continuity
equation o, ~ (kn)v, and hence are out of phase with CMB
temperature peaks

e Dissipation of the acoustic oscillations eliminates both the CMB
and baryon perturbations — known as Silk damping for the
baryons. This suppression and the general fact that baryons are
caught up with photons was one of the main arguments for CDM

e Detected first (so far only) 1n the SDSS LRG survey.

e An excellent standard ruler for angular diameter distance D 4(z)
since 1t does not evolve in redshift in linear theory

e Radial extent of wiggles gives H(z) (not yet seen in data)



Massive Neutrinos

e Neutrino dark matter suffers similar effects and hence cannot be
the main component of dark matter in the universe

e Relativistic stresses of a light neutrino slow the growth of structure

e Neutrino species with cosmological abundance contribute to

matter as (,h* = > m, /94eV, suppressing power as
AP/P ~ —8Q,/Q,,

e Current data from SDSS galaxy survey and CMB indicate
> m, < 1.7eV (95% CL) and with Ly« forest < 0.42 eV.



Growth Function

e Same physics applies to the dark energy dominated universe

e Under the dark energy sound horizon or Jeans scale, dark energy
density frozen. Potential decays at the same rate for all scales

P (knorma CL) / d
o (knormp ainit) dlna

Gla) =

e Continuity + Euler + Poisson

/! 1 / 1 / / /!
G”+<1—p—,+—&>G’+<—pC+p —p—,>G:0
P 2pc 2 pe p

where p 1s the Jeans unstable matter and p. is the critical density




Dark Energy Growth Suppression

e Pressure growth suppression: 6 = dp,,/pm x aG

d*GG 5 3 dG 3
d1n a? i 2 Qw(Z)QDE(Z> dlna * 5[1 —w(z)[op(2)G =0,

where w = ppr/ppr and Qpr = ppr/(pm + ppr) With initial
conditions G = 1, dG/dIna = 0

e As Q)prp — 0 g =const. 1s a solution. The other solution is the
decaying mode, elimated by initial conditions

o AsQpr — 1 g oxa!is asolution. Corresponds to a frozen
density field.



Power Spectrum Normalization

e Present (or matter dominated) vs inflationary 1nitial conditions
(normalized by CMB):

%Agi(kHOrm)GQ(a)TQ(k)( I )n1

knorm

A?D(k, a) ~

e Density field

2® = 47nGa’*Ap,,

~3m2q, Apm 1
2 pm a
9 HO
AQ _ 92 2A2

T A2 —2 2,2 2 L3
Am — 25A Z(knorm)ﬂm a“G*(a)T*(k) ( ) (H())

kn()rm



Antiquated Normalization Conventions

e Current density field on the horizon scale £ = H,

5y = 2 N2 (o) 0,207 G(a) = (2G(1) /0 % 10°7)

e 03, RMS of density field filtered by tophat of 82~ *Mpc



Power Spectrum
e SDSS data

104 |

P(k) [(h™* Mpc)?]

1000

|

0.01 0.1
k [h Mpe-!]

e Power spectrum defines large scale structure observables: galaxy
clustering, velocity field, Ly« forest clustering, cosmic shear



Velocity field

e Continuity gives the velocity from the density field as

, aH dA
:—A —_— —
v L k dlna
_ _aHAdln(aG)
k dlna

e In a ACDM model or open model dIn(aG)/dIn a ~ Q%°

e Measuring both the density field and the velocity field (through
distance determination and redshift) allows a measurement of €2,,,

e Practically one measures 3 = Q2°/b where b is a bias factor for
the tracer of the density field, i.e. with galaxy numbers on/n = bA

e Can also measure this factor from the redshift space power
spectrum - the Kaiser effect where clustering in the radial direction
1s apparently enhanced by gravitational infall



Redshift Space Power Spectrum

e Kaiser effect 1s separable from the real space clustering if one
measures modes parallel and transverse to the line of sight.
Redshift space distortions only modify the former

(P

e 2D power spectrum 1n “‘s” or redshift space

PS(kJ_,k“) =140 (%)2 bQP(k)

where k? = k? + k% and &k, is a 2D vector transverse to the line of
| 1L
sight



Power Spectrum Errors

e The precision with which the power spectrum can be measured 1s
ultimately limited by sample variance from having a finite survey
volume V = L3. This is basically a mode counting argument. The
errors on the power spectrum are given by

APN\? 2
P, N,

where N, is the number of modes in a range of Ak, Aky. This is

determined by the k-space volume and the fundamental mode of
the box kg = 27/ L which sets the cell size in the volume

(Ag)?_ 2
PS #Zﬂ'kLAlﬂ_AkH



Lyman-« Forest

e QSO spectra absorbed by neutral hydrogen through the Ly«
transition.

e The optical depth to absorption is (with ds in physical scale)

T(v) = /dsa:Hmbaa ~ /dsa:Hmegb(u))\z

where xyp is the neutral fraction, I' = 6.25 x 10%s~! is the
transition rate and A = 1216A is the Lya wavelength and ¢(v) is
the Lorentz profile. For radiation at a given emitted frequency 1/
above the transition, 1t will redshift through the transition

e Resonant transition: lack of complete absorption, known as the
lack of a Gunn-Peterson trough indicates that the universe is nearly
fully 1onized xy; < 1 out to the highest redshift quasar z ~ 6;
indications that this is near the end of the reionization epoch



Lyman-« Forest

e In ionization equilibrium, the Gunn-Peterson optical depth 1s a
tracer of the underlying baryon density which itself 1s a tracer of
the dark matter 7gp o< p; T~ V" with T'(pp).

d(l —x 41.J,
( oy HI) — —[CHI/dV h O, + (1 —CCHI)2TL5R

where o, 1s the photolonization cross section (sharp edge at

threshold and falling in frequency means J, ~ J,;) and R oc 7797
1s the recombination coefficient.
e Given an equation of state from simulations of p o< p”
wR o T—07 207G
X
JHI

LTH X —/— Tap X
e Clustering in the Ly« forest reflects the underlying power

Jo1 Jor

spectrum modulo an overall 1onization intensity Jy;



Gravitational Lensing

e Gravitational potentials along the line of sight n to some source at
comoving distance D, lens the images according to (flat universe)

o(f) = 2 / dD DBZ)SD & (D, n(D))

remapping image positions as

n' = n® 4+ Vao(n)

e Since absolute source position 1s unknown, use image distortion
defined by the Jacobian matrix

on!
L= §. .
87153 i+




Weak Lensing

Small 1image distortions described by the convergence x and shear
components (71, V2)

R —"7 —72
- )
—Y2 Kt M

where V; = DV and

Vij = 2/GZDD(D;)_ D)V,L-Vj@(Dﬂ,n(D))

e In particular, through the Poisson equation the convergence
(measured from shear) 1s simply the projected mass

D(D,— D)A(Dn.n(D
KJ:%QmHg/dD ( s ) ( nﬂ?( ))
2 D, a




