
Set 7:
Thermal History



Macro vs Micro Description
• In FRW cosmology notes, we used a macroscopic description.

• Gravity only cares about bulk properties: energy density,
momentum density, pressure, anisotropic stress – stress tensor

• Matter and radiation is composed of particles whose properties can
be described by their phase space distribution or occupation
function

• Macroscopic properties are integrals or moments of the phase
space distribution

• Particle interactions involve the evolution of the phase space
distribution

• Rapid interactions drive distribution to thermal equilibrium but
must compete with the expansion rate of universe

• Freeze out, the origin of species



Brief Thermal History



Origin Examples
• Neutrino background (weak freezeout)

• CDM freezeout (annihilation freezout)

• Light elements (nuclear statistical equilibrium freezeout)

• Baryogenesis

• Blackbody freezeout (thermalization)

• Atomic hydrogen (recombination; free electron freezout)



Fitting in a Box
.

• Counting momentum states with
momentum q and de Broglie wavelength

λ =
h

q
=

2πh̄

q

• In a discrete volume L3 there
is a discrete set of states that satisfy
periodic boundary conditions

• We will hereafter set h̄ = c = 1

• As in Fourier analysis

e2πix/λ = eiqx = eiq(x+L) → eiqL = 1



Fitting in a Box
• Periodicity yields a discrete set of allowed states

Lq = 2πmi, mi = 1, 2, 3...

qi =
2π

L
mi

• In each of 3 directions∑
mximyjmzk

→
∫
d3m

• The differential number of allowed momenta in the volume

d3m =

(
L

2π

)3

d3q



Density of States
• The total number of states allows for a number of internal degrees

of freedom, e.g. spin, quantified by the degeneracy factor g

• Total density of states:

dNs

V
=

g

V
d3m =

g

(2π)3
d3q

• If all states were occupied by a single particle, then particle density

ns =
Ns

V
=

1

V

∫
dNs =

∫
g

(2π)3
d3q



Distribution Function
• The distribution function f quantifies the occupation of the

allowed momentum states

n =
N

V
=

1

V

∫
fdNs =

∫
g

(2π)3
fd3q

• f , aka phase space occupation number, also quantifies the density
of particles per unit phase space dN/(∆x)3(∆q)3

• For photons, the spin degeneracy g = 2 accounting for the 2
polarization states

• Energy E(q) = (q2 +m2)1/2

• Momentum→ frequency q = 2π/λ = 2πν = ω = E (where
m = 0 and λν = c = 1)



Bulk Properties
• Integrals over the distribution function define the bulk properties of

the collection of particles

• Number density

n(x, t) ≡ N

V
= g

∫
d3q

(2π)3
f

• Energy density

ρ(x, t) = g

∫
d3q

(2π)3
E(q)f

where E2 = q2 +m2

• Momentum density

(ρ+ p)v(x, t) = g

∫
d3q

(2π)3
qf



Bulk Properties
.

Lx

v
vx

• Pressure: particles bouncing
off a surface of area A in a volume
spanned by Lx: per momentum state

pq =
F

A
=
Npart

A

∆q

∆t
(∆q = 2|qx|, ∆t = 2Lx/vx, )

=
Npart

V
|qx||vx| =

Npart

V

|q||v|
3

(v = γmv/γm = q/E)

=
Npart

V

q2

3E



Bulk Properties
• So that summed over occupied momenta states

p(x, t) = g

∫
d3q

(2π)3

|q|2

3E(q)
f

• Pressure is just one of the quadratic in q moments, in particular the
isotropic one

• The remaining 5 components are the anisotropic stress (vanishes in
the background)

πij(x, t) = g

∫
d3q

(2π)3

3qiqj − q2δij
3E(q)

f

• We shall see that these are related to the 5 quadrupole moments of
the angular distribution



