Astro 242

The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu

Syllabus

Text: An Introduction to Modern Astrophysics 2nd Ed., Carroll and Ostlie

- Milky Way Galaxy
- Nature of Galaxies
- Galactic Evolution
- Active Galaxies
- In class Midterm
- Structure of the Universe
- Cosmology
- Early Universe
- Final

Common Themes

- Mapping out the Universe marching out in distance from Earth Start with closest system: Galaxy

End with furthest system: whole Universe

- Limitations imposed by the ability to measure only a handful of quantities, all from our vantage point in the Galaxy

Common tools: flux and surface brightness, angular mapping, number counts

- Inferences on the dynamical nature of the systems by using physical laws to interpret observations: e.g. distance from inverse square law, mass from Newtonian dynamics
- Astrophysical units, while bizarre to a physicist, teach you what is being measured and how inferences are made

Astrophysical units

- Length scales
- $1 \mathrm{AU}=1.496 \times 10^{13} \mathrm{~cm}-$ Earth-sun distance - used for solar system scales
- $1 \mathrm{pc}=3.09 \times 10^{18} \mathrm{~cm}=2.06 \times 10^{5} \mathrm{AU}-1 \mathrm{AU}$ subtends 1 arcsecond on the sky at $1 \mathrm{pc}-$ distances between nearby stars

Defined by measuring parallax of nearby stars to infer distance change in angular position during Earth's orbit: par(allax arc) \sec (ond)

$$
\frac{1 \mathrm{AU}}{1 \mathrm{pc}}=\frac{1}{2.06 \times 10^{5}}=4.85 \times 10^{-6}=\frac{\pi}{60 * 60 * 180}=1^{\prime \prime}
$$

- $1 \mathrm{kpc}=10^{3} \mathrm{pc}$ - distances in the Galaxy
- $1 \mathrm{Mpc}=10^{6} \mathrm{pc}$ - distances between galaxies
- $1 \mathrm{Gpc}=10^{9} \mathrm{pc}$ - scale of the observable universe

Astrophysical units

- Fundamental observables are the flux F (energy per unit time per unit area) or brightness (+ per unit solid angle) and angular position of objects in a given frequency band
- Related to the physical quantities, e.g. the luminosity of the object L if the distance to the object is known

$$
F=\frac{L}{4 \pi d^{2}}
$$

- Solar luminosity

$$
L_{\odot}=3.839 \times 10^{26} \mathrm{~W}=3.839 \times 10^{33} \mathrm{erg} / \mathrm{s}
$$

- Frequency band defined by filters - in limit of infinitesimal bands, the whole frequency spectrum measured - "spectroscopy"

Astrophysical units

- Relative flux easy to measure - absolute flux requires calibration of filter: (apparent) magnitudes (originally defined by eye as filter)

$$
m_{1}-m_{2}=-2.5 \log \left(F_{1} / F_{2}\right)
$$

- Absolute magnitude: apparent magnitude of object at $d=10 \mathrm{pc}$

$$
m-M=-2.5 \log (d / 10 \mathrm{pc})^{-2} \rightarrow \frac{d(m-M)}{10 \mathrm{pc}}=10^{(m-M) / 5}
$$

- If frequency spectrum has lines, Doppler shift gives relative or radial velocity of object V_{r} aka redshift z

$$
1+z=\frac{\lambda_{\mathrm{obs}}}{\lambda_{\mathrm{rest}}}=1+\frac{V_{r}}{c}
$$

(where $V_{r}>0$ denotes recession and redshift and $V_{r} \ll c$) used to measure velocity for dynamics of systems, including universe as whole

Astrophysical units

- Masses in units of solar mass $M_{\odot}=1.989 \times 10^{33} \mathrm{~g}$
- Measurement of distance and angle gives physical size and Doppler shift gives velocity \rightarrow mass
- Mass measurement always boils down to inferring gravitational force necessary to keep test object in orbit
- For circular motion - centripetal force

$$
\frac{m v^{2}}{r} \approx \frac{G m M}{r^{2}} \rightarrow M \approx \frac{v^{2} r}{G}
$$

- Requires a measurement of velocity and a measurement or estimate of size
- Various systems will have order unity correction to this circular-motion based relation

Set 1:

