Set 2:

Cosmic Geometry

Newton vs Einstein

- Even though locally Newtonian gravity is an excellent approximation to General Relativity, in cosmology we deal with spatial and temporal scales across which the global picture benefits from a basic understanding of General Relativity.
- An example is: as we have seen in the previous set of notes, it is much more convenient to think of the space between galaxies expanding rather than galaxies receding through space
- While the latter is a good description locally, its preferred coordinates place us at the center and does not allow us to talk about distances beyond which galaxies are receding faster than light - though these distances as we shall see are also not directly observable
- To get a global picture of the expansion of the universe we need to think geometrically, like Einstein not Newton

Gravity as Geometry

- Einstein says Gravity as a force is really the geometry of spacetime
- Force between objects is a fiction of geometry - imagine the curved space of the 2 -sphere - e.g. the surface of the earth
- Two people walk from equator to pole on lines of constant longitude
- Intersect at poles as if an attractive force exists between them
- Both walk on geodesics or straight lines of the shortest distance

Gravity as Geometry

- General relativity has two aspects
- A metric theory: geometry tells matter how to move
- Field equations: matter tells geometry how to curve
- Metric defines distances or separations in the spacetime and freely falling matter moves on a path that extremizes the distance
- Expansion of the universe carries two corresponding pieces
- Friedmann-Robertson-Walker geometry or metric tells matter, including light, how to move - allows us to chart out the expansion with light
- Friedmann equation: matter content of the universe tells it how to expand
- Useful to separate out these two pieces both conceptually and for understanding alternate cosmologies

FRW Geometry

- FRW geometry $=$ homogeneous and isotropic on large scales
- Universe observed to be nearly isotropic (e.g. CMB, radio point sources, galaxy surveys)
- Copernican principle: we're not special, must be isotropic to all observers (all locations)

Implies homogeneity
Verified through galaxy redshift surveys

- FRW cosmology (homogeneity, isotropy \& field equations) generically implies the expansion of the universe, except for special unstable cases

Isotropy \& Homogeneity

- Isotropy: CMB isotropic to $10^{-3}, 10^{-5}$ if dipole subtracted
- Redshift surveys show return to homogeneity on the $>100 \mathrm{Mpc}$ scale

FRW Geometry

- Spatial geometry is that of a
constant curvature
Positive: sphere
Negative: saddle
Flat: plane
- Metric
tells us how to measure distances

FRW Geometry

- Closed: sphere of radius R and (real) curvature $K=1 / R^{2}$
- Suppress 1 dimension α represents total angular separation between two points on the sky $\left(\theta_{1}, \phi_{1}\right)$ and $\left(\theta_{2}, \phi_{2}\right)$

FRW Geometry

- Geometry tells matter how to move: take (null) geodesic motion for light along this generalized sense of longitude or radial distance D
- This arc distance is the distance our photon traveler sees
- We receive light from two different trajectories as observer at pole
- Compared with our Euclidean expectation that the angle between the rays should be related to the separation at emission Σ as $d \alpha \approx \Sigma / D$ the angular size appears larger because of the "lensing" magnification of the background
- This leads to the so called angular diameter distance - the most relevant sense of distance for the observer
- In General Relativity, we are free to use any distance coordinate we like but the two have distinct uses

FRW Geometry

- To define the angular diameter distance, look for a D_{A} such that

$$
d \Sigma=D_{A} d \alpha
$$

Draw a circle at the distance D, its radius is $D_{A}=R \sin (D / R)$

FRW Geometry

- Angular diameter distance
- Positively curved geometry $D_{A}<D$ and objects are further than they appear
- Negatively curved universe R is imaginary and

$$
R \sin (D / R)=i|R| \sin (D / i|R|)=|R| \sinh (D /|R|)
$$

and $D_{A}>D$ objects are closer than they appear

- Flat universe, $R \rightarrow \infty$ and $D_{A}=D$

FRW Geometry

- Now add that point 2 may have a different radial distance
- What is the distance $d \Sigma$ between points $1\left(\theta_{1}, \phi_{1}, D_{1}\right)$ and point 2 $\left(\theta_{2}, \phi_{2}, D_{2}\right)$, separated by $d \alpha$ in angle and $d D$ in distance?

