
Set 9:
CMB and Large Scale Structure



CMB Temperature Anisotropy
• Planck 2015 map of the temperature anisotropy (first discovered

by COBE) from recombination:
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CMB Temperature Anisotropy
• Power spectrum shows characteristic scales where the intensity of

variations peak - reveals geometry and contents of the universe:
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CMB Parameter Inferences
• Spectrum constrains the matter-energy contents of the universe

Planck Collaboration: Cosmological parameters

Table 3. Parameters of the base ΛCDM cosmology computed from the 2015 baseline Planck likelihoods illustrating the consistency
of parameters determined from the temperature and polarization spectra at high multipoles. Column [1] uses the TT spectra at
low and high multipoles and is the same as column [6] of Table 1. Columns [2] and [3] use only the T E and EE spectra at high
multipoles, and only polarization at low multipoles. Column [4] uses the full likelihood. The last column lists the deviations of the
cosmological parameters determined from the TT+lowP and TT,TE,EE+lowP likelihoods.

Parameter [1] Planck TT+lowP [2] Planck TE+lowP [3] Planck EE+lowP [4] Planck TT,TE,EE+lowP ([1] − [4])/σ[1]

Ωbh2 . . . . . . . . . . 0.02222 ± 0.00023 0.02228 ± 0.00025 0.0240 ± 0.0013 0.02225 ± 0.00016 −0.1
Ωch2 . . . . . . . . . . 0.1197 ± 0.0022 0.1187 ± 0.0021 0.1150+0.0048

−0.0055 0.1198 ± 0.0015 0.0
100θMC . . . . . . . . 1.04085 ± 0.00047 1.04094 ± 0.00051 1.03988 ± 0.00094 1.04077 ± 0.00032 0.2
τ . . . . . . . . . . . . . 0.078 ± 0.019 0.053 ± 0.019 0.059+0.022

−0.019 0.079 ± 0.017 −0.1
ln(1010As) . . . . . . 3.089 ± 0.036 3.031 ± 0.041 3.066+0.046

−0.041 3.094 ± 0.034 −0.1
ns . . . . . . . . . . . . 0.9655 ± 0.0062 0.965 ± 0.012 0.973 ± 0.016 0.9645 ± 0.0049 0.2
H0 . . . . . . . . . . . 67.31 ± 0.96 67.73 ± 0.92 70.2 ± 3.0 67.27 ± 0.66 0.0
Ωm . . . . . . . . . . . 0.315 ± 0.013 0.300 ± 0.012 0.286+0.027

−0.038 0.3156 ± 0.0091 0.0
σ8 . . . . . . . . . . . . 0.829 ± 0.014 0.802 ± 0.018 0.796 ± 0.024 0.831 ± 0.013 0.0
109Ase−2τ . . . . . . 1.880 ± 0.014 1.865 ± 0.019 1.907 ± 0.027 1.882 ± 0.012 −0.1

which do not depend strongly on τ are consistent between the TT
and T E spectra to within typically 0.5σ or better. Furthermore,
the cosmological parameters derived from the T E spectra have
comparable errors to the TT parameters. None of the conclu-
sions in this paper would change in any significant way were we
to use the T E parameters in place of the TT parameters. The
consistency of the cosmological parameters for base ΛCDM be-
tween temperature and polarization therefore gives added confi-
dence that Planck parameters are insensitive to the specific de-
tails of the foreground model that we have used to correct the
TT spectra. The EE parameters are also typically within about
1σ of the TT parameters, though because the EE spectra from
Planck are noisier than the TT spectra, the errors on the EE pa-
rameters are significantly larger than those from TT . However,
both the T E and EE likelihoods give lower values of τ, As and
σ8, by over 1σ compared to the TT solutions. Note that the T E
and EE entries in Table 3 do not use any information from the
temperature in the low multipole likelihood. The tendency for
higher values of σ8, As, and τ in the Planck TT+lowP solution is
driven, in part, by the temperature power spectrum at low multi-
poles.

Columns [4] and [5] of Table 3 compare the parameters of
the TT likelihood with the full TT,T E, EE likelihood. These
are in agreement, shifting by less than 0.2σ. Although we have
emphasized the presence of systematic effects in the Planck
polarization spectra, which are not accounted for in the errors
quoted in column [4] of Table 3, the consistency of the TT and
TT,T E, EE parameters provides strong evidence that residual
systematics in the polarization spectra have little impact on the
scientific conclusions in this paper. The consistency of the base
ΛCDM parameters from temperature and polarization is illus-
trated graphically in Fig. 6. As a rough rule-of-thumb, for base
ΛCDM, or extensions to ΛCDM with spatially flat geometry,
using the full TT,T E, EE likelihood produces improvements in
cosmological parameters of about the same size as adding BAO
to the Planck TT+lowP likelihood.

3.4. Constraints on the reionization optical depth parameter τ

The reionization optical depth parameter τ provides an important
constraint on models of early galaxy evolution and star forma-
tion. The evolution of the inter-galactic Lyα opacity measured in
the spectra of quasars can be used to set limits on the epoch of
reionization (Gunn & Peterson 1965). The most recent measure-

ments suggest that the reionization of the inter-galactic medium
was largely complete by a redshift z ≈ 6 (Fan et al. 2006). The
steep decline in the space density of Lyα emitting galaxies over
the redshift range 6 <∼ z <∼ 8 also implies a low redshift of reion-
ization (Choudhury et al. 2014). As a reference, for the Planck
parameters listed in Table 3, instantaneous reionization at red-
shift z = 7 results in an optical depth of τ = 0.048.

