
Set 8:
Inflationary Origins



Horizon Problem
• The horizon in a decelerating universe scales as η ∝ a(1+3w)/2,
w > −1/3. For example in a matter dominated universe

η ∝ a1/2

• CMB decoupled at a∗ = 10−3 so subtends an angle on the sky

η∗
η0

= a1/2
∗ ≈ 0.03 ≈ 2◦

• So why is the CMB sky isotropic to 10−5 in temperature if it is
composed of ∼ 104 causally disconnected regions

• If smooth by fiat, why are there 10−5 fluctuations correlated on
superhorizon scales



Flatness & Relic Problems
• Flatness problem: why is the radius of curvature larger than the

observable universe. (Before the CMB determinations, why is it at
least comparable to observable universe |ΩK | ∼< Ωm)

• Also phrased as a coincidence problem: since ρK ∝ a−2 and
ρm ∝ a−3, why would they be comparable today – modern version
is dark energy coincidence ρΛ = const.

• Relic problem – why don’t relics like monopoles dominate the
energy density

• Inflation is a theory that solves all three problems at once and also
supplies a source for density perturbations



Accelerating Expansion
• In a matter or radiation dominated universe, the horizon grows as a

power law in a so that there is no way to establish causal contact
on a scale longer than the inverse Hubble length (1/aH , comoving
coordinates) at any given time: general for a decelerating universe

η =

∫
d ln a

1

aH(a)

• H2 ∝ ρ ∝ a−3(1+w), aH ∝ a−(1+3w)/2, critical value of w = −1/3,
the division between acceleration and deceleration

• In an accelerating universe, the Hubble length shrinks in comoving
coordinates and so the horizon gets its contribution at the earliest
times, e.g. in a cosmological constant universe, the horizon
saturates to a constant value



Causal Contact
• Note confusion in nomenclature: the true horizon always grows

meaning that one always sees more and more of the universe. The
Hubble length decreases: the difference in conformal time, the
distance a photon can travel between two epochs denoted by the
scale factor decreases. Regions that were in causal contact, leave
causal contact.

• Horizon problem solved if the universe was in an acceleration
phase up to ηi and the conformal time since then is shorter than the
total conformal age

η0 � η0 − ηi
total distance� distance traveled since inflation

apparent horizon



Flatness & Relic
• Comoving radius of curvature is constant and can even be small

compared to the full horizon R� η0 yet still η0 � R� η0 − ηi
• In physical coordinates, the rapid expansion of the universe makes

the current observable universe much smaller than the curvature
scale

• Likewise, the number density of relics formed before the
accelerating (or inflationary) epoch is diluted to make them rare in
the current observable volume

• Common to reference time to the end of inflation η̃ ≡ η − ηi. Here
conformal time is negative during inflation and its value (as a
difference in conformal time) reflects the comoving Hubble length
- defines leaving the horizon as k|η̃| = 1



Exponential Expansion
• If the accelerating component has equation of state w = −1, ρ =

const., H = Hi const. so that a ∝ exp(Ht)

η̃ = −
∫ ai

a

d ln a
1

aH
=

1

aHi

∣∣∣ai
a

≈ − 1

aHi

(ai � a)

• In particular, the current horizon scale H0η̃0 ≈ 1 exited the horizon
during inflation at

η̃0 ≈ H−1
0 =

1

aHHi

aH =
H0

Hi



Sufficient Inflation
• Current horizon scale must have exited the horizon during inflation

so that the start of inflation could not be after aH . How long before
the end of inflation must it have began?

aH
ai

=
H0

Hiai
H0

Hi

=

√
ρc
ρi
, ai =

TCMB

Ti

• ρ1/4
c = 3× 10−12 GeV, TCMB = 3× 10−13 GeV

aH
ai

= 3× 10−29

(
ρ

1/4
i

1014GeV

)−2(
Ti

1010GeV

)

ln
ai
aH

= 65 + 2 ln

(
ρ

1/4
i

1014GeV

)
− ln

(
Ti

1010GeV

)



Perturbation Generation
• Horizon scale η̃ during inflation acts like an event horizon - things

leaving causal contact

• Particle creation similar to Hawking radiation from a black hole
with hubble length replacing the BH horizon

TH ≈ Hi

• Because Hi remains roughly constant during inflation the result is
a scale invariant spectrum of fluctuations due to zero-point
fluctuations becoming classical

• Fluctuations in the field driving inflation (inflaton) carry the energy
density of the universe and so their zero point fluctuations are net
energy density or curvature fluctuations

• Any other light field (gravitational waves, etc...) will also carry
scale invariant perturbations but are iso-curvature fluctuations



Scalar Fields
• Stress-energy tensor of a scalar field

T µν = ∇µϕ∇νϕ−
1

2
(∇αϕ∇αϕ+ 2V )δµν .

