Set 4:
Active Galaxies
Phenomenology

- History: Seyfert in the 1920’s reported that a small fraction (few tenths of a percent) of galaxies have bright nuclei with broad emission lines. 90% are in spiral galaxies.
- Seyfert galaxies categorized as 1 if emission lines of HI, HeI and HeII are very broad - Doppler broadening of 1000-5000 km/s and narrower forbidden lines of $\sim 500\text{km/s}$. Variable. Seyfert 2 if all lines are $\sim 500\text{km/s}$. Not variable.
- Both show a featureless continuum, for Seyfert 1 often more luminous than the whole galaxy.
- Seyferts are part of a class of galaxies with active galactic nuclei (AGN).
- Radio galaxies mainly found in ellipticals - also broad and narrow line - extremely bright in the radio - often with extended lobes connected to center by jets of $\sim 50\text{kpc}$ in extent.
Radio Galaxy 3C31, NGC 383
Phenomenology

- Quasars discovered in 1960 by Matthews and Sandage are extremely distant, quasi-starlike, with broad emission lines. Faint fuzzy halo reveals the parent galaxy of extremely luminous object - visible luminosity $L \sim 10^{38-41} \text{W}$ or $\sim 10^{11-14} L_{\odot}$

- Quasars can be both radio loud (QSR) and quiet (QSO)

- Blazars (BL Lac) highly variable AGN with high degree of polarization, mostly in ellipticals

- ULIRGs - ultra luminous infrared galaxies - possibly dust enshrouded AGN (alternately may be starburst)

- LINERS - similar to Seyfert 2 but low ionization nuclear emission line region - low luminosity AGN with strong emission lines of low ionization species
• AGN share a basic general form for their continuum emission

• Flat broken power law continuum - specific flux $F_\nu \propto \nu^{-\alpha}$. Usual to plot νF_ν which gives the flux per log interval in frequency

$$F = \int F_\nu d\nu = \int \nu F_\nu \frac{d\nu}{\nu} = \int \nu F_\nu d\ln \nu$$
Spectrum Interpretation

- High frequency end has $\alpha \sim 1$ or equal amount of energy out to X-ray frequencies
- Low frequency power law turns over to $\alpha \sim -2$
- On top of power law: two bumps - big blue bump in the visible, IR bump
- High frequency power law non-thermal: synchrotron emission - accounts for polarization - bremsstrahlung and inverse Compton scattering
Unified Model

- Bumps are thermal component with the IR component from re-radiation by warm dust
- Low frequency is Rayleigh Jeans tail of thermal emission and turnover of synchrotron into the self-absorption regime
- All AGNs are powered by accretion of material onto central SMBH
- Observational differences such as broad emission lines, radio and X-ray strength are mainly dependent on viewing angle and different accretion rates and masses
Unified Model

- Evidence: $H\alpha$ emission from ionization of gas by continuum radiation so the correlation between the two should be the same across AGN
- Seyfert 2s are Seyfert 1s that are hidden from direct view by optically thick material, reflection from ISM shows a diminished Seyfert 1 spectrum with reflection polarization
Central Engine

- Rapid variability on the hour time scale indicates a compact source
- Light travel time between the edge and center of a source of radius R will blur out intrinsic variability

\[l_2 = \frac{l_1 + R}{\cos \theta} \approx l_1 + R \]

\[\Delta t = \frac{l_2 - l_1}{c} \approx R/c \]

- Plugging in 1 hr gives $R \sim c \Delta t \sim 1.1 \times 10^{12} \text{m} = 7.2 \text{AU}$
- Given that moving clocks run slow, a relativistically moving source just makes the rest-frame size smaller $\gamma = 1/\sqrt{1 - v^2/c^2} > 1$

\[\Delta t_{\text{obs}} = \gamma \Delta t = \gamma R/c \]
Central Engine

- Mass is not an observable but a rough lower limit comes from comparing the observed luminosity to the Eddington luminosity. Eddington luminosity (§10.6) is the limit at which radiation pressure exceeds the gravitational force.