The optical depth τ can also be constrained from observa-
tions of the CMB. The WMAP9 results of Bennett et al. (2013)
give τ = 0.089 ± 0.014, corresponding to an instantaneous red-
shift of reionization zre = 10.6 ± 1.1. The WMAP constraint
comes mainly from the EE spectrum in the multipole range
` = 2–6. It has been argued (e.g., Robertson et al. 2013, and ref-
erences therein) that the high optical depth reported by WMAP
cannot be produced by galaxies seen in deep redshift surveys,
even assuming high escape fractions for ionizing photons, im-
plying additional sources of photoionizing radiation from still
fainter objects. Evidently, it would be useful to have an indepen-
dent CMB measurement of τ.

The τ measurement from CMB polarization is difficult be-
cause it is a small signal, confined to low multipoles, requiring
accurate control of instrumental systematics and polarized fore-
ground emission. As discussed by Komatsu et al. (2009), uncer-
tainties in modelling polarized foreground emission are com-
parable to the statistical error in the WMAP τ measurement.
In particular, at the time of the WMAP9 analysis there was
very little information available on polarized dust emission. This
situation has been partially rectified by the 353 GHz polariza-
tion maps from Planck (Planck Collaboration Int. XXII 2014;
Planck Collaboration Int. XXX 2014). In PPL13, we used pre-
liminary 353 GHz Planck polarization maps to clean the WMAP
Ka, Q, and V maps for polarized dust emission, using WMAP
K-band as a template for polarized synchrotron emission. This
lowered τ by about 1σ to τ = 0.075 ± 0.013 compared to
τ = 0.089 ± 0.013 using the WMAP dust model.12 However,
given the preliminary nature of the Planck polarization analysis
we decided to use the WMAP polarization likelihood, as pro-
duced by the WMAP team, in the Planck 2013 papers.

In the 2015 papers, we use Planck polarization maps based
on low-resolution LFI 70 GHz maps, excluding Surveys 2 and
4. These maps are foreground-cleaned using the LFI 30 GHz

12Note that neither of these error estimates reflect the true uncer-
tainty in foreground removal.
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Galaxy Redshift Surveys
• Galaxy redshift surveys (e.g. 2dF and SDSS) measure the three

dimensional distribution of galaxies today:
5
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FIG. 2: The distribution of the 6,476 LRGs (black) and 32,417 main galaxies (green/grey) that are within 1.25◦ of the Equatorial plane.
The solid circles indicate the boundaries of our NEAR, MID and FAR subsamples. The “safe13” main galaxy sample analyzed here and
in [28] is more local, extending out only to 600h−1 Mpc (dashed circle).

III. POWER SPECTRUM MEASUREMENTS

We measure the power spectrum of our various samples
using the PKL method described in [28]. We follow the
procedure of [28] exactly, with some additional numeri-
cal improvements described in Appendix A, so we merely
summarize the process very briefly here. The first step
is to adjust the galaxy redshifts slightly to compress so-

called fingers-of-god (FOGs), virialized galaxy clusters
that appear elongated along the line-of-sight in redshift
space; we do this with several different thresholds and
return to how this affects the results in Section IVF2.
The LRGs are not just brightest cluster galaxies; about
20% of them appear to reside in a dark matter halo with
one or more other LRG’s. The second step is to expand
the three-dimensional galaxy density field in N three-



Galaxy Power Spectrum
• SDSS LRG and Main power spectrum:

7

FIG. 4: Measured power spectra for the full LRG and main galaxy samples. Errors are uncorrelated and full window functions are shown
in Figure 5. The solid curves correspond to the linear theory ΛCDM fits to WMAP3 alone from Table 5 of [7], normalized to galaxy bias
b = 1.9 (top) and b = 1.1 (bottom) relative to the z = 0 matter power. The dashed curves include the nonlinear correction of [29] for
A = 1.4, with Qnl = 30 for the LRGs and Qnl = 4.6 for the main galaxies; see equation (4). The onset of nonlinear corrections is clearly
visible for k ∼> 0.09h/Mpc (vertical line).

Our Fourier convention is such that the dimensionless
power ∆2 of [77] is given by ∆2(k) = 4π(k/2π)3P (k).

Before using these measurements to constrain cosmo-
logical models, one faces important issues regarding their
interpretation, related to evolution, nonlinearities and
systematics.

B. Clustering evolution

The standard theoretical expectation is for matter
clustering to grow over time and for bias (the rela-
tive clustering of galaxies and matter) to decrease over
time [78–80] for a given class of galaxies. Bias is also



Structure Formation
• Small perturbations from inflation over the course of the 14Gyr life

of the universe are gravitationally enhanced into all of the structure
seen today

• Cosmic microwave background shows a snapshot at a few hundred
thousand years old at recombination

• Discovery in 1992 of cosmic microwave background anisotropy
provided the observational breakthrough - convincing support for
adiabatic initial density fluctuations of amplitude 10−5

• Combine with galaxy clustering - large scale structure seen in
galaxy surveys - right amplitude given cold dark matter

• Following notes are at a slightly more advanced level than the
book and are provided here for completeness



Angular Power Spectrum
• Angular distribution of radiation is essentially the 3D temperature

field projected onto a shell at the distance from the observer to
recombination: called the last scattering surface

• Take the radiation distribution at last scattering to also be
described by an isotropic temperature fluctuation field Θ(x) and
recombination to be instantaneous

Θ(n̂) =

∫
dDΘ(x)δ(D −D∗)

where D is the comoving distance and D∗ denotes recombination.