• For the background 〈φ〉 ≡ φ0 (a−2 from conformal time)

ρφ =
1

2
a−2φ̇2

0 + V, pφ =
1

2
a−2φ̇2

0 − V

• So for kinetic dominated wφ = pφ/ρφ → 1

• And potential dominated wφ = pφ/ρφ → −1

• A slowly rolling (potential dominated) scalar field can accelerate
the expansion and so solve the horizon problem or act as a dark
energy candidate



Equation of Motion
• Can use general equations of motion of dictated by stress energy

conservation

ρ̇φ = −3(ρφ + pφ)
ȧ

a
,

to obtain the equation of motion of the background field φ

φ̈0 + 2
ȧ

a
φ̇0 + a2V ′ = 0 ,

• In terms of time instead of conformal time
d2φ0

dt2
+ 3H

dφ0

dt
+ V ′ = 0

• Field rolls down potential hill but experiences “Hubble friction” to
create slow roll. In slow roll 3Hdφ0/dt ≈ −V ′ and so kinetic
energy is determined by field position→ adiabatic – both kinetic
and potential energy determined by single degree of freedom φ0



Slow Roll Inflation
• Alternately can derive directly from the Klein-Gordon equation for

scalar field

• Scalar field equation of motion V ′ ≡ dV/dφ

∇µ∇µφ+ V ′(φ) = 0

so that in the background φ = φ0 and

φ̈0 + 2
ȧ

a
φ̇0 + a2V ′ = 0

d2φ0

dt2
+ 3H

dφ0

dt
+ V ′ = 0

• Simply the continuity equation with the associations

ρφ =
1

2
a−2φ̇2

0 + V pφ =
1

2
a−2φ̇2

0 − V



Slow Roll Parameters
• Net energy is dominated by potential energy and so acts like a

cosmological constant w → −1

• First slow roll parameter

ε =
3

2
(1 + w) =

1

16πG

(
V ′

V

)2

• Second slow roll parameter d2φ0/dt
2 ≈ 0, or φ̈0 ≈ (ȧ/a)φ̇0

δ =
φ̈0

φ̇0

(
ȧ

a

)−1

− 1 = ε− 1

8πG

V ′′

V

• Slow roll condition ε, δ � 1 corresponds to a very flat potential



Perturbations
• Linearize perturbation φ = φ0 + φ1 then

φ̈1 + 2
ȧ

a
φ̇1 + k2φ1 + a2V ′′φ1 = 0

in slow roll inflation V ′′ term negligible

• Implicitly assume that the spatial metric fluctuations (curvatureR)
vanishes, otherwise covariant derivatives pick these up

• GR: work in the spatially flat slicing and transform back to
comoving slicing once done.

• Curvature is local scale factor a→ (1 +R)a or δa/a = R

R =
δa

a
=
ȧ

a
δη =

ȧ

a

φ1

φ̇0

a change in the field value φ1 defines a change in the epoch that
inflation ends, imprinting a curvature fluctuation



Slow-Roll Evolution
• Rewrite in u ≡ aφ to remove expansion damping

ü+ [k2 − 2

(
ȧ

a

)2

]u = 0

• or for conformal time measured from the end of inflation

η̃ = η − ηend

η̃ =

∫ a

aend

da

Ha2
≈ − 1

aH

• Compact, slow-roll equation:

ü+ [k2 − 2

η̃2
]u = 0



Slow Roll Limit
• Slow roll equation has the exact solution:

u = A(k ± i

η̃
)e∓ikη̃

• For |kη̃| � 1 (early times, inside Hubble length) behaves as free
oscillator

lim
|kη̃|→∞

u = Ake∓ikη̃

• Normalization A will be set by origin in quantum fluctuations of
free field



Slow Roll Limit
• For |kη̃| � 1 (late times,� Hubble length) fluctuation freezes in

lim
|kη̃|→0

u = ± i
η̃
A = ±iHaA

φ1 = ±iHA

R = ∓iHA
(
ȧ

a

)
1

φ̇0

• Slow roll replacement(
ȧ

a

)2
1

φ̇2
0

=
8πGa2V

3

3

2a2V ε
=

4πG

ε
=

1

2εM2
pl

• Comoving curvature power spectrum

∆2
R ≡

k3|R|2

2π2
=

k3

4π2

H2

εM2
pl

A2



Quantum Fluctuations
• Simple harmonic oscillator� Hubble length

ü+ k2u = 0

• Quantize the simple harmonic oscillator

û = u(k, η)â+ u∗(k, η)â†

where u(k, η) satisfies classical equation of motion and the
creation and annihilation operators satisfy

[a, a†] = 1, a|0〉 = 0

• Normalize wavefunction [û, dû/dη] = i

u(k, η) =
1√
2k
e−ikη̃



Quantum Fluctuations
• Zero point fluctuations of ground state

〈u2〉 = 〈0|u†u|0〉

= 〈0|(u∗â† + uâ)(uâ+ u∗â†)|0〉

= 〈0|ââ†|0〉|u(k, η̃)|2

= 〈0|[â, â†] + â†â|0〉|u(k, η̃)|2

= |u(k, η̃)|2 =
1

2k

• Classical equation of motion take this quantum fluctuation outside
horizon where it freezes in. Slow roll equation

