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Syllabus
• Text: An Introduction to Modern Astrophysics 2nd Ed., Carroll

and Ostlie

• First class Wed Jan 4. Reading period Mar 8-9

• Jan 4: Milky Way Galaxy

• Jan 11: Nature of Galaxies

• Jan 18: Galactic Evolution

• Jan 25: Active Galaxies

• Feb 1: In class Midterm

• Feb 8: Structure of the Universe

• Feb 15, 22: Cosmology

• Mar 29, 7: Early Universe



Common Themes
• Mapping out the Universe marching out in distance from Earth

Start with closest system: Galaxy

End with furthest system: whole Universe

• Limitations imposed by the ability to measure only a handful of
quantities, all from our vantage point in the Galaxy

Common tools: flux and surface brightness, angular mapping,
number counts

• Inferences on the dynamical nature of the systems by using
physical laws to interpret observations: e.g. distance from inverse
square law, mass from Newtonian dynamics

• Astrophysical units, while bizarre to a physicist, teach you what is
being measured and how inferences are made



Astrophysical units
• Length scales

• 1AU = 1.496 ×1013cm – Earth-sun distance – used for solar
system scales

• 1pc = 3.09 ×1018cm = 2.06 ×105AU – 1AU subtends 1arcsecond
on the sky at 1pc – distances between nearby stars

Defined by measuring parallax of nearby stars to infer distance -
change in angular position during Earth’s orbit: par(allax
arc)sec(ond)

1AU

1pc
=

1

2.06× 105
= 4.85× 10−6 =

π

60 ∗ 60 ∗ 180
= 1′′

• 1kpc = 103 pc – distances in the Galaxy

• 1Mpc = 106 pc - distances between galaxies

• 1Gpc = 109 pc - scale of the observable universe



Astrophysical units
• Fundamental observables are the flux F (energy per unit time per

unit area) or brightness (+ per unit solid angle) and angular
position of objects in a given frequency band

• Related to the physical quantities, e.g. the luminosity of the object
L if the distance to the object is known

F =
L

4πd2

• Solar luminosity

L� = 3.839× 1026W = 3.839× 1033erg/s

• Frequency band defined by filters - in limit of infinitesimal bands,
the whole frequency spectrum measured – “spectroscopy”



Astrophysical units
• Relative flux easy to measure - absolute flux requires calibration of

filter: (apparent) magnitudes (originally defined by eye as filter)

m1 −m2 = −2.5 log(F1/F2)

• Absolute magnitude: apparent magnitude of object at d =10pc

m−M = −2.5 log(d/10pc)2 → d(m−M)

10pc
= 10(m−M)/5

• If frequency spectrum has lines, Doppler shift gives relative radial
velocity of object Vr aka redshift z

1 + z =
λobs
λrest

= 1 +
Vr
c

(where Vr > 0 denotes recession and redshift and Vr � c) used to
measure velocity for dynamics of systems, including universe as
whole



Astrophysical units
• Masses in units of solar mass M� = 1.989× 1033g

• Measurement of distance and angle gives physical size and
Doppler shift gives velocity→ mass

• Mass measurement always boils down to inferring gravitational
force necessary to keep test object in orbit

• For circular motion - centripetal force

mv2

r
≈ GmM

r2
→M ≈ v2r

G

• Requires a measurement of velocity and a measurement or
estimate of size

• Various systems will have order unity correction to this
circular-motion based relation



Set 1:
Milky Way Galaxy



Galactic Census
. • Sun is embedded in a stellar disk
∼ 8 kpc from the galactic center

• Extent of disk
∼ 25 kpc radius, spiral structure

• Thickness of neutral gas
disk < 0.1 kpc

• Thickness of thin disk of young
stars ∼ 0.35 kpc

• Thickness of thick disk ∼ 1 kpc



Galactic Census
. • Central stellar bulge

radius ∼ 4 kpc, with central bar

• Supermassive black hole, inferred
from large mass within 120AU
(solar system scale) of center

• Extended spherical stellar
halo with globular
clusters, radius > 100 kpc

• Extended dark matter halo,
radius > 200 kpc



Mass and Luminosity
Mass Luminosity (LB)