Milky Way Galaxy

Galactic Census

- Sun is embedded in a stellar disk $\sim 8 \mathrm{kpc}$ from the galactic center
- Extent of disk
$\sim 25 \mathrm{kpc}$ radius, spiral structure
- Thickness of neutral gas disk $<0.1 \mathrm{kpc}$
- Thickness of thin disk of young stars $\sim 0.35 \mathrm{kpc}$
- Thickness of thick disk $\sim 1 \mathrm{kpc}$

Galactic Census

- Central stellar bulge radius $\sim 4 \mathrm{kpc}$, with central bar
- Supermassive black hole, inferred from large mass within 120AU (solar system scale) of center
- Extended spherical stellar halo with globular clusters, radius > 100 kpc
- Extended dark matter halo, radius > 200 kpc

Mass and Luminosity

	Mass	Luminosity $\left(L_{B}\right)$
Neutral gas disk	$0.5 \times 10^{10} M_{\odot}$	
Thin disk	$6 \times 10^{10} M_{\odot}$	$1.8 \times 10^{10} L_{\odot}$
Thick disk	$0.2-0.4 \times 10^{10} M_{\odot}$	$0.02 \times 10^{10} L_{\odot}$
Bulge	$1 \times 10^{10} M_{\odot}$	$0.3 \times 10^{10} L_{\odot}$
Supermassive black hole	$3.7 \pm 0.2 \times 10^{6} M_{\odot}$	
Stellar halo	$0.3 \times 10^{10} M_{\odot}$	$0.1 \times 10^{10} L_{\odot}$
Dark matter halo	$2 \times 10^{12} M_{\odot}$	
Total	$2 \times 10^{12} M_{\odot}$	$2.3 \times 10^{10} L_{\odot}$

How Do We Know?

- Infer this structure from the handful of observables that are directly accessible
- Convert intrinsically 2D information to 3D + dynamical model
- Flux and number of stars
- Angular positions of stars (as a function of season, time)
- Relative radial velocity from Doppler effect

Starlight: Optical Image

- Color overlay: microwave background

Star Counts

- One of the oldest methods for inferring the structure of the galaxy from 2D sky maps is from star counts
- History: Kapteyn (1922), building on early work by Herschel, used star counts to map out the structure of the galaxy
- Fundamental assumptions

Stars have a known (distribution in) absolute magnitude

No obscuration

- Consider a star with known absolute magnitude M (magnitude at 10pc). Its distance can be inferred from the inverse square law from its observed m as

$$
\frac{d(m-M)}{10 \mathrm{pc}}=10^{(m-M) / 5}
$$

Star Counts

- Combined with the angular position on the sky, the 3d position of the star can be measured - mapping the galaxy
- Use the star counts to determine statistical properities: number density of stars in each patch of sky
- A fall off in the number density in radial distance would determine the edge of the galaxy
- Suppose there is an indicator of absolute magnitude like spectral type that allows stars to be selected to within $d M$ of M
- Describe the underlying quantity to be extracted as the spatial number density within $d M$ of $M: n_{M}(M, \mathbf{r}) d M$

Star Counts

- The observable is say the total number of stars brighter than a limiting apparent magnitude m in a solid angle $d \Omega$
- Stars at a given M can only be observed out to a distance $d(m-M)$ before their apparent magnitude falls below the limit
- So there is radial distance limit to the volume observed
- Total number observed in solid angle $d \Omega$ within $d M$ of M is integral to that limit

$$
N_{M} d M=\left[\int_{0}^{d(m-M)} n_{M}(M, r) r^{2} d r\right] d \Omega d M
$$

- Differentiating with respect to $d(m-M)$ provides a measurement of $n_{M}(M, r)$

Star Counts

- So dependence of counts on the limiting magnitude m determines the number density and e.g. the edge of the system
- In fact, if there were no edge to system the total flux, assuming point sources, would diverge as $m \rightarrow 0$ - volume grows as d^{3} flux decreases as d^{-2} : Olber's paradox
- Generalizations of the basic method:
- Selection criteria is not a perfect indicator of M and so $d M$ is not infinitesimal and some stars in the range will be missed - $S(M)$ and M is integrated over - total number

$$
N=\int_{-\infty}^{\infty} d M S(M) N_{M}
$$

Star Counts

- Alternately use all stars [weak or no $S(M)$] but assume a functional form for $n_{M}(M, r)=A(r) n_{M}(M, 0)$ e.g. derived from local estimates and assumed to be the same at larger $r>0$
In this case, measurements determine the normalization of a distribution with fixed shape, i.e.

