
Set 7:
CMB and Large Scale Structure



CMB Temperature Anisotropy
• Planck 2015 map of the temperature anisotropy (first discovered

by COBE) from recombination:
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CMB Temperature Anisotropy
• Power spectrum shows characteristic scales where the intensity of

variations peak - reveals geometry and contents of the universe:
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CMB Parameter Inferences
• Spectrum constrains the matter-energy contents of the universe

Planck Collaboration: Cosmological parameters

Table 3. Parameters of the base ΛCDM cosmology computed from the 2015 baseline Planck likelihoods illustrating the consistency
of parameters determined from the temperature and polarization spectra at high multipoles. Column [1] uses the TT spectra at
low and high multipoles and is the same as column [6] of Table 1. Columns [2] and [3] use only the T E and EE spectra at high
multipoles, and only polarization at low multipoles. Column [4] uses the full likelihood. The last column lists the deviations of the
cosmological parameters determined from the TT+lowP and TT,TE,EE+lowP likelihoods.

Parameter [1] Planck TT+lowP [2] Planck TE+lowP [3] Planck EE+lowP [4] Planck TT,TE,EE+lowP ([1] − [4])/σ[1]

Ωbh2 . . . . . . . . . . 0.02222 ± 0.00023 0.02228 ± 0.00025 0.0240 ± 0.0013 0.02225 ± 0.00016 −0.1
Ωch2 . . . . . . . . . . 0.1197 ± 0.0022 0.1187 ± 0.0021 0.1150+0.0048

−0.0055 0.1198 ± 0.0015 0.0
100θMC . . . . . . . . 1.04085 ± 0.00047 1.04094 ± 0.00051 1.03988 ± 0.00094 1.04077 ± 0.00032 0.2
τ . . . . . . . . . . . . . 0.078 ± 0.019 0.053 ± 0.019 0.059+0.022

−0.019 0.079 ± 0.017 −0.1
ln(1010As) . . . . . . 3.089 ± 0.036 3.031 ± 0.041 3.066+0.046

−0.041 3.094 ± 0.034 −0.1
ns . . . . . . . . . . . . 0.9655 ± 0.0062 0.965 ± 0.012 0.973 ± 0.016 0.9645 ± 0.0049 0.2
H0 . . . . . . . . . . . 67.31 ± 0.96 67.73 ± 0.92 70.2 ± 3.0 67.27 ± 0.66 0.0
Ωm . . . . . . . . . . . 0.315 ± 0.013 0.300 ± 0.012 0.286+0.027

−0.038 0.3156 ± 0.0091 0.0
σ8 . . . . . . . . . . . . 0.829 ± 0.014 0.802 ± 0.018 0.796 ± 0.024 0.831 ± 0.013 0.0
109Ase−2τ . . . . . . 1.880 ± 0.014 1.865 ± 0.019 1.907 ± 0.027 1.882 ± 0.012 −0.1

which do not depend strongly on τ are consistent between the TT
and T E spectra to within typically 0.5σ or better. Furthermore,
the cosmological parameters derived from the T E spectra have
comparable errors to the TT parameters. None of the conclu-
sions in this paper would change in any significant way were we
to use the T E parameters in place of the TT parameters. The
consistency of the cosmological parameters for base ΛCDM be-
tween temperature and polarization therefore gives added confi-
dence that Planck parameters are insensitive to the specific de-
tails of the foreground model that we have used to correct the
TT spectra. The EE parameters are also typically within about
1σ of the TT parameters, though because the EE spectra from
Planck are noisier than the TT spectra, the errors on the EE pa-
rameters are significantly larger than those from TT . However,
both the T E and EE likelihoods give lower values of τ, As and
σ8, by over 1σ compared to the TT solutions. Note that the T E
and EE entries in Table 3 do not use any information from the
temperature in the low multipole likelihood. The tendency for
higher values of σ8, As, and τ in the Planck TT+lowP solution is
driven, in part, by the temperature power spectrum at low multi-
poles.