• Describe the temperature field by its Fourier moments

Θ(x) =

∫
d3k

(2π)3
Θ(k)eik·x



Angular Power Spectrum
• Power spectrum

〈Θ(k)∗Θ(k′)〉 = (2π)3δ(k− k′)PT (k)

∆2
T = k3PT/2π

2

• Temperature field

Θ(n̂) =

∫
d3k

(2π)3
Θ(k)eik·D∗n̂

• Multipole moments Θ(n̂) =
∑

`m Θ`mY`m

• Expand out plane wave in spherical coordinates

eikD∗·n̂ = 4π
∑
`m

i`j`(kD∗)Y
∗
`m(k)Y`m(n̂)



Angular Power Spectrum
• Power spectrum

Θ`m =

∫
d3k

(2π)3
Θ(k)4πi`j`(kD∗)Y`m(k)

〈Θ∗`mΘ`′m′〉 =

∫
d3k

(2π)3
(4π)2(i)`−`

′
j`(kD∗)j`′(kD∗)Y

∗
`m(k)Y`′m′(k)PT (k)

= δ``′δmm′4π

∫
d ln k j2

` (kD∗)∆
2
T (k)

with
∫∞

0
j2
` (x)d lnx = 1/(2`(`+ 1)), slowly varying ∆2

T

• Angular power spectrum:

C` =
4π∆2

T (`/D∗)

2`(`+ 1)
=

2π

`(`+ 1)
∆2
T (`/D∗)



Thomson Scattering
• Thomson scattering of photons off of free electrons is the most

important CMB process with a cross section (averaged over
polarization states) of

σT =
8πα2

3m2
e

= 6.65× 10−25cm2

• Density of free electrons in a fully ionized xe = 1 universe

ne = (1− Yp/2)xenb ≈ 10−5Ωbh
2(1 + z)3cm−3 ,

where Yp ≈ 0.24 is the Helium mass fraction, creates a high
(comoving) Thomson opacity

τ̇ ≡ neσTa

where dots are conformal time η ≡
∫
dt/a derivatives and τ is the

optical depth.



Tight Coupling Approximation
• Near recombination z ≈ 103 and Ωbh

2 ≈ 0.02, the (comoving)
mean free path of a photon

λC ≡
1

τ̇
∼ 2.5Mpc

small by cosmological standards!

• On scales λ� λC photons are tightly coupled to the electrons by
Thomson scattering which in turn are tightly coupled to the
baryons by Coulomb interactions

• Specifically, their bulk velocities are defined by a single fluid
velocity vγ = vb and the photons carry no anisotropy in the rest
frame of the baryons

• → No heat conduction or viscosity (anisotropic stress) in fluid



Zeroth Order Approximation
• Momentum density of a fluid is (ρ+ p)v, where p is the pressure

• Neglect the momentum density of the baryons

R ≡ (ρb + pb)vb
(ργ + pγ)vγ

=
ρb + pb
ργ + pγ

=
3ρb
4ργ

≈ 0.6

(
Ωbh

2

0.02

)( a

10−3

)
since ργ ∝ T 4 is fixed by the CMB temperature T = 2.73(1 + z)K
– OK substantially before recombination

• Neglect radiation in the expansion

ρm
ρr

= 3.6

(
Ωmh

2

0.15

)( a

10−3

)
• Neglect gravity



Fluid Equations
• Density ργ ∝ T 4 so define temperature fluctuation Θ

δγ = 4
δT

T
≡ 4Θ

• Real space continuity eqn. transformed to Fourier space∇ → ik

δ̇γ = −(1 + wγ)kvγ

Θ̇ = −1

3
kvγ

• Euler equation (neglecting gravity)

v̇γ = −(1− 3wγ)
ȧ

a
v +

kc2
s

1 + wγ
δγ

v̇γ = kc2
s

3

4
δγ = 3c2

skΘ



Oscillator: Take One
• Combine these to form the simple harmonic oscillator equation

Θ̈ + c2
sk

2Θ = 0

where the sound speed is adiabatic

c2
s =

δp

δρ
=
ṗγ
ρ̇γ

here c2
s = 1/3 since we are photon-dominated

• General solution:

Θ(η) = Θ(0) cos(ks) +
Θ̇(0)

kcs
sin(ks)

where the sound horizon is defined as s ≡
∫
csdη



Harmonic Extrema
• All modes are frozen in at recombination (denoted with a subscript
∗) yielding temperature perturbations of different amplitude for
different modes. For the adiabatic (curvature mode) Θ̇(0) = 0

Θ(η∗) = Θ(0) cos(ks∗)

• Modes caught in the extrema of their oscillation will have
enhanced fluctuations

kns∗ = nπ

yielding a fundamental scale or frequency, related to the inverse
sound horizon

kA = π/s∗

and a harmonic relationship to the other extrema as 1 : 2 : 3...