$$
n(\mathbf{r})=\int_{-\infty}^{\infty} n_{M}(M, \mathbf{r}) d M
$$

- Kapteyn used all of the stars (assumed to have the same n_{M} shape in r)
- He inferred a flattened spheroidal system of $<10 \mathrm{kpc}$ extent in plane and $<2 \mathrm{kpc}$ out of plane: too small
- Missing: interstellar extinction dims stars dropping them out of the sample at a given limiting magnitude

Variable Stars

- With a good indicator of absolute magnitude or "standard candle" one can use individual objects to map out the structure of the Galaxy (and Universe)
- History: Shapley (1910-1920) used RR Lyrae and W Virginis variable stars - with a period-luminosity relation

Radial oscillations with a density dependent sound speed luminosity and density related on the instability strip

Calibrated locally by moving cluster and other methods

- Measure the period of oscillation, infer a luminosity and hence an absolute magnitude, infer a distance from the observed apparent magnitude

Variable Stars

- Inferred a 100 kpc scale for the Galaxy - overestimate due to differences in types of variable stars and interstellar extinction
- Apparent magnitude is dimmed by extinction leading to the variable stars being less distant than they appear
- Both Kapteyn and Shapley off because of dust extinction: discrepancy between two independent methods indicates systematic error
- Caveat emptor: in astronomy always want to see a cross check with two or more independent methods before believing result you read in the NYT! - see recent example of gravitational wave vs dust polarization.

Common techniques

- Particular objects such as stars of a given type and Cepheid variables are both interesting in their own right and, once understood, useful for tracing out larger systems
- Star counts is an example of a general theme in astronomy: using a large survey (stars) to infer statistical properties
- Likewise, cepheids are an example of using a standard candle to map out a system
- Similar method applies to mapping out the Universe with galaxies e.g. baryon acoustic oscillations vs supernova

Interstellar Extinction

- Dust (silicates, graphite, hydrocarbons) in ISM (Chap 12) dims stars at visible wavelengths making true distance less than apparent
- Distance formula modified to be

$$
\frac{d}{10 \mathrm{pc}}=10^{\left(m_{\lambda}-M_{\lambda}-A_{\lambda}\right) / 5}
$$

where the extinction coefficient $A_{\lambda} \geq 0$ depends on wavelength λ

- Extinction also depends on direction, e.g. through the disk, through a giant molecular cloud, etc. Typical value at visible wavelengths and in the disk is $1 \mathrm{mag} / \mathrm{kpc}$
- Dust emits or reradiates starlight in the infrared - maps from these frequencies [IRAS, DIRBE, now Planck] can be used to calibrate extinction

Planck Dust Emission

Planck Dust Polarization

Extinction Correction

Kinematic Distances to Stars

- If proper motion across the sky can be measured from the change in angular position μ in rad/s

$$
v_{t}=\mu d
$$

- Often v_{t} can be inferred from the radial velocity and a comparison with μ gives distance d given assumption of the dynamics
- Example: Keplerian orbits of stars around galactic center $R_{0}=7.6 \pm 0.3 \mathrm{kpc}$
- Example: Stars in a moving cluster share a single total velocity whose direction can be inferred from apparent convergent motion (see Fig 24.30)

Stellar Kinematics

- Can infer more than just distance: SMBH
- Galactic center: follow orbits of stars close to galactic center
- One star: orbital period 15.2 yrs , eccentricity $e=0.87$,
 perigalacticon distance (closest point on orbit to $F 120$ $\mathrm{AU}=1.8 \times 10^{13} \mathrm{~m}$
- Estimate mass: $a=a e-r_{p}$ so semimajor axis

$$
a=\frac{r_{p}}{1-e}=1.4 \times 10^{14} \mathrm{~m}
$$

Stellar Kinematics

- Kepler's 3rd law

$$
M=\frac{4 \pi^{2} a^{3}}{G P^{2}}=7 \times 10^{36} \mathrm{~kg}=3.5 \times 10^{6} M_{\odot}
$$

- That much mass in that small a radius can plausibly only be a (supermassive) black hole
- Note that this is an example of the general statement that masses are estimated by taking

$$
M \approx \frac{v^{2} r}{G}=\frac{(2 \pi a)^{2} a}{G P^{2}}=\frac{4 \pi^{2} a^{3}}{G P^{2}}
$$