- Momentum of photons \(p = E/c \)

- Change in momentum related to luminosity

\[
\frac{dp}{dt} = \frac{1}{c} \frac{dE}{dt} = \frac{L}{c}
\]

- Pressure is force per unit area

\[
P = \frac{L}{4\pi r^2 c}
\]
Eddington Luminosity

- Pressure exerts a force on material that interacts with photons
- Given an interaction cross section σ per particle the outward force on particle

$$F_{\text{rad}} = \sigma \frac{L}{4\pi r^2 c}$$

- Strongest interaction is with free electrons: Thomson scattering $\sigma_T = 6.65 \times 10^{-25} \text{ cm}^2$
- Protons which carry the mass are tied to them through Coulomb interactions
- Balance gravitational force on proton

$$F_{\text{grav}} = -\frac{GMm_p}{r^2}$$
Eddington Luminosity

- Solve for L yields Eddington luminosity

$$L_{Ed} = 4\pi Gc\frac{m_p}{\sigma_T}M \sim 1.5 \times 10^{31} W \left(\frac{M}{M_\odot}\right)$$

For $L = 5 \times 10^{39} W$

$$M > 3.3 \times 10^8 M_\odot$$

- Lower limit since gravitational force can exceed radiation pressure - not vice versa otherwise source of luminosity will be blown out in an outflow

- Like galactic center, mass in small radius can only be black hole.
Radiative Efficiency

- Deep gravitational potential provides a source of energy. Dropping matter directly into a black hole does not release the energy - must strike something - matter in the accretion disk.

- Rough estimate of efficiency says that it depends mainly on how far the matter falls before radiating its energy and the mass accretion rate.

- Define the efficiency η and relate it to the gravitational potential energy of the infalling material:

$$L_{\text{disk}} = \eta \dot{M} c^2 \sim \frac{d}{dt} \frac{GMm}{r} = \frac{GM \dot{M}}{r}$$
Radiative Efficiency

• Take infall radius in units of Schwarzschild radius $R_S = 2GM/c^2$

$$\eta \dot{M} c^2 \sim \frac{1}{2} \frac{R_S}{r} \dot{M} c^2$$

$$\eta \sim \frac{1}{2} \frac{R_S}{r}$$

which is a relatively high efficiency (cf. stars $\eta = 0.007$) if the material gets to near the Schwarzschild radius.

• Taking virial equilibrium and radiating kinetic energy, instead of direct infall corrects this estimate downwards by ~ 2

• Last stable orbit of a non-rotating black hole is $r = 3R_S$ (where the Schwarzschild radius is on order 2 AU for $10^8 M_\odot$)

• Radiative efficiency is $\eta \sim 0.057$

• Maximally rotating black hole has $r = 0.5R_S$: $\eta = 0.423$
Accretion Disk

- Somewhat more detailed description: kinetic energy corresponds to hot accretion disk which then radiates the luminosity as a quasi-black body

- As mass m falls in the potential M in a quasi virialized accretion disk

\[E = G \frac{Mm}{2r} \]

- The energy difference of mass falling through a ring of disk dr is radiated

\[dE = \left| \frac{dE}{dr} dr \right| = G \frac{Mm}{2r^2} dr \]
Accretion Disk

- The amount of mass falling within a time dt can be reexpressed through the accretion rate $m = \dot{M} dt$

$$dE = \frac{GM\dot{M}}{2r^2}drdt$$

- Luminosity from ring $dL = dE/dt$

$$dL = \frac{GM\dot{M}}{2r^2}dr$$

- Associate with a temperature given Stefan-Boltzmann law $L = A\sigma_B T^4$ with area A of both sides of the disk
Accretion Disk

- With $A = 2(2\pi r \, dr) = 4\pi r \, dr$ eliminate in favor of temperature

$$dL = 4\pi r \, dr \sigma_B T^4 = \frac{GM \dot{M}}{2r^2} \, dr$$

$$T^4 = \frac{GM \dot{M}}{8\pi \sigma_B r^3}$$

- With an inner radius $r \propto R_S \propto M$ and $\dot{M} \propto M$ (assuming near Eddington limited), expect a scaling of

$$T \propto M^{-1/4}$$

for $M \sim 10^8 M_\odot$ and Eddington limited accretion $3kT$ peak photons correspond to UV to soft-Xray with a peak frequency that declines slowly with mass.
Accretion Disk

- Structure: in the interior $1000R_S$ radiation pressure exceeds gas pressure resulting in thick hot disk or torus - responsible for thermal emission - big blue bump

- From $10^4 - 5 R_S$ gas pressure dominates and a thin disk is supported by gas pressure

- Beyond $10^5 R_S$ the disk breaks up into small clouds

- Continuum radiation from synchrotron radiation - accretion disk is highly conducting so orbiting material generates magnetic field - varying magnetic field generates electric fields that accelerate charged particles away from disk - spiralling in magnetic field

- X-rays can come from an additional boost of synchrotron photons by inverse Compton scattering
Broad/Narrow Line Regions