Columns [4] and [5] of Table 3 compare the parameters of
the TT likelihood with the full TT,T E, EE likelihood. These
are in agreement, shifting by less than 0.2σ. Although we have
emphasized the presence of systematic effects in the Planck
polarization spectra, which are not accounted for in the errors
quoted in column [4] of Table 3, the consistency of the TT and
TT,T E, EE parameters provides strong evidence that residual
systematics in the polarization spectra have little impact on the
scientific conclusions in this paper. The consistency of the base
ΛCDM parameters from temperature and polarization is illus-
trated graphically in Fig. 6. As a rough rule-of-thumb, for base
ΛCDM, or extensions to ΛCDM with spatially flat geometry,
using the full TT,T E, EE likelihood produces improvements in
cosmological parameters of about the same size as adding BAO
to the Planck TT+lowP likelihood.

3.4. Constraints on the reionization optical depth parameter τ

The reionization optical depth parameter τ provides an important
constraint on models of early galaxy evolution and star forma-
tion. The evolution of the inter-galactic Lyα opacity measured in
the spectra of quasars can be used to set limits on the epoch of
reionization (Gunn & Peterson 1965). The most recent measure-

ments suggest that the reionization of the inter-galactic medium
was largely complete by a redshift z ≈ 6 (Fan et al. 2006). The
steep decline in the space density of Lyα emitting galaxies over
the redshift range 6 <∼ z <∼ 8 also implies a low redshift of reion-
ization (Choudhury et al. 2014). As a reference, for the Planck
parameters listed in Table 3, instantaneous reionization at red-
shift z = 7 results in an optical depth of τ = 0.048.

The optical depth τ can also be constrained from observa-
tions of the CMB. The WMAP9 results of Bennett et al. (2013)
give τ = 0.089 ± 0.014, corresponding to an instantaneous red-
shift of reionization zre = 10.6 ± 1.1. The WMAP constraint
comes mainly from the EE spectrum in the multipole range
` = 2–6. It has been argued (e.g., Robertson et al. 2013, and ref-
erences therein) that the high optical depth reported by WMAP
cannot be produced by galaxies seen in deep redshift surveys,
even assuming high escape fractions for ionizing photons, im-
plying additional sources of photoionizing radiation from still
fainter objects. Evidently, it would be useful to have an indepen-
dent CMB measurement of τ.

The τ measurement from CMB polarization is difficult be-
cause it is a small signal, confined to low multipoles, requiring
accurate control of instrumental systematics and polarized fore-
ground emission. As discussed by Komatsu et al. (2009), uncer-
tainties in modelling polarized foreground emission are com-
parable to the statistical error in the WMAP τ measurement.
In particular, at the time of the WMAP9 analysis there was
very little information available on polarized dust emission. This
situation has been partially rectified by the 353 GHz polariza-
tion maps from Planck (Planck Collaboration Int. XXII 2014;
Planck Collaboration Int. XXX 2014). In PPL13, we used pre-
liminary 353 GHz Planck polarization maps to clean the WMAP
Ka, Q, and V maps for polarized dust emission, using WMAP
K-band as a template for polarized synchrotron emission. This
lowered τ by about 1σ to τ = 0.075 ± 0.013 compared to
τ = 0.089 ± 0.013 using the WMAP dust model.12 However,
given the preliminary nature of the Planck polarization analysis
we decided to use the WMAP polarization likelihood, as pro-
duced by the WMAP team, in the Planck 2013 papers.