Neutral gas disk 0.5× 1010M�

Thin disk 6× 1010M� 1.8× 1010L�

Thick disk 0.2− 0.4× 1010M� 0.02× 1010L�

Bulge 1× 1010M� 0.3× 1010L�

Supermassive black hole 3.7± 0.2× 106M�

Stellar halo 0.3× 1010M� 0.1× 1010L�

Dark matter halo 2× 1012M�

Total 2× 1012M� 2.3× 1010L�



How Do We Know?
• Infer this structure from the handful of observables that are directly

accessible

• Convert intrinsically 2D information to 3D + dynamical model

• Flux and number of stars

• Angular positions of stars (as a function of season, time)

• Relative radial velocity from Doppler effect



Starlight: Optical Image
• Color overlay: microwave background



Star Counts
• One of the oldest methods for inferring the structure of the galaxy

from 2D sky maps is from star counts

• History: Kapteyn (1922), building on early work by Herschel, used
star counts to map out the structure of the galaxy

• Fundamental assumptions

Stars have a known (distribution in) absolute magnitude

No obscuration

• Consider a star with known absolute magnitude M (magnitude at
10pc). Its distance can be inferred from the inverse square law
from its observed m as

d(m−M)

10pc
= 10(m−M)/5



Star Counts
• Combined with the angular position on the sky, the 3d position of

the star can be measured - mapping the galaxy

• Use the star counts to determine statistical properities: number
density of stars in each patch of sky

• A fall off in the number density in radial distance would determine
the edge of the galaxy

• Suppose there is an indicator of absolute magnitude like spectral
type that allows stars to be selected to within dM of M

• Describe the underlying quantity to be extracted as the spatial
number density within dM of M : nM(M, r)dM



Star Counts
• The observable is say the total number of stars brighter than a

limiting apparent magnitude m in a solid angle dΩ

• Stars at a given M can only be observed out to a distance
d(m−M) before their apparent magnitude falls below the limit

• So there is radial distance limit to the volume observed

• Total number observed out to in solid angle dΩ within dM of M is
integral to that limit

NMdM =

[∫ d(m−M)

0

nM(M, r)r2dr

]
dΩdM

• Differentiating with respect to d(m−M) provides a measurement
of nM(M, r)



Star Counts
• So dependence of counts on the limiting magnitude m determines

the number density and e.g. the edge of the system

• In fact, if there were no edge to system the total flux would diverge
as m→ 0 - volume grows as d3 flux decreases as d−2: Olber’s
paradox

• Generalizations of the basic method:

• Selection criteria is not a perfect indicator of M and so dM is not
infinitesimal and some stars in the range will be missed - S(M)

and M is integrated over - total number

N =

∫ ∞
−∞

dMS(M)NM



Star Counts
• Alternately use all stars [weak or no S(M)] but assume a

functional form for nM(M, 0) e.g. derived from local estimates
and assumed to be the same at larger r > 0

In this case, measurements determine the normalization of a
distribution with fixed shape, i.e.

n(r) =

∫ ∞
−∞

nM(M, r)dM

• Kapteyn used all of the stars (assumed to have the same nM shape
in r)

• He inferred a flattened spheroidal system of < 10kpc extent in
plane and < 2kpc out of plane: too small

• Missing: interstellar extinction dims stars dropping them out of the
sample at a given limiting magnitude



Variable Stars
• With a good indicator of absolute magnitude or “standard candle”

one can use individual objects to map out the structure of the
Galaxy (and Universe)

• History: Shapley (1910-1920) used RR Lyrae andW Virginis
variable stars - with a period-luminosity relation

Radial oscillations with a density dependent sound speed -
luminosity and density related on the instability strip

Calibrated locally by moving cluster and other methods

• Measure the period of oscillation, infer a luminosity and hence an
absolute magnitude, infer a distance from the observed apparent
magnitude



Variable Stars
• Inferred a 100kpc scale for the Galaxy - overestimate due to

differences in types of variable stars and interstellar extinction

• Apparent magnitude is dimmed by extinction leading to the
variable stars being less distant than they appear

• Both Kapteyn and Shapley off because of dust extinction:
discrepancy between two independent methods indicates
systematic error

• Caveat emptor: in astronomy always want to see a cross check
with two or more independent methods before believing result you
read in the NYT!