Angular Diameter Distance

- For small angular and radial separations, space is nearly flat so that the Pythagorean theorem holds for differentials

$$
d \Sigma^{2}=d D^{2}+D_{A}^{2} d \alpha^{2}
$$

- Now restore the fact that the angular separation can involve two angles on the sky - the curved sky is just a copy of the spherical geometry with unit radius that we were suppressing before

$$
\begin{aligned}
d \Sigma^{2} & =d D^{2}+D_{A}^{2} d \alpha^{2} \\
& =d D^{2}+D_{A}^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
\end{aligned}
$$

- D_{A} useful for describing observables (flux, angular positions)
- D useful for theoretical constructs (causality, relationship to temporal evolution)

Alternate Notation

- Aside: line element is often also written using D_{A} as the coordinate distance

$$
\begin{aligned}
d D_{A}^{2} & =\left(\frac{d D_{A}}{d D}\right)^{2} d D^{2} \\
\left(\frac{d D_{A}}{d D}\right)^{2} & =\cos ^{2}(D / R)=1-\sin ^{2}(D / R)=1-\left(D_{A} / R\right)^{2} \\
d D^{2} & =\frac{1}{1-\left(D_{A}^{2} / R\right)^{2}} d D_{A}^{2}
\end{aligned}
$$

and defining the curvature $K=1 / R^{2}$ the line element becomes

$$
d \Sigma^{2}=\frac{1}{1-D_{A}^{2} K} d D_{A}^{2}+D_{A}^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

where $K<0$ for a negatively curved space

Line Element or Metric Uses

- Metric also defines the volume element

$$
\begin{aligned}
d V & =(d D)\left(D_{A} d \theta\right)\left(D_{A} \sin \theta d \phi\right) \\
& =D_{A}^{2} d D d \Omega
\end{aligned}
$$

where $d \Omega=\sin \theta d \theta d \phi$ is solid angle

- Most of classical cosmology boils down to these three quantities, (comoving) radial distance, (comoving) angular diameter distance, and volume element
- For example, distance to a high redshift supernova, angular size of the horizon at last scattering and BAO feature, number density of clusters...

Comoving Coordinates

- Remaining degree of freedom (preserving homogeneity and isotropy) is the temporal evolution of overall scale factor
- Relates the geometry (fixed by the radius of curvature R) to physical coordinates - a function of time only

$$
d \sigma^{2}=a^{2}(t) d \Sigma^{2}
$$

our conventions are that the scale factor today $a\left(t_{0}\right) \equiv 1$

- Similarly physical distances are given by $d(t)=a(t) D$, $d_{A}(t)=a(t) D_{A}$.
- Distances in upper case are comoving; lower, physical

Comoving coordinates do not change with time and
Simplest coordinates to work out geometrical effects

Time and Conformal Time

- Spacetime separation (with $c=1$)

$$
\begin{aligned}
d s^{2} & =-d t^{2}+d \sigma^{2} \\
& =-d t^{2}+a^{2}(t) d \Sigma^{2}
\end{aligned}
$$

- Taking out the scale factor in the time coordinate

$$
d s^{2} \equiv a^{2}(t)\left(-d \eta^{2}+d \Sigma^{2}\right)
$$

$d \eta=d t / a$ defines conformal time - useful in that photons travelling radially from observer on null geodesics $d s^{2}=0$

$$
\Delta D=\Delta \eta=\int \frac{d t}{a}
$$

so that time and distance may be interchanged

FRW Metric

- Aside for advanced students: Relationship between coordinate differentials and space-time separation defines the metric $g_{\mu \nu}$

$$
d s^{2} \equiv g_{\mu \nu} d x^{\mu} d x^{\nu}=a^{2}(\eta)\left(-d \eta^{2}+d \Sigma^{2}\right)
$$

Einstein summation - repeated lower-upper pairs summed

- Usually we will use comoving coordinates and conformal time as the x^{μ} unless otherwise specified - metric for other choices are related by $a(t)$
- Scale factor plays the role of a conformal rescaling (which preserves spacetime "angles", i.e. light cone and causal structure hence conformal time

Horizon

- Distance travelled by a photon in the whole lifetime of the universe defines the horizon
- Since $d s=0$, the horizon is simply the elapsed conformal time

$$
D_{\text {horizon }}(t)=\int_{0}^{t} \frac{d t^{\prime}}{a}=\eta(t)
$$

- Horizon always grows with time
- Always a point in time before which two observers separated by a distance D could not have been in causal contact
- Horizon problem: why is the universe homogeneous and isotropic on large scales especially for objects seen at early times, e.g. CMB, when horizon small

Special vs. General Relativity

- From our class perspective, the big advantage of comoving coordinates and conformal time is that we have largely reduced general relativity to special relativity
- In these coordinates, aside from the difference between D and D_{A}, we can think of photons propagating in flat spacetime
- Now let's relate this discussion to observables
- Rule of thumb to avoid dealing with the expansion directly:
- Convert from physical quantities to conformal-comoving quantities at emission
- In conformal-comoving coordinates, light propagates as usual
- At reception $a=1$, conformal-comoving coordinates are physical, so interpret as usual