Bulk Properties
• These are more generally the components of the stress-energy

tensor

T µν = g

∫
d3q

(2π)3

qµqν
E(q)

f

• 0-0: energy density

• 0-i: momentum density

• i− i: pressure

• i 6= j: anisotropic stress

• In the FRW background cosmology, isotropy requires that there be
only a net energy density and pressure



Liouville Equation
• Liouville theorem: phase space distribution function is conserved

along a trajectory in the absence of particle interactions

Df

Dt
=

[
∂

∂t
+
dq

dt

∂

∂q
+
dx

dt

∂

∂x

]
f = 0

Expanding universe: de Broglie wavelength of particles “stretches”

q ∝ a−1

• Homogeneous and isotropic limit

∂f

∂t
+
dq

dt

∂f

∂q
=
∂f

∂t
−H(a)

∂f

∂ ln q
= 0

• Implies energy conservation: dρ/dt = −3H(ρ+ p)



Boltzmann Equation
• Boltzmann equation says that Liouville theorem must be modified

to account for collisions

Df

Dt
= C[f ]

• Heuristically

C[f ] = particle sources - sinks

• Collision term: integrate over phase space of incoming particles,
connect to outgoing state with some interaction strength



Poor Man’s Boltzmann Equation
• Non expanding medium

∂f

∂t
= Γ (f − feq)

where Γ is some rate for collisions

• Add in expansion in a homogeneous medium

∂f

∂t
+
dq

dt

∂f

∂q
= Γ (f − feq)

(q ∝ a−1 → 1

q

dq

dt
= −1

a

da

dt
= H)

∂f

∂t
−H ∂f

∂ ln q
= Γ (f − feq)

• So equilibrium will be maintained if collision rate exceeds
expansion rate Γ = n〈σv〉 > H



Equilibrium
• Thermal physics describes the equilibrium distribution of particles

for a medium at temperature T

• Expect that the typical energy of a particle by equipartition is
E ∼ T , so that feq(E/T, ?) in equilibrium

• Must be a second variable of import. Number density

n = g

∫
d3q

(2πh̄)3
feq(E/T ) =? n(T )

• If particles are conserved then n cannot simply be a function of
temperature.

• The integration constant that concerns particle conservation is
called the chemical potential. Relevant for photons when creation
and annihilation processes are ineffective



Temperature and Chemical Potential
• Fundamental assumption of statistical mechanics is that all

accessible states have an equal probability of being populated. The
number of states G defines the entropy S(U,N, V ) = lnG where
U is the energy, N is the number of particles and V is the volume

• When two systems are placed in thermal contact they may
exchange energy, particles, leading to a wider range of accessible
states

G(U,N, V ) =
∑
U1,N1

G1(U1, N1, V1)G2(U − U1, N −N1, V2)

• The most likely distribution of U1 and U2 is given for the
maximum dG/dU1 = 0(

∂G1

∂U1

)
N1,V1

G2dU1 +G1

(
∂G2

∂U2

)
N2,V2

dU2 = 0 dU1 + dU2 = 0



Temperature and Chemical Potential
• Or equilibrium requires(

∂ lnG1

∂U1

)
N1,V1

=

(
∂ lnG2

∂U2

)
N2,V2

≡ 1

T

which is the definition of the temperature (equal for systems in
thermal contact)

• Likewise define a chemical potential µ for a system in diffusive
equilibrium(

∂ lnG1

∂N1

)
U1,V1

=

(
∂ lnG2

∂N2

)
U2,V2

≡ −µ
T

defines the most likely distribution of particle numbers as a system
with equal chemical potentials: generalize to multiple types of
particles undergoing “chemical” reaction→ law of mass action∑

i µidNi = 0



Temperature and Chemical Potential
• Equivalent definition: the chemical potential is the free energy cost

associated with adding a particle at fixed temperature and volume

µ =
∂F

∂N

∣∣∣
T,V

, F = U − TS

free energy: balance between minimizing energy and maximizing
entropy S

• Temperature and chemical potential determine the probability of a
state being occupied if the system is in thermal and diffusive
contact with a large reservoir at temperature T



Gibbs or Boltzmann Factor
• Suppose the system has two states unoccupied N1 = 0, U1 = 0 and

occupied N1 = 1, U1 = E then the ratio of probabilities in the
occupied to unoccupied states is given by

P =
exp[lnGres(U − E,N − 1, V )]

exp[lnGres(U,N, V )]

• Taylor expand

lnGres(U − E,N − 1, V ) ≈ lnGres(U,N, V )− E

T
+
µ

T

P ≈ exp[−(E − µ)/T ]

• This is the Gibbs factor.