- Broad-line region - responds to variability of the central source on order a month - indicates clumpy clouds distributed in a region of \(10^{15}\) m around the central source

- In Seyfert2’s, the thick torus obscures the broad line clouds

- Narrow line clouds further out, unobscured at a temperature \(\sim 10^4\) K in a roughly spherical distribution
Jets

- Outflows and energy can also come from rotation - Blandford Znajak process
- Outflows columnated into a jet by the thick disk along the axis of disk - if line of sight intersects this axis AGN appears as blazar
- Jet propagates outwards and hits ISM forming a shock front and radio lobes. Shocks can also accelerate particles through the Fermi mechanism
“Superluminal” Motion

- Apparent proper motion of knots in jets indicate relativistic motion
- Radio interferometry measurements measure angular velocity of knot across the sky
- Given a distance infer transverse velocity
“Superluminal” Motion

- Example quasar 3C 273 has angular velocity $\mu = 0.0008''/\text{yr}$ and a distance of $d = 440 h^{-1}$ Mpc (from the cosmological redshift)

$$v_{\text{app}} = d\mu = 5.57 h^{-1}c$$

where $h \sim 0.72$ is the reduced Hubble constant which parameterizes the distance redshift relation

- Apparent superluminal motion

- Superluminal motion is an optical illusion from projection.
 Consider a knot moving at some true velocity v at some angle ϕ from the line of sight
“Superluminal” Motion

- Photon emitted from the knot at \(t = 0 \) arrives at the observer a distance \(d \) away after

\[
t_1 = \frac{d}{c}
\]

- Photons emitted some time later at \(t_e \) come from a distance that is closer by \(vt_e \cos \phi \) and hence take a shorter time to arrive

\[
t_2 = t_e + \frac{d - vt_e \cos \phi}{c}
\]
“Superluminal” Motion

- If the velocity is close to the speed of light and motion nearly along line of sight the blob will be almost caught up with the first photon and so the time delay between the two will be small

\[
\Delta t = t_2 - t_1 = t_e \left(1 - \frac{v}{c} \cos \phi\right)
\]

- Apparent velocity is the transverse distance over the delay

\[
v_{\text{app}} = \frac{vt_e \sin \phi}{\Delta t} = \frac{v \sin \phi}{1 - (v/c) \cos \phi}
\]

- If \(v \to c \) and \(\phi \to 0 \) then

\[
v_{\text{app}}/c \to \frac{\sin \phi}{1 - \cos \phi} = \frac{2}{\phi}
\]

which can be \(\gg 1 \)
Gravitational Lensing of Quasars

- If a quasar lies directly behind a massive galaxy, it can be gravitationally lensed and produce multiple images
- In general relativity, masses curve space and bend the trajectory of photons
- Newtonian approximation to the line element

\[ds^2 = (1 + 2\Phi/c^2)c^2 dt^2 - (1 - 2\Phi/c^2) dx^2 \]

- Photons travel on null geodesics \((ds^2 = 0)\) - so the coordinate speed of light is

\[v = \frac{dx}{dt} \approx c \frac{1 + \Phi/c^2}{1 - \Phi/c^2} \approx c(1 + 2\Phi/c^2) = c \left(1 - \frac{2GM}{rc^2} \right) \]
Gravitational Lensing of Quasars

- Coordinate speed of light slows in the presence of mass due to the warping of spacetime as quantified by the gravitational potential. Can be modelled as an optics problem, defines an effective index of refraction

\[n = \frac{c}{v} = \left(1 - \frac{2GM}{rc^2}\right)^{-1} \approx 1 + \frac{2GM}{rc^2} \]

- As light passes by the object, the change in the index of refraction or delay of the propagation of wavefronts bends the trajectory

\[\nabla n = -\frac{2GM}{r^2c^2} \hat{r} \]
Gravitational Lensing of Quasars

- Calculation is exactly the same as the dynamical friction problem of deflections of particles given a mass M - general relativity just doubles the deflection for light

- Deflection is small so integrate the transverse deflection on the unperturbed trajectory

$$
\phi = - \int_{-\infty}^{\infty} dx \nabla_{\perp} n = \int_{-\infty}^{\infty} dx \frac{2GMr_0}{(r_0^2 + x^2)^{3/2} c^2} = \frac{4GM}{r_0 c^2}
$$
Lens Equation