In the 2015 papers, we use Planck polarization maps based
on low-resolution LFI 70 GHz maps, excluding Surveys 2 and
4. These maps are foreground-cleaned using the LFI 30 GHz

12Note that neither of these error estimates reflect the true uncer-
tainty in foreground removal.
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Galaxy Redshift Surveys
• Galaxy redshift surveys (e.g. 2dF and SDSS) measure the three

dimensional distribution of galaxies today:
5
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FIG. 2: The distribution of the 6,476 LRGs (black) and 32,417 main galaxies (green/grey) that are within 1.25◦ of the Equatorial plane.
The solid circles indicate the boundaries of our NEAR, MID and FAR subsamples. The “safe13” main galaxy sample analyzed here and
in [28] is more local, extending out only to 600h−1 Mpc (dashed circle).

III. POWER SPECTRUM MEASUREMENTS

We measure the power spectrum of our various samples
using the PKL method described in [28]. We follow the
procedure of [28] exactly, with some additional numeri-
cal improvements described in Appendix A, so we merely
summarize the process very briefly here. The first step
is to adjust the galaxy redshifts slightly to compress so-

called fingers-of-god (FOGs), virialized galaxy clusters
that appear elongated along the line-of-sight in redshift
space; we do this with several different thresholds and
return to how this affects the results in Section IVF2.
The LRGs are not just brightest cluster galaxies; about
20% of them appear to reside in a dark matter halo with
one or more other LRG’s. The second step is to expand
the three-dimensional galaxy density field in N three-



Galaxy Power Spectrum
• SDSS LRG and Main power spectrum:

7

FIG. 4: Measured power spectra for the full LRG and main galaxy samples. Errors are uncorrelated and full window functions are shown
in Figure 5. The solid curves correspond to the linear theory ΛCDM fits to WMAP3 alone from Table 5 of [7], normalized to galaxy bias
b = 1.9 (top) and b = 1.1 (bottom) relative to the z = 0 matter power. The dashed curves include the nonlinear correction of [29] for
A = 1.4, with Qnl = 30 for the LRGs and Qnl = 4.6 for the main galaxies; see equation (4). The onset of nonlinear corrections is clearly
visible for k ∼> 0.09h/Mpc (vertical line).

Our Fourier convention is such that the dimensionless
power ∆2 of [77] is given by ∆2(k) = 4π(k/2π)3P (k).

Before using these measurements to constrain cosmo-
logical models, one faces important issues regarding their
interpretation, related to evolution, nonlinearities and
systematics.

B. Clustering evolution

The standard theoretical expectation is for matter
clustering to grow over time and for bias (the rela-
tive clustering of galaxies and matter) to decrease over
time [78–80] for a given class of galaxies. Bias is also



Structure Formation
• Small perturbations from inflation over the course of the 14Gyr life

of the universe are gravitationally enhanced into all of the structure
seen today

• Cosmic microwave background shows a snapshot at a few hundred
thousand years old at recombination

• Discovery in 1992 of cosmic microwave background anisotropy
provided the observational breakthrough - convincing support for
adiabatic initial density fluctuations of amplitude 10−5

• Combine with galaxy clustering - large scale structure seen in
galaxy surveys - right amplitude given cold dark matter



Schematic CMB Spectrum
• Take apart features in the power spectrum
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Fluid Approximation
• Thomson scattering of photons and free electrons before

recombination is sufficiently rapid that the bayrons and photons
are in equilibrium and hence move together

• Mean free path of the photons for z ≈ 103 and Ωbh
2 ≈ 0.02

λC ≡
1

neσTa
∼ 2.5Mpc

small by cosmological standards!

• On scales λ� λC photons are tightly coupled to the electrons by
Thomson scattering which in turn are tightly coupled to the
baryons by Coulomb interactions

• Specifically, their bulk velocities are defined by a single fluid
velocity vγ = vb and the photons carry no anisotropy in the rest
frame of the baryons



Zeroth Order Approximation
• Momentum density of a fluid is (ρ+ p)v, where p is the pressure

• Neglect the momentum density of the baryons

R ≡ (ρb + pb)vb
(ργ + pγ)vγ

=
ρb + pb
ργ + pγ

=
3ρb
4ργ

≈ 0.6

(
Ωbh

2

0.02

)( a

10−3

)
since ργ ∝ T 4 is fixed by the CMB temperature T = 2.73(1 + z)K
– OK substantially before recombination