Peak Location
• The fundmental physical scale is translated into a fundamental

angular scale by simple projection according to the angular
diameter distance DA

θA = λA/DA

`A = kADA

• In a flat universe, the distance is simply DA = D ≡ η0 − η∗ ≈ η0,
the horizon distance, and kA = π/s∗ =

√
3π/η∗ so

θA ≈
η∗
η0

• In a matter-dominated universe η ∝ a1/2 so θA ≈ 1/30 ≈ 2◦ or

`A ≈ 200



Curvature
• In a curved universe, the apparent or angular diameter distance is

no longer the conformal distance DA = R sin(D/R) 6= D

• Objects in a closed universe are further than they appear!
gravitational lensing of the background...

• Curvature scale of the universe must be substantially larger than
current horizon

• Flat universe indicates critical density and implies missing energy
given local measures of the matter density “dark energy”

• D also depends on dark energy density ΩDE and equation of state
w = pDE/ρDE.

• Expansion rate at recombination or matter-radiation ratio enters
into calculation of kA.



Doppler Effect
• Bulk motion of fluid changes the observed temperature via

Doppler shifts (
∆T

T

)
dop

= n̂ · vγ

• Averaged over directions(
∆T

T

)
rms

=
vγ√

3

• Acoustic solution

vγ√
3

= −
√

3

k
Θ̇ =

√
3

k
kcs Θ(0)sin(ks)

= Θ(0)sin(ks)



Doppler Peaks?
• Doppler effect for the photon dominated system is of equal

amplitude and π/2 out of phase: extrema of temperature are
turning points of velocity

• Effects add in quadrature:(
∆T

T

)2

= Θ2(0)[cos2(ks) + sin2(ks)] = Θ2(0)

• No peaks in k spectrum! However the Doppler effect carries an
angular dependence that changes its projection on the sky
n̂ · vγ ∝ n̂ · k̂
• Coordinates where ẑ ‖ k̂

Y10Y`0 → Y`±1 0

recoupling j′`Y`0: no peaks in Doppler effect



Restoring Gravity
• Take a simple photon dominated system with gravity

• Continuity altered since a gravitational potential represents a
stretching of the spatial fabric that dilutes number densities –
formally a spatial curvature perturbation

• Think of this as a perturbation to the scale factor a→ a(1 + Φ) so
that the cosmogical redshift is generalized to

ȧ

a
→ ȧ

a
+ Φ̇

so that the continuity equation becomes

Θ̇ = −1

3
kvγ − Φ̇



Restoring Gravity
• Gravitational force in momentum conservation F = −m∇Ψ

generalized to momentum density modifies the Euler equation to

v̇γ = k(Θ + Ψ)

• General relativity says that Φ and Ψ are the relativistic analogues
of the Newtonian potential and that Φ ≈ −Ψ.

• In our matter-dominated approximation, Φ represents matter
density fluctuations through the cosmological Poisson equation

k2Φ = 4πGa2ρm∆m

where the difference comes from the use of comoving coordinates
for k (a2 factor), the removal of the background density into the
background expansion (ρ∆m) and finally a coordinate subtlety that
enters into the definition of ∆m



Constant Potentials
• In the matter dominated epoch potentials are constant because

infall generates velocities as vm ∼ kηΨ

• Velocity divergence generates density perturbations as
∆m ∼ −kηvm ∼ −(kη)2Ψ

• And density perturbations generate potential fluctuations as
Φ ∼ ∆m/(kη)2 ∼ −Ψ, keeping them constant. Note that because
of the expansion, density perturbations must grow to keep
potentials constant.

• Here we have used the Friedman equation H2 = 8πGρm/3 and
η =

∫
d ln a/(aH) ∼ 1/(aH)

• More generally, if stress perturbations are negligible compared
with density perturbations ( δp� δρ ) then potential will remain
roughly constant – more specifically a variant called the Bardeen
or comoving curvatureR is constant



Oscillator: Take Two
• Combine these to form the simple harmonic oscillator equation

Θ̈ + c2
sk

2Θ = −k
2

3
Ψ− Φ̈

• In a CDM dominated expansion Φ̇ = Ψ̇ = 0. Also for photon
domination c2

s = 1/3 so the oscillator equation becomes

Θ̈ + Ψ̈ + c2
sk

2(Θ + Ψ) = 0

• Solution is just an offset version of the original

[Θ + Ψ](η) = [Θ + Ψ](0) cos(ks)

• Θ + Ψ is also the observed temperature fluctuation since photons
lose energy climbing out of gravitational potentials at
recombination



Effective Temperature
• Photons climb out of potential wells at last scattering

• Lose energy to gravitational redshifts

• Observed or effective temperature

Θ + Ψ

• Effective temperature oscillates around zero with amplitude given
by the initial conditions

• Note: initial conditions are set when the perturbation is outside of
horizon, need inflation or other modification to matter-radiation
FRW universe.