Common techniques
• Particular objects such as stars of a given type and Cepheid

variables are both interesting in their own right and, once
understood, useful for tracing out larger systems

• Star counts is an example of a general theme in astronomy: using a
large survey (stars) to infer statistical properties

• Likewise, cepheids are an example of using a standard candle to
map out a system

• Similar method applies to mapping out the Universe with galaxies
e.g. baryon acoustic oscillations vs supernova



Interstellar Extinction
• Dust (silicates, graphite, hydrocarbons) in ISM (Chap 12) dims

stars at visible wavelengths making true distance less than apparent

• Distance formula modified to be

d

10pc
= 10(mλ−Mλ−Aλ)/5

where the extinction coefficient Aλ ≥ 0 depends on wavelength λ

• Extinction also depends on direction, e.g. through the disk,
through a giant molecular cloud, etc. Typical value at visible
wavelengths and in the disk is 1 mag/kpc

• Dust emits or reradiates starlight in the infrared - maps from these
frequencies [IRAS, DIRBE] can be used to calibrate extinction



Dust Emission
.



Extinction Correction
.



Kinematic Distances to Stars
• Only nearby stars have their distance measured by parallax -

further than a parsec the change in angle is < 1 arcsec:
p(arcsec) = 1pc/d

• If proper motion across the sky can be measured from the change
in angular position µ in rad/s

vt = µd

• Often vt can be inferred from the radial velocity and a comparison
with µ gives distance d given assumption of the dynamics

• Example: Keplerian orbits of stars around galactic center
R0 = 7.6± 0.3kpc

• Example: Stars in a moving cluster share a single total velocity
whose direction can be inferred from apparent convergent motion
(see Fig 24.30)



Stellar Kinematics
. • Can infer more than

just distance: SMBH

• Galactic center: follow orbits
of stars close to galactic center

• One star: orbital period
15.2yrs, eccentricity e = 0.87,
perigalacticon distance (closest point on orbit to F 120
AU=1.8× 1013m

• Estimate mass: a = ae− rp so semimajor axis

a =
rp

1− e
= 1.4× 1014m



Stellar Kinematics
• Kepler’s 3rd law

M =
4π2a3

GP 2
= 7× 1036kg = 3.5× 106M�

• That much mass in that small a radius can plausibly only be a
(supermassive) black hole

• Note that this is an example of the general statement that masses
are estimated by taking

M ≈ v2r

G
=

(2πa)2a

GP 2
=

4π2a3

GP 2



Stellar Kinematics
• Apply these stellar kinematics techniques to the galactic disk of

stars

• Direct observables are the kinematics of neighboring stars

`, b: angular position of star in galactic coordinates

vr: relative motion radial to line of sight

vt: relative motion tangential to line of sight

• These stars have their parallax distance d measured

• The distance to center of galaxy R0 is known

• Infer the rotation of stars in the disk around galactic center



Stellar Kinematics
. • Differential rotation Θ(R) = RΩ(R)

where Ω(R) is the angular velocity curve–
observables are radial and tangential motion
with respect to LSR

vr = RΩ cosα−R0Ω0 sin `

vt = RΩ sinα−R0Ω0 cos `

where Θ0 is the angular velocity of the LSR

• Technical point: defined through local standard of rest (LSR)
rather than sun’s rest frame due to small differences between solar
motion and the average star around us



Stellar Kinematics
• d (parallax) and R0 are known observables, R is not - eliminate

with trig relations

R cosα = R0 sin ` R sinα = R0 cos `− d

• Eliminate R and solve for (Ω, Ω0)

vr = (Ω− Ω0)R0 sin `

vt = (Ω− Ω0)R0 cos `− Ωd

• Historical context: solve for Ω(R) locally where

Ω− Ω0 ≈
dΩ

dR
(R−R0)

≈ 1

R0

(
dΘ

dR
− Θ0

R0

)
(R−R0) [Ω = Θ/R]

and d� R0, cos β ≈ 1



Stellar Kinematics
• Reduce with trig identities

R0 = d cos `+R cos β ≈ d cos `+R

R−R0 ≈ −d cos `

cos ` sin ` =
1

2
sin 2`

cos2 ` =
1

2
(cos 2`+ 1)

to obtain

vr ≈ Ad sin 2`

vt ≈ Ad cos 2`+Bd



Stellar Kinematics
• Oort constants

A = −1

2

[
dΘ

dR
− Θ0

R0

]
= −R0

2

dΩ

dR

B = −1

2

[
dΘ

dR
+

Θ0

R0

]
• Observables vr, vt, `, d: solve for Oort’s constants. From

Hipparcos

A = 14.8± 0.8km/s/kpc

B = −12.4± 0.6km/s/kpc

• Angular velocity Ω = Θ/R decreases with radius: differential
rotation.