- Given the thin lens deflection formula, the lens equation follows from simple geometry
- Solve for the image position θ with respect to line of sight. Small angle approximation
 \[y \approx (d_S - d_L)\phi \approx d_S(\theta - \beta) \]
- Substitute in deflection angle
 \[(d_S - d_L) \frac{4GM}{r_0c^2} \approx d_S(\theta - \beta) \]
- Eliminate $r_0 = d_L \sin \theta \approx d_L \theta$
Lens Equation

- Solve for θ to obtain the lens equation

$$\theta^2 - \beta \theta - \frac{4GM}{c^2} \left(\frac{d_S - d_L}{d_S d_L} \right) = 0$$

- A quadratic equation with two solutions for the image position - two images

$$\theta_\pm = \frac{\beta}{2} \pm \frac{1}{2} \sqrt{\beta^2 + 16 \frac{GM}{c^2} \left(\frac{d_S - d_L}{d_S d_L} \right)}$$

- Sum of angles - second image has negative angle - opposite side of lens

$$\theta_+ + \theta_- = \beta$$
Lens Equation

- Measure both images and measure the mass:

\[\theta_+ \theta_- = \frac{\beta^2}{4} - \frac{1}{4} \left(\beta^2 + 16 \frac{GM}{c^2} \left(\frac{d_S - d_L}{d_S d_L} \right) \right) \]

\[\theta_+ \theta_- = -4 \frac{GM}{c^2} \left(\frac{d_S - d_L}{d_S d_L} \right) \]

\[M = -\frac{\theta_+ \theta_- c^2}{4G} \left(\frac{d_S d_L}{d_S - d_L} \right) \]

- Dimensionally of the form \(M \propto v^2 r_0 / G \) but reduced because light is not on a bound orbit
Einstein Ring

- If source is aligned right behind the lens $\beta = 0$ and the two images merge into a ring - Einstein ring - at an angular separation

$$\theta_E = \sqrt{\frac{4GM}{c^2}} \left(\frac{d_S - d_L}{d_S d_L} \right)$$

- More generally, quasar is lensed by the extended mass of a galaxy that is not perfectly axially symmetric
Einstein Cross

- With non symmetric extended potential - e.g. an ellipsoidal potential, multiple images form - mathematically an odd number of images but with an even number of bright detectable images
- 4 image system is an Einstein cross
Time Variability

- That the images are of the same object can be verified since quasars are time variable.
- Light curve of each image repeats pattern with a time delay associated with geometric delay in propagation and general relativistic time delay.
- A way of measuring distances.
• Lens equation in terms of Einstein radius

\[\theta^2 - \beta \theta - \theta_E^2 = 0 \]

• Given an extended source that covers an angular distance \(d\beta \) will have an image cover an angular distance \(d\theta \pm \) related by the derivative \(d\theta / d\beta \)

• The displacement in the image is purely radial so that the angular scale of arc \(d\phi \) remains unchanged.

• The surface area of the source \(\beta d\beta d\phi \) thus becomes \(\theta \pm d\theta \pm d\phi \).
Magnification

- Summing the two images yields

$$\frac{A_{\text{images}}}{A_{\text{source}}} = \sum_{\pm} \left| \frac{\theta_{\pm} d\theta_{\pm}}{\beta} d\beta \right| = \frac{(\beta/\theta_E)^2 + 2}{(\beta/\theta_E)\sqrt{(\beta/\theta_E)^2 + 4}}$$

- Surface brightness is conserved so the area ratio gives the magnification

- If two images are not resolved this gives the microlensing magnification formula used in Chap 24 with a moving lens and $u(t) = \beta(t)/\theta_E$

- Magnification and conservation of $d\phi$ implies that image is distorted - stretched out into the tangential direction or “sheared”
Giant Arcs

- Giant arcs in galaxy clusters: galaxies, source; cluster, lens
Cosmic Shear

- On even larger scales, the large-scale structure weakly shears background images: weak lensing
Gunn-Peterson Effect

- Quasars also act as a back light to gas in the universe
- If there is neutral hydrogen along the line of sight, quasar light will be absorbed by the Lyman-\(\alpha\) \(n = 2 \rightarrow 1\) transition
- Gunn-Peterson effect: large cross section implies that seeing *any* flux indicates the intergalactic medium is nearly fully ionized
- Fully ionized out to \(z = 6\) with indications from the highest redshift quasars from SDSS that beyond that redshift there is a detectable neutral fraction
Lyα Forest

- Since recombination is more efficient in a dense medium, density fluctuations in the large scale structure of the universe produce a forest of lines called the Lyα forest.

- Observed flux in the forest gives a map of large scale structure that can be used to infer cosmological information such as the power spectrum of density fluctuations.