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Thermal History



Macro vs Micro Description

e In FRW cosmology notes, we used a macroscopic description.

e Gravity only cares about bulk properties: energy density,
momentum density, pressure, anisotropic stress — stress tensor

e Matter and radiation is composed of particles whose properties can
be described by their phase space distribution or occupation
function

e Macroscopic properties are integrals or moments of the phase
space distribution

e Particle interactions involve the evolution of the phase space
distribution

e Rapid interactions drive distribution to thermal equilibrium but
must compete with the expansion rate of universe

e Freeze out, the origin of species



Brief Thermal History
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Origin Examples

Neutrino background (weak freezeout)

CDM f{reezeout (annihilation freezout)

Light elements (nuclear statistical equilibrium freezeout)
Baryogenesis

Blackbody freezeout (thermalization)

Atomic hydrogen (recombination; free electron freezout)



Fitting 1n a Box

e Counting momentum states with

momentum ¢ and de Broglie wavelength

o h_2mh
q q ]

e In a discrete volume L3 there

1s a discrete set of states that satisfy
periodic boundary conditions

e We will hereafterset h = c =1

e As in Fourier analysis

62772:10/)\ — T _ ezq(aj—i—L) N 6qu —1



Fitting 1n a Box

e Periodicity yields a discrete set of allowed states

Lq = 27Tmz', m,; — 1, 2,3

2T
4i = 14

L

e In each of 3 directions

Z %/dBm

MxiMyj Mk

e The differential number of allowed momenta in the volume

7\3
d>m = (%> d>q



Density of States

e The total number of states allows for a number of internal degrees
of freedom, e.g. spin, quantified by the degeneracy factor g

e Total density of states:

4N, = I =7
V V (27)3

d?’q

e If all states were occupied by a single particle, then particle density

N 1 g
s=—=— [ dN, = d’
s =y V/ /(2@3 1




Distribution Function

e The distribution function f quantifies the occupation of the
allowed momentum states

”:%:%/deS:/(zi)?»fdgq

e f, aka phase space occupation number, also quantifies the density

of particles per unit phase space dN/(Ax)?(Aq)?

e For photons, the spin degeneracy g = 2 accounting for the 2
polarization states

e Energy E(q) = (¢* +m?*)"/?

e Momentum — frequency ¢ = 27/ = 27v = w = F (where
m=0and \v =c=1)



Bulk Properties

e Integrals over the distribution function define the bulk properties of
the collection of particles

e Number density

e Energy density

where E? = ¢ + m?
e Momentum density
d3q
(2m)°

(p+MV@J%=g/ af



Bulk Properties

e Pressure: particles bouncing
off a surface of area A in a volume
spanned by L,: per momentum state

L F L Npart Aq

Po = 4 = T4 A
(Aq = 2|q.|, At=2L,/v,,)

_ Npan _ Npart |q|[v]
(v ="mv/ym = q/F)
Npart q2

V 3K




Bulk Properties

e So that summed over occupied momenta states

d°q |qf?
w0 =9 | s

e Pressure 1s just one of the quadratic in ¢ moments, in particular the
1sotropic one

e The remaining 5 components are the anisotropic stress (vanishes in
the background)

. d*q 3q¢'q; — q°0",
i (x 1) —
w060 g/(zw)B 3B(q)

e We shall see that these are related to the 5 quadrupole moments of
the angular distribution



Bulk Properties

These are more generally the components of the stress-energy
tensor

L °q q¢"q,
T”‘9/<2w>3E<q>f

0-0: energy density

0-2: momentum density
1 — 1. pressure

© # J: anisotropic stress

In the FRW background cosmology, 1sotropy requires that there be
only a net energy density and pressure



Liouville Equation

e Liouville theorem: phase space distribution function is conserved
along a trajectory in the absence of particle interactions

Df [0  dqd  dx

— =4+ X =2 r=0
Di |t T draq T arax|’

Expanding universe: de Broglie wavelength of particles “stretches”

qoca_1

e Homogeneous and isotropic limit

of dqg:ﬁ_[{(a)

+ of
ot ' dtdq Ot

Olngq -

0

e Implies energy conservation: dp/dt = —3H (p + p)



Boltzmann Equation

e Boltzmann equation says that Liouville theorem must be modified
to account for collisions

Df _

o =Clf

e Heuristically

C'|f] = particle sources - sinks

e Collision term: integrate over phase space of incoming particles,
connect to outgoing state with some interaction strength