Hubble Parameter

- Useful to define the expansion rate or Hubble parameter

$$
H(t) \equiv \frac{1}{a} \frac{d a}{d t}=\frac{d \ln a}{d t}
$$

fractional change in the scale factor per unit time $-\ln a=N$ is also known as the e-folds of the expansion

- Cosmic time becomes

$$
t=\int d t=\int \frac{d \ln a}{H(a)}
$$

- Conformal time becomes

$$
\eta=\int \frac{d t}{a}=\int \frac{d \ln a}{a H(a)}
$$

- Advantageous since conservation laws give matter evolution with $a ; a=(1+z)^{-1}$ is a direct observable...

Redshift

- Wavelength of light "stretches" with the scale factor
- The physical wavelength $\lambda_{\text {emit }}$ associated with an observed wavelength today $\lambda_{\text {obs }}$ (or comoving=physical units today) is

$$
\lambda_{\mathrm{emit}}=a(t) \lambda_{\mathrm{obs}}
$$

so that the redshift of spectral lines measures the scale factor of the universe at $t, 1+z=1 / a$.

- Interpreting the redshift as a Doppler shift, objects recede in an expanding universe

Distance-Redshift Relation

- Given atomically known rest wavelength $\lambda_{\text {emit }}$, redshift can be precisely measured from spectra
- Combined with a measure of distance, distance-redshift $D(z) \equiv D(z(a))$ can be inferred - given that photons travel $D=\Delta \eta$ this tells us how the scale factor of the universe evolves with time.
- Related to the expansion history as

$$
\begin{aligned}
& D(a)=\int d D=\int_{a}^{1} \frac{d \ln a^{\prime}}{a^{\prime} H\left(a^{\prime}\right)} \\
& \quad\left[d \ln a^{\prime}=-d \ln (1+z)=-a^{\prime} d z\right] \\
& D(z)=-\int_{z}^{0} \frac{d z^{\prime}}{H\left(z^{\prime}\right)}=\int_{0}^{z} \frac{d z^{\prime}}{H\left(z^{\prime}\right)}
\end{aligned}
$$

Hubble Law

- Note limiting case is the Hubble law

$$
\lim _{z \rightarrow 0} D(z)=z / H(z=0) \equiv z / H_{0}
$$

independently of the geometry and expansion dynamics

- Hubble constant usually quoted as as dimensionless h

$$
H_{0}=100 h \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}
$$

- Observationally $h \sim 0.7$ (see below)
- With $c=1, H_{0}^{-1}=9.7778\left(h^{-1} \mathrm{Gyr}\right)$ defines the time scale (Hubble time, \sim age of the universe)
- As well as $H_{0}^{-1}=2997.9\left(h^{-1} \mathrm{Mpc}\right)$ a length scale (Hubble scale \sim Horizon scale)

Standard Ruler

- Standard Ruler: object of known physical size λ
- Let's apply our rule of thumb: at emission the comoving size is Λ :

$$
\lambda=a(t) \Lambda
$$

Now everything about light is normal: the object of comoving size Λ subtends an observed angle α on the sky α

$$
\alpha=\frac{\Lambda}{D_{A}(z)}
$$

- This is the easiest way of thinking about it. But we could also define an effective physical distance $d_{A}(z)$ which corresponds to what we would infer in a non expanding spacetime

$$
\alpha \equiv \frac{\lambda}{d_{A}(z)}=\frac{\Lambda}{a D_{A}(z)} \rightarrow d_{A}(z)=a D_{A}(z)=\frac{D_{A}(z)}{1+z}
$$

Standard Ruler

- Since $D_{A} \rightarrow D_{A}\left(D_{\text {horizon }}\right)$ whereas $(1+z)$ unbounded, angular size of a fixed physical scale at high redshift actually increases with radial distance
- Paradox: the further away something is in d_{A}, the bigger it appears
- Easily resolved by thinking about comoving coordinates - a fixed physical scale λ as the universe shrinks and $a \rightarrow 0$ will eventually encompass the whole observable universe out to the horizon in comoving coordinates so of course it subtends a big angle on the sky!
- But there are no such bound objects in the early universe there is no causal way such bigger-than-the-horizon objects could form
- Knowing λ or Λ and measuring α and z allows us to infer the comoving angular diameter distance $D_{A}(z)$