• GR says that initial temperature is given by initial potential



Sachs-Wolfe Effect and the Magic 1/3
• A gravitational potential is a perturbation to the temporal

coordinate [formally a gauge transformation]

δt

t
= Ψ

• Convert this to a perturbation in the scale factor,

t =

∫
da

aH
∝
∫

da

aρ1/2
∝ a3(1+w)/2

where w ≡ p/ρ so that during matter domination

δa

a
=

2

3

δt

t

• CMB temperature is cooling as T ∝ a−1 so

Θ + Ψ ≡ δT

T
+ Ψ = −δa

a
+ Ψ =

1

3
Ψ



Baryon Loading
• Baryons add extra mass to the photon-baryon fluid

• Controlling parameter is the momentum density ratio:

R ≡ pb + ρb
pγ + ργ

≈ 30Ωbh
2
( a

10−3

)
of order unity at recombination

• Momentum density of the joint system is conserved

(ργ + pγ)vγ + (ρb + pb)vb ≈ (pγ + pγ + ρb + ργ)vγ

= (1 +R)(ργ + pγ)vγb

where the controlling parameter is the momentum density ratio:

R ≡ pb + ρb
pγ + ργ

≈ 30Ωbh
2
( a

10−3

)
of order unity at recombination



New Euler Equation
• Momentum density ratio enters as

[(1 +R)vγb]
· = kΘ + (1 +R)kΨ

• Photon continuity remains the same

Θ̇ = −k
3
vγb − Φ̇

• Modification of oscillator equation

[(1 +R)Θ̇]· +
1

3
k2Θ = −1

3
k2(1 +R)Ψ− [(1 +R)Φ̇]·



Oscillator: Take Three
• Combine these to form the not-quite-so simple harmonic oscillator

equation

c2
s

d

dη
(c−2
s Θ̇) + c2

sk
2Θ = −k

2

3
Ψ− c2

s

d

dη
(c−2
s Φ̇)

where c2
s ≡ ṗγb/ρ̇γb

c2
s =

1

3

1

1 +R

• In a CDM dominated expansion Φ̇ = Ψ̇ = 0 and the adiabatic
approximation Ṙ/R� ω = kcs

[Θ + (1 +R)Ψ](η) = [Θ + (1 +R)Ψ](0) cos(ks)



Baryon Peak Phenomenology
• Photon-baryon ratio enters in three ways

• Overall larger amplitude:

[Θ + (1 +R)Ψ](0) =
1

3
(1 + 3R)Ψ(0)

• Even-odd peak modulation of effective temperature

[Θ + Ψ]peaks = [±(1 + 3R)− 3R]
1

3
Ψ(0)

[Θ + Ψ]1 − [Θ + Ψ]2 = [−6R]
1

3
Ψ(0)

• Shifting of the sound horizon down or `A up

`A ∝
√

1 +R

• Actual effects smaller since R evolves



Photon Baryon Ratio Evolution
• Oscillator equation has time evolving mass

c2
s

d

dη
(c−2
s Θ̇) + c2

sk
2Θ = 0

• Effective mass is is meff = 3c−2
s = (1 +R)

• Adiabatic invariant

E

ω
=

1

2
meffωA

2 =
1

2
3c−2
s kcsA

2 ∝ A2(1 +R)1/2 = const.

• Amplitude of oscillation A ∝ (1 +R)−1/4 decays adiabatically as
the photon-baryon ratio changes



Oscillator: Take Three and a Half
• The not-quite-so simple harmonic oscillator equation is a forced

harmonic oscillator

c2
s

d

dη
(c−2
s Θ̇) + c2

sk
2Θ = −k

2

3
Ψ− c2

s

d

dη
(c−2
s Φ)

changes in the gravitational potentials alter the form of the
acoustic oscillations

• If the forcing term has a temporal structure that is related to the
frequency of the oscillation, this becomes a driven harmonic
oscillator

• Term involving Ψ is the ordinary gravitational force

• Term involving Φ involves the Φ̇ term in the continuity equation as
a (curvature) perturbation to the scale factor



Potential Decay
• Matter-to-radiation ratio

ρm
ρr
≈ 24Ωmh

2
( a

10−3

)
of order unity at recombination in a low Ωm universe

• Radiation is not stress free and so impedes the growth of structure

k2Φ = 4πGa2ρr∆r

∆r ∼ 4Θ oscillates around a constant value, ρr ∝ a−4 so the
Netwonian curvature decays.

• General rule: potential decays if the dominant energy component
has substantial stress fluctuations, i.e. below the generalized sound
horizon or Jeans scale



Radiation Driving
• Decay is timed precisely to drive the oscillator - close to fully

coherent

[Θ + Ψ](η) = [Θ + Ψ](0) + ∆Ψ−∆Φ

=
1

3
Ψ(0)− 2Ψ(0) =

5

3
Ψ(0)

• 5× the amplitude of the Sachs-Wolfe effect!

• Coherent approximation is exact for a photon-baryon fluid but
reality is reduced to ∼ 4× because of neutrino contribution to
radiation

• Actual initial conditions are Θ + Ψ = Ψ/2 for radiation
domination but comparison to matter dominated SW correct



Damping
• Tight coupling equations assume a perfect fluid: no viscosity, no

heat conduction

• Fluid imperfections are related to the mean free path of the
photons in the baryons

λC = τ̇−1 where τ̇ = neσTa

is the conformal opacity to Thomson scattering

• Dissipation is related to the diffusion length: random walk
approximation

λD =
√
NλC =

√
η/λC λC =

√
ηλC

the geometric mean between the horizon and mean free path

• λD/η∗ ∼ few %, so expect the peaks :> 3 to be affected by
dissipation



Equations of Motion
• Continuity

Θ̇ = −k
3
vγ − Φ̇ , δ̇b = −kvb − 3Φ̇

where the photon equation remains unchanged and the baryons
follow number conservation with ρb = mbnb

• Euler

v̇γ = k(Θ + Ψ)− k

6
πγ − τ̇(vγ − vb)

v̇b = − ȧ
a
vb + kΨ + τ̇(vγ − vb)/R

where the photons gain an anisotropic stress term πγ from radiation
viscosity and a momentum exchange term with the baryons and
are compensated by the opposite term in the baryon Euler equation