Gibbs or Boltzmann Factor
• More generally the probability of a system being in a state of

energy Ei and particle number Ni is given by the Gibbs factor

P (Ei, Ni) ∝ exp[−(Ei − µNi)/T ]

• Unlikely to be in an energy state Ei � T mitigated by the number
of particles

• Dropping the diffusive contact, this is the Boltzmann factor



Thermal & Diffusive Equilibrium
• A gas in thermal & diffusive contact with a reservoir at

temperature T

• Probability of system being in state of energy Ei and number Ni

(Gibbs Factor)

P (Ei, Ni) ∝ exp[−(Ei − µNi)/T ]

where µ is the chemical potential (defines the free energy “cost”
for adding a particle at fixed temperature and volume)

• Chemical potential appears when particles are conserved

• CMB photons can carry chemical potential if creation and
annihilation processes inefficient, as they are after t ∼ 1yr.



Distribution Function
• Mean occupation of the state in thermal equilibrium

f ≡
∑
NiP (Ei, Ni)∑
P (Ei, Ni)

where the total energy is related to the particle energy as
Ei = NiE (ignoring zero pt)

• Density of (energy) states in phase space makes the net spatial
density of particles

n = g

∫
d3p

(2π)3
f

where g is the number of spin states



Fermi-Dirac Distribution
• For fermions, the occupancy can only be Ni = 0, 1

f =
P (E, 1)

P (0, 0) + P (E, 1)

=
e−(E−µ)/T

1 + e−(E−µ)/T

=
1

e(E−µ)/T + 1

• In the non-relativistic, non-degenerate limit

E = (q2 +m2)1/2 ≈ m+
1

2

q2

m

and m� T so the distribution is Maxwell-Boltzmann

f = e−(m−µ)/T e−q
2/2mT = e−(m−µ)/T e−mv

2/2T



Bose-Einstein Distribution
• For bosons each state can have multiple occupation,

f =

d
dµ/T

∑∞
N=0(e−(E−µ)/T )N∑∞

N=0(e−(E−µ)/T )N
with

∞∑
N=0

xN =
1

1− x

=
1

e(E−µ)/T − 1

• Again, non relativistic distribution is Maxwell-Boltzmann

f = e−(m−µ)/T e−q
2/2mT = e−(m−µ)/T e−mv

2/2T

with a spatial number density

n = ge−(m−µ)/T

∫
d3q

(2π)3
e−q

2/2mT

= ge−(m−µ)/T

(
mT

2π

)3/2



Ultra-Relativistic Bulk Properties
• Chemical potential µ = 0, ζ(3) ≈ 1.202

• Number density

nboson = gT 3 ζ(3)

π2
ζ(n+ 1) ≡ 1

n!

∫ ∞
0

dx
xn

ex − 1

nfermion =
3

4
gT 3 ζ(3)

π2

• Energy density

ρboson = gT 4 3

π2
ζ(4) = gT 4π

2

30

ρfermion =
7

8
gT 4 3

π2
ζ(4) =

7

8
gT 4π

2

30

• Pressure q2/3E = E/3→ p = ρ/3, wr = 1/3



Entropy Density
• First law of thermodynamics

dS =
1

T
(dρ(T )V + p(T )dV )

so that

∂S

∂V

∣∣∣
T

=
1

T
[ρ(T ) + p(T )]