• Neglect radiation in the expansion

ρm
ρr

= 3.6

(
Ωmh

2

0.15

)( a

10−3

)
• Neglect gravity



Fluid Equations
• Density ργ ∝ T 4 so define temperature fluctuation Θ

δγ = 4
δT

T
≡ 4Θ

• Real space continuity eqn.: the local number or energy density of
photons changes if there is a divergence of the velocity field - a
flow inwards or outwards from the volume

• Transformed to Fourier space∇(eik·x)→ ik(eik·x) and
∇ · v = −kv

δ̇γ = −(1 + wγ)kvγ

Θ̇ = −1

3
kvγ



Fluid Equations
• Euler equation (neglecting gravity for now): momentum

conservation says that pressure gradients generate changes in
momentum density kδpγ = kc2

sδργ

v̇γ =
kc2

s

1 + wγ
δγ

= kc2
s

3

4
δγ = 3c2

skΘ

where the sound speed c2
s = δp/δρ is the pressure response to a

density fluctuation

• So if you squeeze the photon gas to raise its density, its going to
respond with a restoring force by raising the pressure and resisting
compression→ acoustic oscillations



Oscillator: Take One
• Combine these to form the simple harmonic oscillator equation

Θ̈ + c2
sk

2Θ = 0

where the sound speed is adiabatic

c2
s =

δp

δρ
=
ṗγ
ρ̇γ

here c2
s = 1/3 since we are photon-dominated

• General solution:

Θ(η) = Θ(0) cos(ks) +
Θ̇(0)

kcs
sin(ks)

where the sound horizon is defined as s ≡
∫
csdη



Harmonic Extrema
.
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(a) Peak Scales (b) Baryons• All modes begin at
end of inflation
and are frozen in at
recombination (denoted
with a subscript ∗)
• Temperature perturbations

of different amplitude for
different modes.

• For the adiabatic (curvature mode) initial conditions

Θ̇(0) = 0

• So solution

Θ(η∗) = Θ(0) cos(ks∗)



Harmonic Extrema
• Modes caught in the extrema of their oscillation will have

enhanced fluctuations

kns∗ = nπ

yielding a fundamental scale or frequency, related to the inverse
sound horizon

kA = π/s∗

and a harmonic relationship to the other extrema as 1 : 2 : 3...



Peak Location
• The fundmental physical scale is translated into a fundamental

angular scale by simple projection according to the angular
diameter distance DA

θA = λA/DA

`A = kADA

• In a flat universe, the distance is simply DA = D ≡ η0 − η∗ ≈ η0,
the horizon distance, and kA = π/s∗ =

√
3π/η∗ so

θA ≈
η∗
η0

• In a matter-dominated universe η ∝ a1/2 so θA ≈ 1/30 ≈ 2◦ or

`A ≈ 200



Curvature
.

λ

α
• In a curved

universe, the apparent
or angular diameter
distance is no longer
the conformal distance
DA = R sin(D/R) 6= D

• Objects in a closed
universe are further than
they appear! gravitational lensing of the background...

• Curvature scale of the universe must be substantially larger than
current horizon



Curvature
.

10 100 1000

20

40

60

80

100

l

Δ
T

 (
μ
K
)

Ωtot
�

0.2 0.4 0.6 0.8 1.0

• Flat universe indicates critical
density and implies missing
energy given local measures of
the matter density “dark energy”

• D also depends
on dark energy density ΩDE and
equation of state w = pDE/ρDE.

• Expansion rate at recombination
or matter-radiation ratio enters into calculation of kA.