Poor Man’s Boltzmann Equation

e Non expanding medium

of
=T S

where 1" 1s some rate for collisions

e Add in expansion in a homogeneous medium

@f dq@f
8 dt@ (f_fGQ)
1 Ldg  1da
(g oca “qdt adt = H)
of af
E_Halnq_r(f_fGQ)

e So equilibrium will be maintained 1f collision rate exceeds
expansion rate I' = n(ov) > H



Equilibrium
e Thermal physics describes the equilibrium distribution of particles

for a medium at temperature 1’

e Expect that the typical energy of a particle by equipartition 1is
E ~ T, sothat fo(E/T,?) in equilibrium

e Must be a second variable of import. Number density
[ o falB/T) =2 (1)
n —= — 5 Je —. mn
Y| 2rn)s’e

e If particles are conserved then n cannot simply be a function of
temperature.

e The integration constant that concerns particle conservation is
called the chemical potential. Relevant for photons when creation
and annihilation processes are ineffective



Temperature and Chemical Potential

e Fundamental assumption of statistical mechanics is that all
accessible states have an equal probability of being populated. The
number of states ¢ defines the entropy S(U, N, V') = In G where
U 1s the energy, NV 1s the number of particles and V' 1s the volume

e When two systems are placed in thermal contact they may
exchange energy, particles, leading to a wider range of accessible
states

G(U,N, V)= >  Gi(Ur, N;,V1)Gs(U = Ui, N — Ny, Vo)

Ui,N1

e The most likely distribution of U; and U, 1s given for the
maximum dG/dU; = 0

8G1 8G2
— GodU; + G | —= dUs; =0 dUy +dUy =0
<6U1>N1,V1 LT (8U2>N2,V2 i r i



Temperature and Chemical Potential

e Or equilibrium requires

<8II1G1> B (EﬂnGz) 1
U1 ) v, Uy )y, T

which 1s the definition of the temperature (equal for systems in
thermal contact)

e Likewise define a chemical potential  for a system 1n diffusive
equilibrium

<8lnGl) B (81nG2> p
ON1 )y w, ONa ) v, T

defines the most likely distribution of particle numbers as a system
with equal chemical potentials: generalize to multiple types of
particles undergoing “chemical” reaction — law of mass action

ZZ‘ /deNz =0




Temperature and Chemical Potential

e Equivalent definition: the chemical potential 1s the free energy cost
associated with adding a particle at fixed temperature and volume
OF

ON |7y’

free energy: balance between minimizing energy and maximizing
entropy S

e Temperature and chemical potential determine the probability of a
state being occupied if the system is in thermal and diffusive
contact with a large reservoir at temperature I’



G1bbs or Boltzmann Factor

e Suppose the system has two states unoccupied N; = 0, U; = 0 and
occupied N; = 1, U; = E then the ratio of probabilities 1n the
occupied to unoccupied states is given by

_explnGies(U - E,N —1,V)]

P
exp|ln G, (U, N, V)]

e Taylor expand

In Gres(U — E, N — 1, V) ~ In Gres(Ua N? V) o +

~| &
~I=

P ~ exp|—(E — p)/T]

e This 1s the Gibbs factor.



G1bbs or Boltzmann Factor

e More generally the probability of a system being in a state of
energy [v; and particle number V; 1s given by the Gibbs factor

P(E;, N;) o< exp[—(E; — uN;) /T

e Unlikely to be 1n an energy state F; > 1" mitigated by the number
of particles

e Dropping the diffusive contact, this is the Boltzmann factor



Thermal & Diffusive Equilibrium

e A gas in thermal & diffusive contact with a reservoir at
temperature '

e Probability of system being in state of energy F£; and number V;
(Gibbs Factor)

P(E;, N;) o< exp[—(E; — puN;) /T]
where w1 1s the chemical potential (defines the free energy “cost”
for adding a particle at fixed temperature and volume)
e Chemical potential appears when particles are conserved

e CMB photons can carry chemical potential if creation and
annihilation processes inefficient, as they are after ¢ ~ 1lyr.