∂S

∂T

∣∣∣
V

=
V

T

dρ

dT

• Since S(V, T ) ∝ V is extensive

S =
V

T
[ρ(T ) + p(T )] σ = S/V =

1

T
[ρ(T ) + p(T )]



Entropy Density
• Integrability condition dS/dV dT = dS/dTdV relates the

evolution of entropy density

dσ

dT
=

1

T

dρ

dT
dσ

dt
=

1

T

dρ

dt
=

1

T
[−3(ρ+ p)]

d ln a

dt
d lnσ

dt
= −3

d ln a

dt
σ ∝ a−3

comoving entropy density is conserved in thermal equilibrium

• For ultra relativisitic bosons σboson = 3.602nboson; for fermions
factor of 7/8 from energy density.

g∗ =
∑

bosons

gb +
7

8

∑
gf



Neutrino Freezeout
• Neutrino equilibrium maintained by weak interactions, e.g.
e+ + e− ↔ ν + ν̄

• Weak interaction cross section T10 = T/1010K ∼ T/1MeV

σw ∼ G2
FE

2
ν ≈ 4× 10−44 T 2

10cm2

• Rate Γ = nνσw = H at T10 ∼ 3 or t ∼ 0.2s

• After neutrino freezeout, electrons and positrons annihilate
dumping their entropy into the photons

• Before g∗: γ, e+, e− = 2 + 7
8
(2 + 2) = 11

2

• After g∗: γ = 2; so conservation of entropy gives

g∗T
3
∣∣∣
initial

= g∗T
3
∣∣∣
final

Tν =

(
4

11

)1/3

Tγ



Relic Neutrinos
• Relic number density (zero chemical potential; now required by

oscillations & BBN)

nν = nγ
3

4

4

11
= 112cm−3

• Relic energy density assuming one species with finite mν :
ρν = mνnν

ρν = 112
mν

eV
eV cm−3 ρc = 1.05× 104h2 eVcm−3

Ωνh
2 =

mν

93.7eV

• Candidate for dark matter? an eV mass neutrino goes non
relativistic around z ∼ 1000 and retains a substantial velocity
dispersion σν .



Hot Dark Matter
• Momenta for a nonrelativistic species redshifts like temperature

for a relativistic one, so average momentum is still given by

〈q〉 = 3Tν = mσν

σν = 3
( mν

1eV

)−1
(
Tν

1eV

)
= 3

( mν

1eV

)−1
(

Tν
104K

)
= 6× 10−4

( mν

1eV

)−1

= 200km/s
( mν

1eV

)−1

• Of order the rotation velocity of galactic halos and higher at higher
redshift - small objects can’t form: top down structure formation –
not observed – must not constitute the bulk of the dark matter



Cold Dark Matter
.

• Problem with
neutrinos is they decouple
while relativistic and hence
have a comparable number
density to photons - for
a reasonable energy density,
the mass must be small

• The equilibrium distribution for a non-relativistic species declines
exponentially beyond the mass threshold

n = g(
mT

2π
)3/2e−m/T

• Exponential will eventually win soon after T < m, suppressing
annihilation rates



WIMP Miracle
• Freezeout when annihilation rate equal expansion rate Γ ∝ σA,

increasing annihilation cross section decreases abundance

Γ = n〈σAv〉 = H

H ∝ T 2 ∼ m2

ρfreeze = mn ∝ m3

〈σAv〉

ρc = ρfreeze(T/T0)−3 ∝ 1

〈σAv〉
independently of the mass of the CDM particle

• Plug in some typical numbers for supersymmetric candidates or
WIMPs (weakly interacting massive particles) of 〈σAv〉 ≈ 10−36

cm2 and restore the proportionality constant Ωch
2 is of the right

order of magnitude (∼ 0.1)!