Viscosity
• Viscosity is generated from radiation streaming from hot to cold

regions

• Expect

πγ ∼ vγ
k

τ̇

generated by streaming, suppressed by scattering in a wavelength
of the fluctuation. Radiative transfer says

πγ ≈ 2Avvγ
k

τ̇

where Av = 16/15

v̇γ = k(Θ + Ψ)− k

3
Av
k

τ̇
vγ



Oscillator: Penultimate Take
• Adiabatic approximation ( ω � ȧ/a)

Θ̇ ≈ −k
3
vγ

• Oscillator equation contains a Θ̇ damping term

c2
s

d

dη
(c−2
s Θ̇) +

k2c2
s

τ̇
AvΘ̇ + k2c2

sΘ = −k
2

3
Ψ− c2

s

d

dη
(c−2
s Φ̇)

• Heat conduction term similar in that it is proportional to vγ and is
suppressed by scattering k/τ̇ . Expansion of Euler equations to
leading order in kτ̇ gives

Ah =
R2

1 +R

since the effects are only significant if the baryons are dynamically
important



Oscillator: Final Take
• Final oscillator equation

c2
s

d

dη
(c−2
s Θ̇) +

k2c2
s

τ̇
[Av + Ah]Θ̇ + k2c2

sΘ = −k
2

3
Ψ− c2

s

d

dη
(c−2
s Φ̇)

• Solve in the adiabatic approximation

Θ ∝ exp(i

∫
ωdη)

−ω2 +
k2c2

s

τ̇
(Av + Ah)iω + k2c2

s = 0 (1)



Dispersion Relation
• Solve

ω2 = k2c2
s

[
1 + i

ω

τ̇
(Av + Ah)

]
ω = ±kcs

[
1 +

i

2

ω

τ̇
(Av + Ah)

]
= ±kcs

[
1± i

2

kcs
τ̇

(Av + Ah)

]
• Exponentiate

exp(i

∫
ωdη) = e±iks exp[−k2

∫
dη

1

2

c2
s

τ̇
(Av + Ah)]

= e±iks exp[−(k/kD)2] (2)

• Damping is exponential under the scale kD



Diffusion Scale
• Diffusion wavenumber

k−2
D =

∫
dη

1

τ̇

1

6(1 +R)

(
16

15
+

R2

(1 +R)

)
• Limiting forms

lim
R→0

k−2
D =

1

6

16

15

∫
dη

1

τ̇

lim
R→∞

k−2
D =

1

6

∫
dη

1

τ̇

• Geometric mean between horizon and mean free path as expected
from a random walk

λD =
2π

kD
∼ 2π√

6
(ητ̇−1)1/2



Thomson Scattering
• Polarization state of radiation in direction n̂ described by the

intensity matrix
〈
Ei(n̂)E∗j (n̂)

〉
, where E is the electric field vector

and the brackets denote time averaging.

• Differential cross section

dσ

dΩ
=

3

8π
|Ê′ · Ê|2σT ,

where σT = 8πα2/3me is the Thomson cross section, Ê′ and Ê

denote the incoming and outgoing directions of the electric field or
polarization vector.

• Summed over angle and incoming polarization∑
i=1,2

∫
dn̂′

dσ

dΩ
= σT



Polarization Generation
• Heuristic: incoming radiation shakes an electron in direction of

electric field vector Ê′

• Radiates photon with polarization also in direction Ê′

• But photon cannot be longitudinally polarized so that scattering
into 90◦ can only pass one polarization

• Linearly polarized radiation like polarization by reflection

• Unlike reflection of sunlight, incoming radiation is nearly isotropic

• Missing linear polarization supplied by scattering from direction
orthogonal to original incoming direction

• Only quadrupole anisotropy generates polarization by Thomson
scattering



Acoustic Polarization
• Break down of tight-coupling leads to quadrupole anisotropy of

πγ ≈
k

τ̇
vγ

• Scaling kD = (τ̇ /η∗)1/2 → τ̇ = k2
Dη∗

• Know: kDs∗ ≈ kDη∗ ≈ 10

• So:

πγ ≈
k

kD

1

10
vγ

∆P ≈
`

`D

1

10
∆T



Acoustic Polarization
• Gradient of velocity is along direction of wavevector, so

polarization is pure E-mode

• Velocity is 90◦ out of phase with temperature – turning points of
oscillator are zero points of velocity:

Θ + Ψ ∝ cos(ks); vγ ∝ sin(ks)

• Polarization peaks are at troughs of temperature power



Cross Correlation
• Cross correlation of temperature and polarization

(Θ + Ψ)(vγ) ∝ cos(ks) sin(ks) ∝ sin(2ks)

• Oscillation at twice the frequency

• Correlation: radial or tangential around hot spots

• Partial correlation: easier to measure if polarization data is noisy,
harder to measure if polarization data is high S/N or if bands do
not resolve oscillations

• Good check for systematics and foregrounds

• Comparison of temperature and polarization is proof against
features in initial conditions mimicking acoustic features



CMB Normalization
• Normalization of potential, hence inflationary power spectrum, set

by CMB observations, aka COBE or WMAP/Planck normalization

• Angular power spectrum:

C` =
4π∆2

T (`/D∗)

2`(`+ 1)
=

2π

`(`+ 1)
∆2
T (`/D∗)

• `(`+ 1)C`/2π = ∆2
T is commonly used log power

• Sachs-Wolfe effect says ∆2
T = ∆2

Φ/9, Φ = 3
5
R initial

• Observed number at recombination

∆2
T =

(
28µK

2.725× 106µK

)2

∆2
Φ ≈ (3× 10−5)2

∆2
R ≈ (5× 10−5)2



COBE to WMAP to Planck
• Given that the temperature response to an inflationary initial

perturbation is known for all k through the Boltzmann solution of
the acoustic physics, one can translate ∆2

T to ∆2
R at the best

measured k ≈ `/D∗.