Distribution Function

e Mean occupation of the state in thermal equilibrium

_ > N:P(E;, N;)
/= > P(E;, N;)

where the total energy is related to the particle energy as

F; = N; I/ (1gnoring zero pt)

e Density of (energy) states in phase space makes the net spatial

_ [ &p
n_g/(27r)3f

where ¢ 1s the number of spin states

density of particles




Fermi-Dirac Distribution

e For fermions, the occupancy can only be NV, = 0, 1

P(E.1)
P(0,0) + P(E, 1)
o~ (E—p)/T
1+ e (E-p)/T
1
e(E—p)/T 1 1

f=

e In the non-relativistic, non-degenerate limit

2 2\1/2 1q°
E=(q+m°)~m+=—
2m

and m > T so the distribution 1s Maxwell-Boltzmann

f= o~ (m=w)/T ;—q*/2mT _ —(m—p)/T ,—mv?/2T



Bose-Einstein Distribution
e For bosons each state can have multiple occupation,
_d N> —(E—p)/T\N 00
_ duJT 2 n—ol€ ) , N 1
f — Z?\?:O(@_(E_M)/T)N Wlth ]VZ:OZE E— 1 _ +

1
e(E—p)/T _ 1

e Again, non relativistic distribution 1s Maxwell-Boltzmann

f= o~ (m=w)/T ,—¢*/2mT _ —(m—p)/T ,—mu?/2T

with a spatial number density

3
n = ge—(m=m/T / 4 g 2w

3/2
_ ge-(m-n)/T (m_T) /




Ultra-Relativistic Bulk Properties
e Chemical potential ;x = 0, ((3) = 1.202
e Number density

n

((3) 1 /OO T
oson — TS— 1) = — d
b S cn+1) n! J, Ter 1
3 36(3)
ermion — T3

e Energy density

3 T2
Pboson — 9T4§C(4) — 9T4_

30
7 3 7 2

ermion — & T4_ 4) = — T4—
o1 9T 3¢ = g9 55

e Pressure ¢°/3E =FE/3 = p=p/3,w, =1/3



Entropy Density

e First law of thermodynamics

1

dS 7 (dp(T)V + p(T)dV)
SO that
0S 1
EAR T[P(T) + p(T)]
0S| _Vdp
orlv  TdT

e Since S(V,T) x V is extensive

S:

N[ <

P(T)+p(T)] o=25/V=Zp(T)+p(T)



Entropy Density

e Integrability condition d.S/dV dT = dS/dT'dV relates the
evolution of entropy density

dr _1dp
dT  TdT
do 1dp 1 dlna
T T T T[—3(P+p)} g
dlna__gdlna _3
i dt o

comoving entropy density is conserved in thermal equilibrium

e For ultra relativisitic bosons opeson = 3.6021050n; fOr fermions
factor of 7/8 from energy density.

go= gﬁgzgf

bosons



Neutrino Freezeout

e Neutrino equilibrium maintained by weak interactions, e.g.
et +e o v+D

e Weak interaction cross section Tyg = T/10'YK ~ T'/1MeV

Ow ~ GHE? ~ 4 x 107" Tf cm?
e Ratel'=n,0, = H at g ~3ort ~ 0.25

e After neutrino freezeout, electrons and positrons annihilate
dumping their entropy into the photons

o Before g, v, et e” =24+ 1(2+2) =%

e After g,: v = 2; so conservation of entropy gives

T3 T, = 4 1/3T
9~ final v 11 K

initial




Relic Neutrinos

e Relic number density (zero chemical potential; now required by
oscillations & BBN)

34
My =My = 112cm™?

e Relic energy density assuming one species with finite m,,:

Pr = My

Py = 112m—\; eVem ™ pe = 1.05 x 10*h* eVem ™
e

my

93.7eV

e Candidate for dark matter? an eV mass neutrino goes non

QO h* =

relativistic around z ~ 1000 and retains a substantial velocity
dispersion o,,.



Hot Dark Matter

e Momenta for a nonrelativistic species redshifts like temperature
for a relativistic one, so average momentum 1is still given by

<Q> — STI/ — Moy
_S(my)—l 1, _g(my)—l 1,
Ov = leV leV /) leV 104K

-1 m. N —1
=610 (457) = 200km/s (155)
6 x 10 oV 00km /s N

e Of order the rotation velocity of galactic halos and higher at higher

redshift - small objects can’t form: top down structure formation —
not observed — must not constitute the bulk of the dark matter



Cold Dark Matter
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e Problem with

increasing (o,Jv|) -

neutrinos 1is they decouple
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while relativistic and hence
have a comparable number

Log[¥/Y(x=0)]
2

density to photons - for .
a reasonable energy density, IR

0 3 10 30 100 - 300 1000
the mass must be small x=m/T

e The equilibrium distribution for a non-relativistic species declines
exponentially beyond the mass threshold

mT)3/2 —m/T
2T

e Exponential will eventually win soon after 7" < m, suppressing

n = g(

annihilation rates



WIMP Miracle

e Freezeout when annihilation rate equal expansion rate 1" o< o 4,
increasing annihilation cross section decreases abundance

['=n(oqv) = H

H o T? ~ m?