Axions
• Alternate solution: keep light particle but not created in thermal

equilibrium

• Example: axion dark matter - particle that solves the strong CP
problem

• Inflation sets initial conditions, fluctuation from potential
minimum

• Once Hubble scale smaller than the mass scale, field unfreezes

• Coherent oscillations of the axion field - condensate state. Can be
very light m� 1eV and yet remain cold.

• Same reason a quintessence dark energy candidate must be lighter
than the Hubble scale today



Big Bang Nucleosynthesis
• Integrating the Boltzmann equation for nuclear processes during

first few minutes leads to synthesis and freezeout of light elements



Big Bang Nucleosynthesis
• Most of light element synthesis can be understood through nuclear

statistical equilibrium and reaction rates

• Equilibrium abundance of species with mass number A and charge
Z (Z protons and A− Z neutrons)

nA = gA(
mAT

2π
)3/2e(µA−mA)/T

• In chemical equilibrium with protons and neutrons

µA = Zµp + (A− Z)µn

nA = gA(
mAT

2π
)3/2e−mA/T e(Zµp+(A−Z)µn)/T



Big Bang Nucleosynthesis
• Eliminate chemical potentials with np, nn

eµp/T =
np
gp

(
2π

mpT

)3/2

emp/T

eµn/T =
nn
gn

(
2π

mnT

)3/2

emn/T

nA = gAg
−Z
p gZ−An (

mAT

2π
)3/2

(
2π

mpT

)3Z/2(
2π

mnT

)3(A−Z)/2

× e−mA/T e(Zµp+(A−Z)µn)/TnZp n
A−Z
n

(gp = gn = 2;mp ≈ mn = mb = mA/A)

(BA = Zmp + (A− Z)mn −mA)

= gA2−A
(

2π

mbT

)3(A−1)/2

A3/2nZp n
A−Z
n eBA/T



Big Bang Nucleosynthesis
• Convenient to define abundance fraction

XA ≡ A
nA
nb

= AgA2−A
(

2π

mbT

)3(A−1)/2

A3/2nZp n
A−Z
n n−1

b eBA/T

= AgA2−A

(
2πn

2/3
b

mbT

)3(A−1)/2

A3/2eBA/TXZ
p X

A−Z
n

(nγ =
2

π2
T 3ζ(3) ηbγ ≡ nb/nγ)

= A5/2gA2−A

[(
2πT

mb

)3/2
2ζ(3)ηbγ
π2

]A−1

eBA/TXZ
p X

A−Z
n



Deuterium
• Deuterium A = 2, Z = 1, g2 = 3, B2 = 2.225 MeV

X2 =
3

π2

(
4πT

mb

)3/2

ηbγζ(3)eB2/TXpXn

.

• Deuterium
“bottleneck” is mainly
due to the low baryon-photon
number of the universe
ηbγ ∼ 10−9, secondarily due
to the low binding energy B2



Deuterium
• X2/XpXn ≈ O(1) at T ≈ 100keV or 109 K, much lower than the

binding energy B2

• Most of the deuterium formed then goes through to helium via
D + D→ 3He + p, 3He + D→ 4He + n

• Deuterium freezes out as number abundance becomes too small to
maintain reactions nD = const. independent of nb

• The deuterium freezeout fraction nD/nb ∝ η−1
bγ ∝ (Ωbh

2)−1 and so
is fairly sensitive to the baryon density.

• Observations of the ratio in quasar absorption systems give
Ωbh

2 ≈ 0.02



Helium
.

• Essentially all neutrons
around during nucleosynthesis
end up in Helium

• In equilibrium,
the neutron-to-proton
ratio is determined
by the mass difference
Q = mn −mp = 1.293 MeV

nn
np

= exp[−Q/T ]



Helium
• Equilibrium is maintained through weak interactions, e.g.
n↔ p+ e− + ν̄, ν + n↔ p+ e−, e+ + n↔ p+ ν̄ with rate

