
Set 3:
Cosmic Dynamics



FRW Dynamics
• This is as far as we can go on FRW geometry alone - we still need

to know how the scale factor a(t) evolves given matter-energy
content

• General relativity: matter tells geometry how to curve, scale factor
determined by content

• This next part is for advanced students and will not be required for
problem sets or exams but included so you get a flavor of general
relativity – cosmology is the simplest application of general
relativity possible

• After this brief aside, we’ll return to explain this by Newtonian
mechanics - even for the cosmological expansion, gravity is locally
Newtonian



General Relativity
• Build the Einstein tensor Gµν out of the metric and use Einstein

equation (overdots conformal time derivative)
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gµνR) = 8πGTµν

• Easier to work with mixed upper and lower indices since the
metric gµν = δµν

• For the FRW metric
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where recall the curvature K = 1/R2 and overdots are d/dη



Matter as Curvature Source
• Likewise isotropy demands that the stress-energy tensor take the

form

T 0
0 = −ρ, T ij = pδij → T ij − T 0
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where ρ is the energy density and p is the pressure

• It is not necessary to assume that the content is a perfect fluid -
consequence of FRW symmetry

• This concludes our GR aside for advanced students – you are not
responsible for that part



Friedmann Equations
• Einstein equations given the FRW symmetries become the

Friedmann equations
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• Acceleration source is ρ+ 3p requiring p < −ρ/3 for positive
acceleration

• Curvature as an effective energy density component
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Positive curvature gives negative effective energy density



Critical Density
• Friedmann equation for H then reads

H2(a) =
8πG

3
(ρ+ ρK) ≡ 8πG

3
ρc

defining a critical density today ρc in terms of the expansion rate

• In particular, its value today is given by the Hubble constant as

ρc(z = 0) =
3H2

0

8πG
= 1.8788× 10−29h2g cm−3

or about 10−5h2 protons per cm3 - really empty

• Energy density today is given as a fraction of critical

Ω ≡ ρ

ρc(z = 0)

• Note that physical energy density ∝ Ωh2 (g cm−3)



Critical Density
• Likewise radius of curvature then given by

ΩK = (1− Ω) = − 1
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• If Ω ≈ 1, then true density is near critical ρ ≈ ρc and
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Universe is flat across the Hubble distance

• Ω > 1 positively curved
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• Ω < 1 negatively curved
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Newtonian Cosmology
• Now let’s try to understand the Friedmann equation from a

Newtonian perspective

• First let’s use energy conservation reasoning – this is not quite
right, but gives you an easy way of deriving the Friedmann
equation if you forget it

• Next we’ll see the real Newtonian cosmology derivation which
involves forces - these act locally and we don’t need to consider
separations where general relativity is necessary

• This gives a perfectly correct derivation of the dynamics of the
scale factor and since it determines the global expansion, we evade
having to work with the field equations of general relativity
directly



Newtonian Energy Interpretation
• Consider a test particle of mass m as part of expanding spherical

shell of radius r and total mass M .
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Newtonian Energy Interpretation
.

• Constant determines whether
the system is bound and
in the Friedmann equation is
associated with curvature – not
general since neglects pressure

• Nonetheless Friedmann
equation is the same with
pressure - but mass-energy
within expanding shell is not constant

• Instead, rely on the fact that gravity in the weak field regime is
Newtonian and forces unlike energies are unambiguously defined
locally.



Newtonian Force Interpretation
• An alternate, more general Newtonian derivation, comes about by

realizing that locally around an observer, gravity must look
Newtonian.

• Given Newton’s iron sphere theorem, the gravitational acceleration
due to a spherically symmetric distribution of mass outside some
radius r is zero (Birkhoff theorem in GR)

• We can determine the acceleration simply from the enclosed mass
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where ρ+ 3p reflects the active gravitational mass provided by
pressure.



Newtonian Force Interpretation
• Hence the gravitational acceleration
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• We’ll come back to this way of viewing the effect of the expansion
on the formation of structure - in particular the evolution of a
spherically symmetric density perturbation



Conservation Law
• The two Friedmann equation are redundant in that one can be

derived from the other via energy conservation

– Advanced students: consequence of Bianchi identities in GR:
∇µGµν = 0

– Think of this as an adiabatically expanding gas
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Equation of State Parameter
• Time evolution depends on “equation of state” w(a) = p/ρ

• If w = const. then the energy density depends on the scale factor
as ρ ∝ a−3(1+w)

• Different particle species have different equations of state

• Even non-particle species like curvature and dark energy have
effective equations of state defined by the average pressure /
average energy density - in these cases w does not define a real
(local) equation of state of a real expanding gas



Multicomponent Universe
Special cases:
• nonrelativistic matter ρm = mnm ∝ a−3, wm = 0

• ultrarelativistic radiation ρr = Enr ∝ nr/λ ∝ a−4, wr = 1/3

• (cosmological) constant energy density ρΛ ∝ a0, wΛ = −1

• total energy density summed over above
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– again think of curvature as fictitious energy density
• curvature ρK ∝ a−2, wK = −1/3

– again all components sum up to critical density

ρc = ρ+ ρK → 1 =
∑
i

Ωi + ΩK

– likewise for pc and wc = pc/ρc



Multicomponent Universe
• For the Friedmann equation we can always think of a

multicomponent universe as a single component universe with a
complicated equation of state wc(a) = pc(a)/ρc(a)

• Now let’s relate the two Friedmann equations with energy
conservation



Acceleration Equation
• Time derivative of (first) Friedmann equation
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• Acceleration if w < −1/3

• Reverse: Newtonian acceleration implies Friedmann equation



Expansion Required
• Friedmann equations “predict” the expansion of the universe.

Non-expanding conditions da/dt = 0 and d2a/dt2 = 0 require

ρ = −ρK ρ = −3p

i.e. a positive curvature and a total equation of state
w ≡ p/ρ = −1/3

• Since matter is known to exist, one can in principle achieve this by
adding a balancing cosmological constant

ρ = ρm + ρΛ = −ρK = −3p = 3ρΛ

ρΛ = −1

3
ρK , ρm = −2

3
ρK

Einstein introduced ρΛ for exactly this reason – “biggest blunder”;
but note that this balance is unstable: ρm can be perturbed but ρΛ, a
true constant cannot