Stellar Kinematics

- Apply these stellar kinematics techniques to the galactic disk of stars
- Direct observables are the kinematics of neighboring stars
ℓ, b : angular position of star in galactic coordinates
v_{r} : relative motion radial to line of sight
v_{t} : relative motion tangential to line of sight
- These stars have their parallax distance d measured
- The distance to center of galaxy R_{0} is known
- Infer the rotation of stars in the disk around galactic center

Stellar Kinematics

- Differential rotation $\Theta(R)=R \Omega(R)$ where $\Omega(R)$ is the angular velocity curveobservables are radial and tangential motion with respect to LSR

$$
\begin{aligned}
v_{r} & =R \Omega \cos \alpha-R_{0} \Omega_{0} \sin \ell \\
v_{t} & =R \Omega \sin \alpha-R_{0} \Omega_{0} \cos \ell
\end{aligned}
$$

where Θ_{0} is the angular velocity of the LSR

- Technical point: defined through local standard of rest (LSR) rather than sun's rest frame due to small differences between solar motion and the average star around us

Stellar Kinematics

- d (parallax) and R_{0} are known observables, R is not - eliminate with trig relations

$$
R \cos \alpha=R_{0} \sin \ell \quad R \sin \alpha=R_{0} \cos \ell-d
$$

- Eliminate R and solve for $\left(\Omega, \Omega_{0}\right)$

$$
\begin{aligned}
v_{r} & =\left(\Omega-\Omega_{0}\right) R_{0} \sin \ell \\
v_{t} & =\left(\Omega-\Omega_{0}\right) R_{0} \cos \ell-\Omega d
\end{aligned}
$$

- Historical context: solve for $\Omega(R)$ locally where

$$
\begin{aligned}
\Omega-\Omega_{0} & \approx \frac{d \Omega}{d R}\left(R-R_{0}\right) \\
& \approx \frac{1}{R_{0}}\left(\frac{d \Theta}{d R}-\frac{\Theta_{0}}{R_{0}}\right)\left(R-R_{0}\right) \quad[\Omega=\Theta / R]
\end{aligned}
$$

and $d \ll R_{0}, \cos \beta \approx 1$

Stellar Kinematics

- Reduce with trig identities

$$
\begin{gathered}
R_{0}=d \cos \ell+R \cos \beta \approx d \cos \ell+R \\
R-R_{0} \approx-d \cos \ell \\
\cos \ell \sin \ell=\frac{1}{2} \sin 2 \ell \\
\cos ^{2} \ell=\frac{1}{2}(\cos 2 \ell+1)
\end{gathered}
$$

to obtain

$$
\begin{aligned}
& v_{r} \approx A d \sin 2 \ell \\
& v_{t} \approx A d \cos 2 \ell+B d
\end{aligned}
$$

Stellar Kinematics

- Oort constants

$$
\begin{array}{r}
A=-\frac{1}{2}\left[\frac{d \Theta}{d R}-\frac{\Theta_{0}}{R_{0}}\right]=-\frac{R_{0}}{2} \frac{d \Omega}{d R} \\
B=-\frac{1}{2}\left[\frac{d \Theta}{d R}+\frac{\Theta_{0}}{R_{0}}\right]
\end{array}
$$

- Observables v_{r}, v_{t}, ℓ, d : solve for Oort's constants. From Hipparcos

$$
\begin{aligned}
& A=14.8 \pm 0.8 \mathrm{~km} / \mathrm{s} / \mathrm{kpc} \\
& B=-12.4 \pm 0.6 \mathrm{~km} / \mathrm{s} / \mathrm{kpc}
\end{aligned}
$$

- Angular velocity $\Omega=\Theta / R$ decreases with radius: differential rotation.

Stellar Kinematics

- Physical velocity $\Theta(R)$

$$
\left.\frac{d \Theta}{d R}\right|_{R_{0}}=-(A+B)=-2.4 \mathrm{~km} / \mathrm{s} / \mathrm{kpc}
$$

decreases slowly compared with

$$
\frac{\Theta_{0}}{R_{0}}=A-B=27.2 \mathrm{~km} / \mathrm{s} / \mathrm{kpc} \rightarrow \Theta_{0} \approx 220 \mathrm{~km} / \mathrm{s}
$$

a nearly flat rotation curve - at least locally

- Does this flat rotation curve extend out in the disk away from the sun?