• So A = (2k3)−1/2 and curvature power spectrum

∆2
R ≡

1

8π2

H2

εM2
pl



Tilt
• Curvature power spectrum is scale invariant to the extent that H is

constant

• Scalar spectral index

d ln ∆2
R

d ln k
≡ nS − 1

= 2
d lnH

d ln k
− d ln ε

d ln k

• Evaluate at horizon crossing where fluctuation freezes

d lnH

d ln k

∣∣
−kη̃=1

=
k

H

dH

dη̃

∣∣
−kη̃=1

dη̃

dk

∣∣
−kη̃=1

=
k

H
(−aH2ε)

∣∣
−kη̃=1

1

k2
= −ε

where aH = −1/η̃ = k



Tilt
• Evolution of ε

d ln ε

d ln k
= − d ln ε

d ln η̃
= −2(δ + ε)

ȧ

a
η̃ = 2(δ + ε)

• Tilt in the slow-roll approximation

nS = 1− 4ε− 2δ



Gravitational Waves
• Gravitational wave amplitude satisfies Klein-Gordon equation

(K = 0), same as scalar field

ḧ+,× + 2
ȧ

a
ḣ+,× + k2h+,× = 0 .

• Acquires quantum fluctuations in same manner as φ. Lagrangian
sets the normalization

• Scale-invariant gravitational wave amplitude

∆2
+,× = 16πG∆2

φ1
= 16πG

H2

(2π)2
=

H2

2π2M2
pl



Gravitational Waves
• Gravitational wave power ∝ H2 ∝ V ∝ E4

i where Ei is the energy
scale of inflation

• Tensor-scalar ratio - various definitions - WMAP standard is

r ≡ 4
∆2

+

∆2
R

= 16ε

• Tensor tilt:

d ln ∆2
+

d ln k
≡ nT = 2

d lnH

d ln k
= −2ε



Gravitational Waves
• Consistency relation between tensor-scalar ratio and tensor tilt

r = 16ε = −8nT

• Measurement of scalar tilt and gravitational wave amplitude
constrains inflationary model in the slow roll context

• Comparision of tensor-scalar ratio and tensor tilt tests the idea of
slow roll itself



Gravitational Wave Phenomenology
• A gravitational wave makes a quadrupolar (transverse-traceless)

distortion to metric

• Just like the scale factor or spatial curvature, a temporal variation
in its amplitude leaves a residual temperature variation in CMB
photons – here anisotropic

• Before recombination, anisotropic variation is eliminated by
scattering

• Gravitational wave temperature effect drops sharply at the horizon
scale at recombination



Large Field Models
• For detectable gravitational waves, scalar field must roll by order
Mpl = (8πG)−1/2

dφ0

dN
=

dφ0

d ln a
=
dφ0

dt

1

H
• The larger ε is the more the field rolls in an e-fold

ε =
r

16
=

3

2V

(
H
dφ0

dN

)2

=
8πG

2

(
dφ0

dN

)2

• Observable scales span ∆N ∼ 5 so

∆φ0 ≈ 5
dφ

dN
= 5(r/8)1/2Mpl ≈ 0.6(r/0.1)1/2Mpl

• Does this make sense as an effective field theory? Lyth (1997)



Large Field Models
• Large field models include monomial potentials V (φ) = Aφn

ε ≈ n2

16πGφ2

δ ≈ ε− n(n− 1)

8πGφ2

• Slow roll requires large field values of φ > Mpl

• Thus ε ∼ |δ| and a finite tilt indicates finite ε

• Given WMAP tilt, potentially observable gravitational waves



Small Field Models
• If the field is near an maximum of the potential

V (φ) = V0 −
1

2
µ2φ2

• Inflation occurs if the V0 term dominates

ε ≈ 1

16πG

µ4φ2

V 2
0

δ ≈ ε+
1

8πG

µ2

V0

→ δ

ε
=

V0

µ2φ2
� 1

• Tilt reflects δ: nS ≈ 1− 2δ and ε is much smaller

• The field does not roll significantly during inflation and
gravitational waves are negligible



Hybrid Models
• If the field is rolling toward a minimum of the potential

V (φ) = V0 +
1

2
m2φ2

• Slow roll parameters similar to small field but a real m2

ε ≈ 1

16πG

m4φ2

V 2
0

δ ≈ ε− 1

8πG

m2

V0

• Then V0 domination ε, δ < 0 and nS > 1 - blue tilt

• For m2 domination, monomial-like.

• Intermediate cases with intermediate predictions - can have
observable gravity waves but does not require it.



Hybrid Models
• But how does inflation end? V0 remains as field settles to minimum

• Implemented as multiple field model with V0 supplied by second
field

• Inflation ends when rolling triggers motion in the second field to
the true joint minimum