3

m
Plreeze — TN X
(0av)
— pirecse T/ To) ™ ox —
Pc = Pfreeze 0 <O'A?}>

independently of the mass of the CDM particle

e Plug in some typical numbers for supersymmetric candidates or
WIMPs (weakly interacting massive particles) of (o 4v) =~ 107
cm? and restore the proportionality constant 2.4 is of the right
order of magnitude (~ 0.1)!



AXx1i0ns

e Alternate solution: keep light particle but not created in thermal
equilibrium

e Example: axion dark matter - particle that solves the strong CP
problem

e Inflation sets initial conditions, fluctuation from potential
minimum

e Once Hubble scale smaller than the mass scale, field unfreezes

e Coherent oscillations of the axion field - condensate state. Can be
very light m < 1eV and yet remain cold.

e Same reason a quintessence dark energy candidate must be lighter
than the Hubble scale today



Big Bang Nucleosynthesis

e Integrating the Boltzmann equation for nuclear processes during
first few minutes leads to synthesis and freezeout of light elements

Di ] I[llT_Li i I

palg em™)

N/ Ny




Big Bang Nucleosynthesis

e Most of light element synthesis can be understood through nuclear
statistical equilibrium and reaction rates

e Equilibrium abundance of species with mass number A and charge
Z (Z protons and A — Z neutrons)

MAL \3/2 g (ua=ma)/T
2T

e In chemical equilibrium with protons and neutrons

na = gal

pa = Zpy + (A= 2)py

77;AT )3/2e—mA/Te(Z,UJp-F(A_Z),UJn)/T
T

na = ga(



Big Bang Nucleosynthesis

e Eliminate chemical potentials with n,, n,

3/2
eﬂp/T — "p ( 2 ) emp/T

gp \Mpl’
3/2
Q'UJ”/T: g ( 2T ) / emn/T

Gn \Mpd’
. y Z_A(mAT)3/2 or \32/2 / o N\ 3(A-2)/2
AT 9% In ATon m, T mnT

w o~ mA/T o(Zpp+(A=Z)pn) /T ) Z ) A=Z
p''n

(Gp =gn=2ymp =My, =mp =my/A)
(Ba=Z2Zm,+ (A—Z)m, —my)

9 \ 3(A-1)/2
= ga2~" ( T) A3/2ngnf_ZeBA/T
my



e Convenient to define abundance fraction

Big Bang Nucleosynthesis

— n—A — AgAQ_A (
T
2/3
— Aga2~4
ga ( T
2 3
(n, = 5T°¢(3)
:A5/29 2—A 27TT
myp

mbT

)

Moy = N/ My)

3/ ZC(3>771W

ﬂ-2

A-1

3(A—1)/2
) A3/2n5nf—2nb—1€BA/T

9 3(A-1)/2
Ty, > A3/2€BA/TXPZX;;{—Z

BA/T v Z v A—Z
e Xp X



Deuterium
e Deuterium A =2, 7 =1, g = 3, By = 2.225 MeV

3 4T\ >/?
A2 = ( ) anC(S)GBQ/TXan

7'('2 ™My

e Deuterium E=p
“bottleneck” 1s mainly =il
due to the low baryon-photon

-10 :—

log (XA-Q)
 #]

number of the universe gk

Mo ~ 1077, secondarily due

i L

to the low binding energy B : e

-25 | | 1 1 ] | 1



Deuterium

o X0/X, X, ~O(1)atT ~ 100keV or 10° K, much lower than the
binding energy B,

e Most of the deuterium formed then goes through to helium via
D4+ D — 3He +p,*He+D — ‘He +n

e Deuterium freezes out as number abundance becomes too small to
maintain reactions np = const. independent of n,

o The deuterium freezeout fraction np /n, o 1;," o< (2,7%)~" and so
1s fairly sensitive to the baryon density.