• The CMB normalization was first extracted from COBE at ` ∼ 10

or k ∼ H0. A low ` normalization point suffers from cosmic
variance: only 2`+ 1 samples of a given ` mode.

• WMAP measures very precisely the first acoustic peak at ` ≈ 200

which corresponds to k ∼ 0.02 Mpc−1).

• Planck measures out to ` = 1000− 2000 precisely which
correponds to k ∼ 0.08 Mpc−1

• Taking out the CMB transfer function ∆2
R nearly scale invariant

with a small red tilt of ns − 1 ≈ 0.03



Transfer Function
• Transfer function transfers the initial Newtonian curvature to its

value today (linear response theory)

T (k) =
Φ(k, a = 1)

Φ(k, ainit)

Φ(knorm, ainit)

Φ(knorm, a = 1)

• Conservation of Bardeen curvature: Newtonian curvature is a
constant when stress perturbations are negligible: above the
horizon during radiation and dark energy domination, on all scales
during matter domination

• When stress fluctuations dominate, perturbations are stabilized by
the Jeans mechanism

• Hybrid Poisson equation: Newtonian curvature, comoving density
perturbation ∆ ≡ (δρ/ρ)com implies Φ decays

(k2 − 3K)Φ = 4πGa2ρ∆ ∼ η−2∆



Transfer Function
• Freezing of ∆ stops at ηeq

Φ ∼ (kηeq)−2∆H ∼ (kηeq)−2Φinit

• Transfer function has a k−2 fall-off beyond keq ∼ η−1
eq

ηeq = 15.7(Ωmh
2)−1

(
T

2.7K

)2

Mpc

• Small correction since growth with a smooth radiation component
is logarithmic not frozen

• Transfer function is a direct output of an Einstein-Boltzmann code



Fitting Function
• Alternately accurate fitting formula exist, e.g. pure CDM form:

T (k(q)) =
L(q)

L(q) + C(q)q2

L(q) = ln(e+ 1.84q)

C(q) = 14.4 +
325

1 + 60.5q1.11

q = k/Ωmh
2Mpc−1(TCMB/2.7K)2

• In h Mpc−1, the critical scale depends on Γ ≡ Ωmh also known as
the shape parameter



Transfer Function
• Numerical calculation

1

0.1

0.0001 0.001 0.01 0.1 1
0.01

T(
k)

k (h–1 Mpc)

wiggles

k–2



Baryon Acoustic Oscillations
• Baryons caught up in the acoustic oscillations of the CMB and

impart acoustic oscillations to the transfer function. Density
enhancements are produced kinematically through the continuity
equation δb ∼ (kη)vb and hence are out of phase with CMB
temperature peaks

• Dissipation of the acoustic oscillations eliminates both the CMB
and baryon perturbations – known as Silk damping for the
baryons. This suppression and the general fact that baryons are
caught up with photons was one of the main arguments for CDM

• Detected first (so far only) in the SDSS LRG survey.

• An excellent standard ruler for angular diameter distance DA(z)

since it does not evolve in redshift in linear theory

• Radial extent of BAO gives H(z) (not yet seen in data)



Massive Neutrinos
• Neutrino dark matter suffers similar effects and hence cannot be

the main component of dark matter in the universe

• Relativistic stresses of a light neutrino slow the growth of structure

• Neutrino species with cosmological abundance contribute to
matter as Ωνh

2 =
∑
mν/94eV, suppressing power as

∆P/P ≈ −8Ων/Ωm

• Current data Planck and large scale structure indicate∑
mν < 0.23eV (95% CL)



Growth Function
• Same physics applies to the dark energy dominated universe

• Under the dark energy sound horizon or Jeans scale, dark energy
density frozen. Potential decays at the same rate for all scales

G(a) =
Φ(knorm, a)

Φ(knorm, ainit)
′ ≡ d

d ln a

• Continuity + Euler + Poisson

G′′ +

(
1− ρ′′

ρ′
+

1

2

ρ′c
ρc

)
G′ +

(
1

2

ρ′c + ρ′

ρc
− ρ′′

ρ′

)
G = 0

where ρ is the Jeans unstable matter and ρc is the critical density



Dark Energy Growth Suppression
• Pressure growth suppression: δ ≡ δρm/ρm ∝ aG

d2G

d ln a2
+

[
5

2
− 3

2
w(z)ΩDE(z)

]
dG

d ln a
+

3

2
[1− w(z)]ΩDE(z)G = 0 ,

where w ≡ pDE/ρDE and ΩDE ≡ ρDE/(ρm + ρDE) with initial
conditions G = 1, dG/d ln a = 0

• As ΩDE → 0 g =const. is a solution. The other solution is the
decaying mode, elimated by initial conditions

• As ΩDE → 1 g ∝ a−1 is a solution. Corresponds to a frozen
density field.