Restoring Gravity
• Take a simple photon dominated system with gravity

• Continuity altered since a gravitational potential represents a
stretching of the spatial fabric that dilutes number densities –
formally a spatial curvature perturbation

• Think of this as a perturbation to the scale factor a→ a(1 + Φ) so
that the cosmogical redshift is generalized to

ȧ

a
→ ȧ

a
+ Φ̇

so that the continuity equation becomes

Θ̇ = −1

3
kvγ − Φ̇



Restoring Gravity
• Gravitational force in momentum conservation F = −m∇Ψ

generalized to momentum density modifies the Euler equation to

v̇γ = k(Θ + Ψ)

• General relativity says that Φ and Ψ are the relativistic analogues
of the Newtonian potential and that Φ ≈ −Ψ.

• In our matter-dominated approximation, Φ represents matter
density fluctuations through the cosmological Poisson equation

k2Φ = 4πGa2ρm∆m

where the difference comes from the use of comoving coordinates
for k (a2 factor), the removal of the background density into the
background expansion (ρ∆m) and finally a coordinate subtlety that
enters into the definition of ∆m



Constant Potentials
• In the matter dominated epoch potentials are constant because

infall generates velocities as vm ∼ kηΨ

• Velocity divergence generates density perturbations as
∆m ∼ −kηvm ∼ −(kη)2Ψ

• And density perturbations generate potential fluctuations

Φ =
4πGa2ρ∆

k2
≈ 3

2

H2a2

k2
∆ ∼ ∆

(kη)2
∼ −Ψ

keeping them constant. Note that because of the expansion, density
perturbations must grow to keep potentials constant.



Constant Potentials
• More generally, if stress perturbations are negligible compared

with density perturbations ( δp� δρ ) then potential will remain
roughly constant

• More specifically a variant called the Bardeen or comoving
curvature is strictly constant

R = const ≈ 5 + 3w

3 + 3w
Φ

where the approximation holds when w ≈const.



Oscillator: Take Two
• Combine these to form the simple harmonic oscillator equation

Θ̈ + c2
sk

2Θ = −k
2

3
Ψ− Φ̈

• In a CDM dominated expansion Φ̇ = Ψ̇ = 0. Also for photon
domination c2

s = 1/3 so the oscillator equation becomes

Θ̈ + Ψ̈ + c2
sk

2(Θ + Ψ) = 0

• Solution is just an offset version of the original

[Θ + Ψ](η) = [Θ + Ψ](0) cos(ks)

• Θ + Ψ is also the observed temperature fluctuation since photons
lose energy climbing out of gravitational potentials at
recombination



Effective Temperature
• Photons climb out of potential wells at last scattering

• Lose energy to gravitational redshifts

• Observed or effective temperature

Θ + Ψ

• Effective temperature oscillates around zero with amplitude given
by the initial conditions

• Note: initial conditions are set when the perturbation is outside of
horizon, need inflation or other modification to matter-radiation
FRW universe.

• GR says that initial temperature is given by initial potential



Sachs-Wolfe Effect and the Magic 1/3
• A gravitational potential is a perturbation to the temporal

coordinate [formally a gauge transformation]

δt

t
= Ψ

• Convert this to a perturbation in the scale factor, in a matter
dominated expansion a ∝ t2/3 so

δa

a
=

2

3

δt

t

• CMB temperature is cooling as T ∝ a−1 so

Θ + Ψ ≡ δT

T
+ Ψ = −δa

a
+ Ψ =

1

3
Ψ



Sachs-Wolfe Normalization
• Use measurements of ∆T/T ≈ 10−5 in the Sachs-Wolfe effect to

infer ∆2
R

• Recall in matter domination Ψ = −3R/5 and so ∆T/T = −R/5
• So that the amplitude of initial curvature fluctuations is

∆R ≈ 5× 10−5

• This then determines the amplitude of the inflationary power
spectrum AS = ∆2

R in the previous lecture set



Baryon Loading
• Baryons add extra mass to the photon-baryon fluid

• Controlling parameter is the momentum density ratio:

