Supplement
Inflationary Perturbations



Field perturbations

e Let’s define the perturbed scalar field as ¢ = ¢y + ¢ where ¢ 1s
the unperturbed field (i.e. 1 = 0¢)

e Field fluctuations obey a damped harmonic oscillator equation
(with dots referring to conformal time derivatives)

b1 + 2%&1 + k¢ ~ 0

e We want a simple harmonic oscillator that we can then quantize so
define u = a¢,

U= agy + ao
i = gy + 2agr + ady
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e Note Friedmann equations say if p = —p, a/a = 2(a/a)?



Harmonic Oscillator

e Now let’s look at the oscillator equation
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or for conformal time measured from the end of inflation
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Quantum Fluctuations
e Simple harmonic oscillator << Hubble length

i+ ku=0

e Quantize the simple harmonic oscillator
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0 = u(k,n)a+u*(k,7)a’

where u(k, ) satisfies classical equation of motion and the
creation and annihilation operators satisty

a,a'] =1, al0) =0
e Normalize wavefunction |u, du/dn] = 1
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Quantum Fluctuations

e Zero point fluctuations of ground state
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e Classical equation of motion take this quantum fluctuation outside
horizon where it freezes 1in.



Slow Roll Limait

e (lassical equation of motion then has the exact solution
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e For |k7j| < 1 (late times, > Hubble length) fluctuation freezes in
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e Power spectrum of field fluctuations
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