Standard Candle

- Standard Candle: objects of same luminosity L, measured flux F
- Apply rules again: at emission in conformal-comoving coordinates
$-L$ is the energy per unit time at emission
- Since $E \propto \lambda^{-1}$ and comoving wavelength $\Lambda \propto \lambda / a$ so comoving energy $\mathcal{E} \propto \Lambda^{-1} \propto a E$
- Per unit time at emission $\Delta t=a \Delta \eta$ in conformal time
- So observed luminosity today is $\mathcal{L}=\mathcal{E} / \Delta \eta=a^{2} L$
- All photons must pass through the sphere at a given distance, so the comoving surface area is $4 \pi D_{A}^{2}$
- Put this together to the observed flux at $a=1$

$$
F=\frac{\mathcal{L}}{4 \pi D_{A}^{2}}=\frac{L}{4 \pi D_{A}^{2}} \frac{1}{(1+z)^{2}}
$$

Notice the flux is diminished by two powers of $(1+z)$

Luminosity Distance

- We can again define a physical "luminosity" distance that corresponds to our non-expanding spacetime intuition

$$
F \equiv \frac{L}{4 \pi d_{L}^{2}}
$$

- So luminosity distance

$$
d_{L}=(1+z) D_{A}=(1+z)^{2} d_{A}
$$

- As $z \rightarrow 0, d_{L}=d_{A}=D_{A}$
- But as $z \rightarrow \infty, d_{L} \gg d_{A}$ - key to understanding Olber's paradox

Olber's Paradox Redux

- Surface brightness - object of physical size λ

$$
S=\frac{F}{\Delta \Omega}=\frac{L}{4 \pi d_{L}^{2}} \frac{d_{A}^{2}}{\lambda^{2}}
$$

- In a non-expanding geometry (regardless of curvature), surface brightness is conserved $d_{A}=d_{L}$

$$
S=\text { const. }
$$

- each site line in universe full of stars will eventually end on surface of star, night sky should be as bright as sun (not infinite)
- In an expanding universe

$$
S \propto(1+z)^{-4}
$$

Olber's Paradox Redux

- Second piece: age finite so even if stars exist in the early universe, not all site lines end on stars
- But even as age goes to infinity and the number of site lines goes to 100%, surface brightness of distant objects (of fixed physical size) goes to zero
- Angular size increases
- Redshift of "luminosity" i.e. energy and arrival time dilation

Measuring $D(z)$

- Astro units side: since flux ratios are very large in cosmology, its more useful to take the \log

$$
m_{1}-m_{2}=-2.5 \log _{10}\left(F_{1} / F_{2}\right)
$$

related to d_{L} by definition by inverse square law

$$
m_{1}-m_{2}=5 \log _{10}\left[d_{L}\left(z_{1}\right) / d_{L}\left(z_{2}\right)\right]
$$

- To quote in terms of a single object, introduce absolute magnitude as the magnitude that would be measured for the object at 10 pc

$$
m-M=5 \log _{10}\left[d_{L}(z) / 10 \mathrm{pc}\right]
$$

Knowing absolute magnitude is the same as knowing the absolute distance, otherwise distances are relative

Measuring $D(z)$

- If absolute magnitude unknown, then both standard candles and standard rulers measure relative sizes and fluxes - ironically this means that measuring the change in H is easier than measuring H_{0}
- acceleration easier than rate!

For standard candle, e.g. compare magnitudes low z_{0} to a high z object - using the Hubble law $d_{L}\left(z_{0}\right)=z_{0} / H_{0}$ we have

$$
\Delta m=m_{z}-m_{z_{0}}=5 \log _{10} \frac{d_{L}(z)}{d_{L}\left(z_{0}\right)}=5 \log _{10} \frac{H_{0} d_{L}(z)}{z_{0}}
$$

Likewise for a standard ruler comparison at the two redshifts

$$
\frac{d_{A}(z)}{d_{A}\left(z_{0}\right)}=\frac{H_{0} d_{A}(z)}{z_{0}}
$$

- Distances are measured in units of h^{-1} Mpc.