R ≡ pb + ρb
pγ + ργ

≈ 30Ωbh
2
( a

10−3

)
of order unity at recombination

• Momentum density of the joint system is conserved

(ργ + pγ)vγ + (ρb + pb)vb ≈ (pγ + pγ + ρb + ργ)vγ

= (1 +R)(ργ + pγ)vγb

• Momentum density ratio enters as

[(1 +R)vγb]
· = kΘ + (1 +R)kΨ



New Euler Equation
• Photon continuity remains the same

Θ̇ = −k
3
vγb − Φ̇

• Modification of oscillator equation

d

dη
[(1 +R)Θ̇] +

1

3
k2Θ = −1

3
k2(1 +R)Ψ− d

dη
[(1 +R)Φ̇]

• In a CDM dominated expansion Φ̇ = Ψ̇ = 0 and the adiabatic
approximation where the sound speed evolves slowly

cs =

√
1

3

1

1 +R

[Θ + (1 +R)Ψ](η) = [Θ + (1 +R)Ψ](0) cos(ks)



Baryon Peak Phenomenology
.
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(a) Peak Scales (b) Baryons• Photon-baryon
ratio enters in three ways

• Overall larger amplitude:

[Θ + (1 +R)Ψ](0) =
1

3
(1 + 3R)Ψ(0)

• Even-odd peak modulation of
effective temperature

[Θ + Ψ]peaks = [±(1 + 3R)− 3R]
1

3
Ψ(0)

[Θ + Ψ]1 − [Θ + Ψ]2 = [−6R]
1

3
Ψ(0)

• Shifting of the sound horizon down or `A up

`A ∝
√

1 +R



Photon Baryon Ratio Evolution
• Actual effects smaller since R evolves

• Oscillator equation has time evolving mass

c2
s

d

dη
(c−2
s Θ̇) + c2

sk
2Θ = 0

• Effective mass is is meff = 3c−2
s = (1 +R)

• Adiabatic invariant

E

ω
=

1

2
meffωA

2 =
1

2
3c−2
s kcsA

2 ∝ A2(1 +R)1/2 = const.

• Amplitude of oscillation A ∝ (1 +R)−1/4 decays adiabatically as
the photon-baryon ratio changes



Baryons in the Power Spectrum
• Relative heights of peaks

Ωbh2
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Oscillator: Take Three and a Half
• The not-quite-so simple harmonic oscillator equation is a forced

harmonic oscillator

c2
s

d

dη
(c−2
s Θ̇) + c2

sk
2Θ = −k

2

3
Ψ− c2

s

d

dη
(c−2
s Φ̇)

changes in the gravitational potentials alter the form of the
acoustic oscillations

• If the forcing term has a temporal structure that is related to the
frequency of the oscillation, this becomes a driven harmonic
oscillator

• Term involving Ψ is the ordinary gravitational force

• Term involving Φ involves the Φ̇ term in the continuity equation as
a (curvature) perturbation to the scale factor



Potential Decay
• Matter-to-radiation ratio

ρm
ρr
≈ 24Ωmh

2
( a

10−3

)
of order unity at recombination in a low Ωm universe

• Radiation is not stress free and so impedes the growth of structure

k2Φ = 4πGa2ρr∆r

∆r ∼ 4Θ oscillates around a constant value, ρr ∝ a−4 so the
Netwonian curvature decays.

• General rule: potential decays if the dominant energy component
has substantial stress fluctuations, i.e. below the generalized sound
horizon or Jeans scale



Radiation Driving
• Decay is timed precisely to drive the oscillator - close to fully

coherent

|[Θ + Ψ](η)| = |[Θ + Ψ](0) + ∆Ψ−∆Φ|

= |1
3

Ψ(0)− 2Ψ(0)| = |5
3

Ψ(0)|

105 15 20

Ψi

–Ψi

Ψ

Θ+Ψ

πγ

ks/π

damping

driving

• 5× the amplitude of the Sachs-Wolfe effect!