e Observations of the ratio in quasar absorption systems give
Qph? ~ 0.02



Helium

1_ I lillll]l T IIIIII!I T I TTTTTE]

e Essentially all neutrons
around during nucleosynthesis
end up in Helium

e In equilibrium,

EQUILIBRIUM

NEUTRON-PROTON RATIO

l!llll

the neutron-to-proton

] L 1 118l

01 1 1 10
T(MeV)

ratio 1s determined

by the mass difference
Q) = m, —m, = 1.293 MeV

% = exp|—Q/T]

p



Helium

e Equilibrium is maintained through weak interactions, e.g.
n<pte +v,v+n<pte,et +n < p+ v withrate

I' T

"~ 0.8MeV

e Freezeout fraction

I — exp[—1.293/0.8] ~ 0.2

Mp
e Finite lifetime of neutrons brings this to ~ 1/7 by 10°K

e Helium mass fraction

Ange  4(ny/2)

YHe p— p—
g Ty, + Ny

2nn/ny  2/T 1

- 1+n,/n, 8/7 4




Helium

e Depends mainly on the expansion rate during BBN - measure
number of relativistic species

e Traces of "Li as well. Measured abundances in reasonable
agreement with deuterium measure Q7% = 0.02 but the detailed
interpretation 1s still up for debate



Light Elements
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Baryogenesis

e What explains the small, but non-zero, baryon-to-photon ratio?

Myy = Np/Ny 2 3 X 107°Q0° ~ 6 x 1071

e Must be a slight excess of baryons b to anti-baryons b that remains
after annihilation
e Sakharov conditions

e Baryon number violation: some process must change the net
baryon number

o CP violation: process which produces b and b must differ in rate

e QOut of equilibrium: else equilibrium distribution with vanishing
chemical potential (processes exist which change baryon
number) gives equal numbers for b and b

e Expanding universe provides 3; physics must provide 1,2



Baryogenesis

e Example: out of equilibrium decay of some heavy boson X, X

e Suppose X decays through 2 channels with baryon number b; and
b, with branching ratio » and 1 — r leading to a change in the
baryon number per decay of

rby + (1 — 1)bs

e And X to —b; and —b, withratio7 and 1 — 7
—7by — (1 — 7)bs

e Net production

Ab= (r — 7)(by — by)



Baryogenesis
e Condition 1: by # 0, by #£ 0
e Condition 2: 7 # r
e Condition 3: out of equilibrium decay
e GUT and electroweak (instanton) baryogenesis mechanisms exist

e Active subject of research



Black Body Formation

o After z ~ 106, photon creating blaCkbOdy T

processes v + e~ > 2y + e

005

and bremmstrahlung

<
e”+pre +Fptoy S b L ]
I ~J| u-distortion ]
drop out of equilibrium
0.15F 53 5 7
. 10°=3.
for photon energies & ~ T. S
. . .I.E)I_S P ..i.(.il—4 P ..i.8_3 P ..i.E)I_z P ..ila_l P ...u.i P .."II() P
e Compton scattering remains pIT.

effective 1n redistributing energy via exchange with electrons

e QOut of equilibrium processes like decays leave residual photon
chemical potential imprint

e Observed black body spectrum places tight constraints on any that
might dump energy into the CMB



Recombination

e Maxwell-Boltzmann distribution determines the equilibrium
distribution for reactions, e.g. big-bang nucleosynthesis,
recombination:

p+e < H+7y

3/2
Mple =57 ((Mel N7 Guptpie—yuan) /7
ng 27

where B = m, + m. — myg = 13.6eV 1is the binding energy,
9p = 9ge = 39m = 2, and pi, + p. = pp in equilibrium

e Define 10nization fraction

Np = Ne = LT

ng =ny, —ne = (1 — o)y



Recombination

e Saha Equation

2

NeMyp X

NN 1 — e

1 T 3/2
wla)
Ny 2T

e Naive guess of 7, = 5 wrong due to the low baryon-photon ratio

— T, =~ 0.3eV so recombination at z, ~ 1000

e But the photon-baryon ratio 1s very low

My = /1y ~ 3 x 107°Qh°



Recombination
e Eliminate in favor of 7, and B/T through

n, = 0.244T% % — 3.76 x 10

e Big coefficient

T2 B\ 3>
c =316 x 10" [ = —B/T
1 — 2, (T) ‘

T=1/3eV —2,=0.7,T=0.3eV — 2, = 0.2

e Further delayed by inability to maintain equilibrium since net is
through 2~ process and redshifting out of line



Recombination
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