Measuring $D(z)$

- Since z is a direct observable, in both cases $H_{0} D_{A}(z)$ is the measured quantity
- We can relate that back to $H_{0} D(z)$ recalling that

$$
H_{0} D_{A}=H_{0} R \sin \left(H_{0} D / H_{0} R\right)
$$

or in other words if we use $h^{-1} \mathrm{Mpc}$ as the unit for all lengths furthermore, local observations are at distances much smaller than R so $H_{0} D_{A}=H_{0} D$ is a good approximation

- Then since $D(z)=\int d z / H(z)$ we have

$$
H_{0} D(z)=\int d z \frac{H_{0}}{H(z)}
$$

- Fundamentally our low to high z comparison tells us the change in expansion rate $H(z) / H_{0}$

Supernovae as Standard Candles

- Type 1A supernovae are white dwarfs that reach Chandrashekar mass where electron degeneracy pressure can no longer support the star, hence a very regular explosion
- Moreover, the scatter in absolute magnitude is correlated with the shape of the light curve - the rate of decline from peak light, empirical "Phillips relation"

- Higher ${ }^{56} N$, brighter SN , higher opacity, longer light curve duration

Beyond Hubble's Law

- Type 1A are therefore
"standardizable" candles
leading to a very low
scatter $\delta m \sim 0.15$ and visible out to high redshift $z \sim 1$
- Two groups in 1999
found that SN more distant at a given redshift than expected
- Cosmic acceleration

Acceleration of the Expansion

- Using SN as a relative indicator (independent of absolute magnitude), comparison of low and high z gives

$$
H_{0} D(z)=\int d z \frac{H_{0}}{H}
$$

more distant implies that $H(z)$ not increasing at expect rate, i.e. is more constant

- Take the limiting case where $H(z)$ is a constant (a.k.a. de Sitter expansion

$$
\begin{aligned}
H & =\frac{1}{a} \frac{d a}{d t}=\text { const } \\
\frac{d H}{d t} & =\frac{1}{a} \frac{d^{2} a}{d t^{2}}-H^{2}=0 \\
\frac{1}{a} \frac{d^{2} a}{d t^{2}} & =H^{2}>0
\end{aligned}
$$

Acceleration of the Expansion

- Indicates that the expansion of the universe is accelerating
- Intuition tells us (FRW dynamics shows) ordinary matter decelerates expansion since gravity is attractive
- Ordinary expectation is that

$$
H(z>0)>H_{0}
$$

so that the Hubble parameter is higher at high redshift
Or equivalently that expansion rate decreases as it expands

- Notice that this a purely geometric inference and does not yet say anything about what causes acceleration - topic of next set of lectures on cosmic dynamics

Hubble Constant

- Getting H_{0} itself is harder since we need to know the absolute distance d_{L} to the objects: $H_{0}=z_{0} / d_{L}$
- Hubble actually inferred too
 large a Hubble constant of $H_{0} \sim 500 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$
- Miscalibration of the Cepheid distance scale - absolute measurement hard, checkered history
- Took 70 years to settle on this value with a factor of 2 discrepancy persisting until late 1990's - which is after the projects which discovered acceleration were conceived!
- H_{0} now measured as $73.48 \pm 1.66 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$ by SHOES calibrating off AGN water maser

Hubble Constant History

- Difficult measurement since local galaxies have peculiar motions and so their velocity is not entirely due to the "Hubble flow"
- A "distance ladder" of cross calibrated measurements
- Primary distance indicators cepheids, novae planetary nebula, tip of red giant branch, or globular cluster luminosity function, AGN water maser
- Use more luminous secondary distance indications to go out in distance to Hubble flow

Tully-Fisher, fundamental plane, surface brightness
fluctuations, Type 1A supernova

Modern Distance Ladder

- Geometry \rightarrow Cepheids \rightarrow SNIa
- Luminosity distance $d_{L}(m-M, z) \rightarrow H_{0}$
- SH0ES, Riess et al 2016

Maser-Cepheid-SN Distance Ladder

- Water maser around AGN, gas in Keplerian orbit
- Measure proper motion, radial velocity, acceleration of orbit
- Method 1: radial velocity plus
 orbit infer tangential velocity $=$ distance \times angular proper motion

$$
v_{t}=d_{A}(d \alpha / d t)
$$

- Method 2: centripetal acceleration and radial velocity from line infer physical size

$$
a=v^{2} / R, \quad R=d_{A} \theta
$$

Maser-Cepheid-SN Distance Ladder

- Calibrate Cepheid period-luminosity relation in same galaxy
- SHOES project then calibrates SN distance in galaxies with Cepheids

Also: consistent with recent HST parallax determinations of 10 galactic Cepheids (8% distance each) with $\sim 20 \%$ larger H_{0} error bars - normal metalicity as opposed to LMC Cepheids.

- Measure SN at even larger distances out into the Hubble flow
- Riess et al (2018) $H_{0}=73.48 \pm 1.66 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$ more precise (2.2%) than the HST Key Project calibration (11\%).
- As of Spring 2018, this differs from the CMB distance ladder working from high redshifts at 3.7σ. Next update should be by end of quarter...