Matter-Radiation in the Power Spectrum
.
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• Coherent approximation is exact
for a photon-baryon fluid but
reality is reduced to ∼ 4×
because neutrino contribution
is free streaming not fluid like

• Neutrinos drive the oscillator
less efficiently and also slightly
change the phase of the oscillation

• Actual initial conditions are Θ + Ψ = Ψ/2 for radiation
domination but comparison to matter dominated SW correct

• With 3 peaks, it is possible to solve for both the baryons and dark
matter densities, providing a calibration for the sound horizon

• Higher peaks check consistency with assumptions: e.g. extra
relativistic d.o.f.s



Damping
• Tight coupling equations assume a perfect fluid: no viscosity, no

heat conduction

• Fluid imperfections are related to the mean free path of the
photons in the baryons

λC = τ̇−1 where τ̇ = neσTa

is the conformal opacity to Thomson scattering

• Dissipation is related to the diffusion length: random walk
approximation

λD =
√
NλC =

√
η/λC λC =

√
ηλC

the geometric mean between the horizon and mean free path

• λD/η∗ ∼ few %, so expect the peaks :> 3 to be affected by
dissipation



Transfer Function
• Transfer function transfers the initial Newtonian curvature to its

value today (linear response theory)

T (k) =
Φ(k, a = 1)

Φ(k, ainit)

Φ(knorm, ainit)

Φ(knorm, a = 1)

• Conservation of Bardeen curvature: Newtonian curvature is a
constant when stress perturbations are negligible: above the
horizon during radiation and dark energy domination, on all scales
during matter domination

• When stress fluctuations dominate, perturbations are stabilized by
the Jeans mechanism

• Hybrid Poisson equation: Newtonian curvature, comoving density
perturbation ∆ ≡ (δρ/ρ)com implies Φ decays

(k2 − 3K)Φ = 4πGa2ρ∆ ∼ η−2∆



Transfer Function
• Freezing of ∆ stops at ηeq

Φ ∼ (kηeq)−2∆H ∼ (kηeq)−2Φinit

• Transfer function has a k−2 fall-off beyond keq ∼ η−1
eq

ηeq = 15.7(Ωmh
2)−1

(
T

2.7K

)2

Mpc

• Small correction since growth with a smooth radiation component
is logarithmic not frozen

• Transfer function is a direct output of an Einstein-Boltzmann code



Fitting Function
• Alternately accurate fitting formula exist, e.g. pure CDM form:

T (k(q)) =
L(q)

L(q) + C(q)q2

L(q) = ln(e+ 1.84q)

C(q) = 14.4 +
325

1 + 60.5q1.11

q = k/Ωmh
2Mpc−1(TCMB/2.7K)2

• In h Mpc−1, the critical scale depends on Γ ≡ Ωmh also known as
the shape parameter



Transfer Function
• Numerical calculation

1

0.1

0.0001 0.001 0.01 0.1 1
0.01

T(
k)

k (h–1 Mpc)

wiggles

k–2



Baryon Acoustic Oscillations
• Baryons caught up in the acoustic oscillations of the CMB and

impart acoustic oscillations to the transfer function. Density
enhancements are produced kinematically through the continuity
equation δb ∼ (kη)vb and hence are out of phase with CMB
temperature peaks

• Dissipation of the acoustic oscillations eliminates both the CMB
and baryon perturbations – known as Silk damping for the
baryons. This suppression and the general fact that baryons are
caught up with photons was one of the main arguments for CDM

• Detected first in the SDSS LRG survey.

• An excellent standard ruler for angular diameter distance DA(z)

since it does not evolve in redshift in linear theory

• Radial extent of BAO gives H(z)



Power Spectrum
• SDSS data

• Power spectrum defines large scale structure observables: galaxy
clustering, velocity field, Lyα forest clustering, cosmic shear