Neutral Gas: 21 cm Emission

21 cm

- Spin interaction of the electron and proton leads to a spin flip transition in neutral hydrogen with wavelength 21 cm

- Line does not suffer substantial extinction and can be used to probe the neutral gas and its radial velocity from the Doppler shift throughout the galaxy
- No intrinsic distance measure
- Neutral gas is distributed inhomogeneously in clouds leading to distinct peaks in emission along each sight line

21 cm

- Due to projection of velocities along the line of sight and differential rotation, the highest velocity occurs at the closest approach to the galactic center or tangent point
- Build up a rotation curve interior to the solar circle $R<R_{0}$
- Rotation curve steeply rises in the interior $R<1 \mathrm{kpc}$, consistent with near rigid body rotation and then remains flat out through the solar circle

Ionized Gas: $\mathrm{H} \alpha$ Line Emission

Cosmic Rays in B Field: Synchrotron

Gamma Rays

Rotation Curves

- Extending the rotation curve beyond the solar circle with objects like Cepheids whose distances are known reveals a flat curve out to $\sim 20 \mathrm{kpc}$
- Mass required to
keep rotation curves flat much larger than implied by stars and gas. Consider a test mass
 m orbiting at a radius r around an enclosed mass $M(r)$

Rotation Curves

- Setting the centripetal force to the gravitational force

$$
\begin{aligned}
\frac{m v^{2}(r)}{r} & =\frac{G M(r) m}{r^{2}} \\
M(r) & =\frac{v(r)^{2} r}{G}
\end{aligned}
$$

Again this combination of velocity and distance is the fundamental way masses are measured:
gravitational force binds object against the motion of the luminous objects - other examples: virial theorem with velocity dispersion, hydrostatic equilibrium with thermal motions

- Measuring the rotation curve $v(r)$ is equivalent to measuring the mass profile $M(r)$ or density profile $\rho(r) \propto M(r) / r^{3}$

Rotation Curves

- Flat rotation curve $v(r)=$ const implies $M \propto r$ - a mass linearly increasing with radius
- Rigid rotation implies

$\Omega=v / r=$ const. $v \propto r$ or $M \propto r^{3}$ or $\rho=$ const
- Rotation curves in other galaxies show the same behavior: evidence that "dark matter" is ubiquitous in galaxies

Rotation Curves

- Consistent with dark matter density given by

$$
\rho(r)=\frac{\rho_{0}}{1+(r / a)^{2}}
$$

- Also consistent with the NFW profile predicted by cold dark matter (e.g. weakly interacting massive particles or WIMPs)

$$
\rho(r)=\frac{\rho_{0}}{(r / a)(1+r / a)^{2}}
$$

Gravitational Lensing

- Rotation curves leave open the question of what dark matter is
- Alternate hypothesis: dead stars or black holes - massive astrophysical compact halo object "MACHO"
- MACHOs have their mass concentrated into objects with mass comparable to the sun or large planet
- A MACHO at an angular distance $u=\theta / \theta_{E}$ from the line of sight to the star will gravitationally lens or magnify the star by a factor of

$$
A(u)=\frac{u^{2}+2}{u\left(u^{2}+4\right)^{1 / 2}}
$$

where θ_{E} is the Einstein ring radius in projection

$$
\theta_{E}=\sqrt{\frac{4 G M}{c^{2}} \frac{d_{S}-d_{L}}{d_{S} d_{L}}}
$$

Gravitational Lensing

- Again masses related to a physical scale $r_{E}=\theta_{E} d_{L}$ and speed c

$$
M \sim \frac{d_{S}}{4\left(d_{S}-d_{L}\right)} \frac{c^{2} r_{E}}{G}
$$

e.g. for a typical lens half way to the source the prefactor is $1 / 2$

- A MACHO would move at a velocity typical of the disk and halo $v \sim 200 \mathrm{~km} / \mathrm{s}$ and so the star behind it would brighten as it crossed the line of sight to a background star. With $u_{\text {min }}$ as the distance of closest approach at $t=0$

$$
u^{2}(t)=u_{\min }^{2}+\left(\frac{v t}{d_{L} \theta_{E}}\right)^{2}
$$

- Monitor a large number of stars for this characteristic brightening. Rate of events says how much of the dark matter could be in MACHOs.

Gravitational Lensing

- In the 1990 's
large searches measured the rate of microlensing in the halo and bulge and determined that only a small fraction of its mass could be in MACHOs

Gravitational Lensing

- Current searches (toward the bulge) are used to find planets
- Enhanced microlensing by planet around star leads to a blip in the brightening.

Light Curve of OGLE-2005-BLG-390