Power Spectrum Normalization
• Present (or matter dominated) vs inflationary initial conditions

(normalized by CMB):

∆2
Φ(k, a) ≈ 9

25
∆2
Ri

(knorm)G2(a)T 2(k)

(
k

knorm

)n−1

• Density field

k2Φ = 4πGa2∆ρm

=
3

2
H2

0 Ωm
∆ρm
ρm

1

a

∆2
Φ =

9

4

(
H0

k

)4

Ω2
ma
−2∆2

m

∆2
m =

4

25
∆2
Ri

(knorm)Ω−2
m a2G2(a)T 2(k)

(
k

knorm

)n−1(
k

H0

)4



Antiquated Normalization Conventions
• Current density field on the horizon scale k = H0

δ2
H =

4

25
∆2
Ri

(knorm)Ω−2
m a2G2(a) = (2G(1)/Ωm × 10−5)

• σ8, RMS of density field filtered by tophat of 8h−1Mpc



Power Spectrum
• SDSS data

• Power spectrum defines large scale structure observables: galaxy
clustering, velocity field, Lyα forest clustering, cosmic shear



Velocity field
• Continuity gives the velocity from the density field as

v = −∆̇/k = −aH
k

d∆

d ln a

= −aH
k

∆
d ln(aG)

d ln a

• In a ΛCDM model or open model d ln(aG)/d ln a ≈ Ω0.6
m

• Measuring both the density field and the velocity field (through
distance determination and redshift) allows a measurement of Ωm

• Practically one measures β = Ω0.6
m /b where b is a bias factor for

the tracer of the density field, i.e. with galaxy numbers δn/n = b∆

• Can also measure this factor from the redshift space power
spectrum - the Kaiser effect where clustering in the radial direction
is apparently enhanced by gravitational infall



Redshift Space Power Spectrum
• Kaiser effect is separable from the real space clustering if one

measures modes parallel and transverse to the line of sight.
Redshift space distortions only modify the former

• 2D power spectrum in “s” or redshift space

Ps(k⊥, k‖) =

[
1 + β

(
k‖
k

)2
]2

b2P (k)

where k2 = k2
‖ + k2

⊥ and k⊥ is a 2D vector transverse to the line of
sight



Power Spectrum Errors
• The precision with which the power spectrum can be measured is

ultimately limited by sample variance from having a finite survey
volume V = L3. This is basically a mode counting argument. The
errors on the power spectrum are given by(

∆Ps
Ps

)2

=
2

Nk

where Nk is the number of modes in a range of ∆k⊥, ∆k‖. This is
determined by the k-space volume and the fundamental mode of
the box k0 = 2π/L which sets the cell size in the volume(

∆Ps
Ps

)2

=
2

V
(2π)3

2πk⊥∆k⊥∆k‖



Lyman-α Forest
• QSO spectra absorbed by neutral hydrogen through the Lyα

transition.

• The optical depth to absorption is (with ds in physical scale)

τ(ν) =

∫
dsxHInbσα ∼

∫
dsxHInbΓφ(ν)λ2

where xHI is the neutral fraction, Γ = 6.25× 108s−1 is the
transition rate and λ = 1216A is the Lyα wavelength and φ(ν) is
the Lorentz profile. For radiation at a given emitted frequency ν0

above the transition, it will redshift through the transition

• Resonant transition: lack of complete absorption, known as the
lack of a Gunn-Peterson trough indicates that the universe is nearly
fully ionized xHI � 1 out to the highest redshift quasar z ∼ 6;
indications that this is near the end of the reionization epoch



Lyman-α Forest
• In ionization equilibrium, the Gunn-Peterson optical depth is a

tracer of the underlying baryon density which itself is a tracer of
the dark matter τGP ∝ ρ2

bT
−0.7 with T (ρb).

d(1− xHI)

dt
= −xHI

∫
dν

4πJν
hν

σν + (1− xHI)
2nbR

where σν is the photoionization cross section (sharp edge at
threshold and falling in frequency means Jν ≈ J21) and R ∝ T−0.7

is the recombination coefficient.

• Given an equation of state from simulations of p ∝ ργ

xHI ∝
ρbR

J21

∝ ρbT
−0.7

J21

, τGP ∝
ρ

2−0.7(γ−1)
b

JHI

• Clustering in the Lyα forest reflects the underlying power
spectrum modulo an overall ionization intensity J21



Gravitational Lensing
• Gravitational potentials along the line of sight n̂ to some source at

comoving distance Ds lens the images according to (flat universe)

φ(n̂) = 2

∫
dD

Ds −D
DDs

Φ(Dn̂, η(D))

remapping image positions as

n̂I = n̂S +∇n̂φ(n̂)

• Since absolute source position is unknown, use image distortion
defined by the Jacobian matrix

∂nIi
∂nSj

= δij + ψij



Weak Lensing
• Small image distortions described by the convergence κ and shear

components (γ1, γ2)

ψij =

(
κ− γ1 −γ2

−γ2 κ+ γ1

)
where∇n̂ = D∇ and

ψij = 2

∫
dD

D(Ds −D)

Ds

∇i∇jΦ(Dn̂, η(D))

• In particular, through the Poisson equation the convergence
(measured from shear) is simply the projected mass

κ =
3

2
ΩmH

2
0

∫
dD

D(Ds −D)

Ds

∆(Dn̂, η(D))

a