Γ

H
≈ T

0.8MeV

• Freezeout fraction
nn
np

= exp[−1.293/0.8] ≈ 0.2

• Finite lifetime of neutrons brings this to ∼ 1/7 by 109K

• Helium mass fraction

YHe =
4nHe
nb

=
4(nn/2)

nn + np

=
2nn/np

1 + nn/np
≈ 2/7

8/7
≈ 1

4



Helium
• Depends mainly on the expansion rate during BBN - measure

number of relativistic species

• Traces of 7Li as well. Measured abundances in reasonable
agreement with deuterium measure Ωbh

2 = 0.02 but the detailed
interpretation is still up for debate



Light Elements

Burles, Nollett, Turner (1999)



Baryogenesis
• What explains the small, but non-zero, baryon-to-photon ratio?

ηbγ = nb/nγ ≈ 3× 10−8Ωbh
2 ≈ 6× 10−10

• Must be a slight excess of baryons b to anti-baryons b̄ that remains
after annihilation

• Sakharov conditions

• Baryon number violation: some process must change the net
baryon number

• CP violation: process which produces b and b̄ must differ in rate

• Out of equilibrium: else equilibrium distribution with vanishing
chemical potential (processes exist which change baryon
number) gives equal numbers for b and b̄

• Expanding universe provides 3; physics must provide 1,2



Baryogenesis
• Example: out of equilibrium decay of some heavy boson X , X̄

• Suppose X decays through 2 channels with baryon number b1 and
b2 with branching ratio r and 1− r leading to a change in the
baryon number per decay of

rb1 + (1− r)b2

• And X̄ to −b1 and −b2 with ratio r̄ and 1− r̄

−r̄b1 − (1− r̄)b2

• Net production

∆b = (r − r̄)(b1 − b2)



Baryogenesis
• Condition 1: b1 6= 0, b2 6= 0

• Condition 2: r̄ 6= r

• Condition 3: out of equilibrium decay

• GUT and electroweak (instanton) baryogenesis mechanisms exist

• Active subject of research



Black Body Formation
.

Δ
T/

T e

0

10-5 10-4 10-3 10-2 10-1 1 10

-0.05

-0.1

-0.15

p/Te

μ-distortion

blackbody

z/105=3.5

0.5

z*

• After z ∼ 106, photon creating
processes γ + e− ↔ 2γ + e−

and bremmstrahlung
e− + p↔ e− + p+ γ

drop out of equilibrium
for photon energies E ∼ T .

• Compton scattering remains
effective in redistributing energy via exchange with electrons

• Out of equilibrium processes like decays leave residual photon
chemical potential imprint

• Observed black body spectrum places tight constraints on any that
might dump energy into the CMB



Recombination
• Maxwell-Boltzmann distribution determines the equilibrium

distribution for reactions, e.g. big-bang nucleosynthesis,
recombination:

p+ e− ↔ H + γ

npne
nH
≈ e−B/T

(
meT

2π

)3/2

e(µp+µe−µH)/T

where B = mp +me −mH = 13.6eV is the binding energy,
gp = ge = 1

2
gH = 2, and µp + µe = µH in equilibrium

• Define ionization fraction

np = ne = xenb

nH = nb − ne = (1− xe)nb



Recombination
• Saha Equation

nenp
nHnb

=
x2
e

1− xe

=
1

nb

(
meT

2π

)3/2

e−B/T

• Naive guess of T∗ = B wrong due to the low baryon-photon ratio
– T∗ ≈ 0.3eV so recombination at z∗ ≈ 1000

• But the photon-baryon ratio is very low

ηbγ ≡ nb/nγ ≈ 3× 10−8Ωbh
2



Recombination
• Eliminate in favor of ηbγ and B/T through

nγ = 0.244T 3 ,
me

B
= 3.76× 104

• Big coefficient

xe
2

1− xe
= 3.16× 1015

(
B

T

)3/2

e−B/T

T = 1/3eV→ xe = 0.7, T = 0.3eV→ xe = 0.2

• Further delayed by inability to maintain equilibrium since net is
through 2γ process and redshifting out of line



Recombination
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