Stellar Kinematics
• Physical velocity Θ(R)

dΘ

dR

∣∣∣
R0

= −(A+B) = −2.4km/s/kpc

decreases slowly compared with

Θ0

R0

= A−B = 27.2km/s/kpc→ Θ0 ≈ 220km/s

a nearly flat rotation curve – at least locally

• Does this flat rotation curve extend out in the disk away from the
sun?



Neutral Gas: 21cm Emission
.



21 cm
. • Spin interaction of the electron

and proton leads to a spin flip
transition in neutral hydrogen
with wavelength 21cm

• Line does not suffer substantial extinction and can be used to
probe the neutral gas and its radial velocity from the Doppler shift
throughout the galaxy

• No intrinsic distance measure

• Neutral gas is distributed inhomogeneously in clouds leading to
distinct peaks in emission along each sight line



21 cm
• Due to projection of velocities along the line of sight and

differential rotation, the highest velocity occurs at the closest
approach to the galactic center or tangent point

• Build up a rotation curve interior to the solar circle R < R0

• Rotation curve steeply rises in the interior R < 1kpc, consistent
with near rigid body rotation and then remains flat out through the
solar circle



Ionized Gas: Hα Line Emission
.



Cosmic Rays in B Field: Synchrotron
.



Gamma Rays
.



Rotation Curves
. • Extending the rotation curve

beyond the solar circle with
objects like Cepheids whose
distances are known reveals
a flat curve out to ∼ 20kpc

• Mass required to
keep rotation curves flat much
larger than implied by stars
and gas. Consider a test mass
m orbiting at a radius r around
an enclosed mass M(r)



Rotation Curves
• Setting the centripetal force to the gravitational force

mv2(r)

r
=
GM(r)m

r2

M(r) =
v(r)2r

G

Again this combination of velocity and distance is the fundamental
way masses are measured:

gravitational force binds object against the motion of the luminous
objects - other examples: virial theorem with velocity dispersion,
hydrostatic equilibrium with thermal motions

• Measuring the rotation curve v(r) is equivalent to measuring the
mass profile M(r) or density profile ρ(r) ∝M(r)/r3



Rotation Curves
. • Flat rotation

curve v(r) = const implies
M ∝ r - a mass linearly
increasing with radius

• Rigid rotation implies
Ω = v/r=const. v ∝ r or
M ∝ r3 or ρ =const

• Rotation curves in other galaxies show the same behavior:
evidence that “dark matter” is ubiquitous in galaxies



Rotation Curves
• Consistent with dark matter density given by

ρ(r) =
ρ0

1 + (r/a)2

• Also consistent with the NFW profile predicted by cold dark
matter (e.g. weakly interacting massive particles or WIMPs)

ρ(r) =
ρ0

(r/a)(1 + r/a)2



Gravitational Lensing
• Rotation curves leave open the question of what dark matter is

• Alternate hypothesis: dead stars or black holes - massive
astrophysical compact halo object “MACHO”

• MACHOs have their mass concentrated into objects with mass
comparable to the sun or large planet

• A MACHO at an angular distance u = θ/θE from the line of sight
to the star will gravitationally lens or magnify the star by a factor
of

A(u) =
u2 + 2

u(u2 + 4)1/2

where θE is the Einstein ring radius in projection

θE =

√
4GM

c2
dS − dL
dSdL



Gravitational Lensing
• Again masses related to a physical scale rE = θEdL and speed c

M ∼ dS
4(dS − dL)

c2rE
G

e.g. for a typical lens half way to the source the prefactor is 1/2

• A MACHO would move at a velocity typical of the disk and halo
v ∼ 200km/s and so the star behind it would brighten as it crossed
the line of sight to a background star. With umin as the distance of
closest approach at t = 0

u2(t) = u2min +

(
vt

dLθE

)2

• Monitor a large number of stars for this characteristic brightening.
Rate of events says how much of the dark matter could be in
MACHOs.



Gravitational Lensing
. • In the 1990’s

large searches measured
the rate of microlensing
in the halo and
bulge and determined that
only a small fraction of its
mass could be in MACHOs



Gravitational Lensing
. • Current

searches (toward the bulge)
are used to find planets

• Enhanced microlensing
by planet around star leads
to a blip in the brightening.


