Set 2:

Cosmic Geometry
Newton vs Einstein

- Even though locally Newtonian gravity is an excellent approximation to General Relativity, in cosmology we deal with spatial and temporal scales across which the global picture benefits from a basic understanding of General Relativity.

- An example is: as we have seen in the previous set of notes, it is much more convenient to think of the space between galaxies expanding rather than galaxies receding through space.

- While the latter is a good description locally, its preferred coordinates place us at the center and does not allow us to talk about distances beyond which galaxies are receding faster than light - though these distances as we shall see are also not directly observable.

- To get a global picture of the expansion of the universe we need to think geometrically, like Einstein not Newton.
Gravity as Geometry

- Einstein says Gravity as a force is really the geometry of spacetime
- Force between objects is a fiction of geometry - imagine the curved space of the 2-sphere - e.g. the surface of the earth
- Two people walk from equator to pole on lines of constant longitude
- Intersect at poles as if an attractive force exists between them
- Both walk on geodesics or straight lines of the shortest distance
Gravity as Geometry

• General relativity has two aspects
 – A **metric** theory: geometry tells matter how to **move**
 – **Field equations**: matter tells geometry how to **curve**

• Metric defines distances or separations in the spacetime and freely falling matter moves on a path that extremizes the distance

• Expansion of the universe carries two corresponding pieces
 – Friedmann-Robertson-Walker geometry or metric tells matter, including light, how to move – allows us to chart out the expansion with light
 – Matter content of the universe tells it how to expand – allows us to infer the components of the universe

• Useful to **separate** out these two pieces both conceptually and for understanding **alternate cosmologies**
FRW Geometry

- FRW geometry = homogeneous and isotropic on large scales
- Universe observed to be nearly isotropic (e.g. CMB, radio point sources, galaxy surveys)
- Copernican principle: we’re not special, must be isotropic to all observers (all locations)
 - Implies homogeneity
 - Verified through galaxy redshift surveys
- FRW cosmology (homogeneity, isotropy & field equations) generically implies the expansion of the universe, except for special unstable cases
Isotropy & Homogeneity

- Isotropy: CMB isotropic to 10^{-3}, 10^{-5} if dipole subtracted
- Redshift surveys show return to homogeneity on the $>100\text{Mpc}$ scale
FRW Geometry

- **Spatial geometry** is that of constant curvature
 - Positive: sphere
 - Negative: saddle
 - Flat: plane

- **Metric** tells us how to measure distances on this surface
FRW Geometry

- Closed: sphere of radius R and (real) curvature $K = 1/R^2$
- Suppress 1 dimension α represents total angular separation between two points on the sky (θ_1, ϕ_1) and (θ_2, ϕ_2)
FRW Geometry

- Geometry tells matter how to move: take (null) geodesic motion for light along this generalized sense of longitude or radial distance D

- This arc distance is the distance our photon traveler sees

- We receive light from two different trajectories as observer at pole

- Compared with our Euclidean expectation that the angle between the rays should be related to the separation at emission Σ as $d\alpha \approx \Sigma/D$ the angular size appears larger because of the “lensing” magnification of the background

- This leads to the so called angular diameter distance - the most relevant sense of distance for the observer

- In General Relativity, we are free to use any distance coordinate we like but the two have distinct uses
To define the angular diameter distance, look for a D_A such that

$$d\Sigma = D_A d\alpha$$

Draw a circle at the distance D, its radius is $D_A = R \sin(D/R)$
FRW Geometry

• Angular diameter distance

• **Positively curved** geometry $D_A < D$ and objects are further than they appear

• **Negatively curved** universe R is imaginary and

 $R \sin(D/R) = i|R| \sin(D/i|R|) = |R| \sinh(D/|R|)$

 and $D_A > D$ objects are closer than they appear

• **Flat** universe, $R \to \infty$ and $D_A = D$
• Now add that point 2 may have a different radial distance.

• What is the distance $d\Sigma$ between points 1 (θ_1, ϕ_1, D_1) and point 2 (θ_2, ϕ_2, D_2), separated by $d\alpha$ in angle and dD in distance?

$$D_A = R \sin \left(\frac{D}{R} \right)$$
Angular Diameter Distance

- For small angular and radial separations, space is nearly flat so that the Pythagorean theorem holds for differentials

\[d\Sigma^2 = dD^2 + D_A^2 d\alpha^2 \]

- Now restore the fact that the angular separation can involve two angles on the sky - the curved sky is just a copy of the spherical geometry with unit radius that we were suppressing before

\[d\Sigma^2 = dD^2 + D_A^2 d\alpha^2 = dD^2 + D_A^2 (d\theta^2 + \sin^2 \theta d\phi^2) \]

- \(D_A \) useful for describing observables (flux, angular positions)

- \(D \) useful for theoretical constructs (causality, relationship to temporal evolution)
Alternate Notation

- Aside: line element is often also written using D_A as the coordinate distance

\[
\begin{align*}
 dD_A^2 &= \left(\frac{dD_A}{dD} \right)^2 dD^2 \\
 \left(\frac{dD_A}{dD} \right)^2 &= \cos^2(D/R) = 1 - \sin^2(D/R) = 1 - \left(\frac{D_A}{R}\right)^2 \\
 dD^2 &= \frac{1}{1 - (D_A^2/R^2)} dD_A^2
\end{align*}
\]

and defining the curvature $K = 1/R^2$ the line element becomes

\[
\begin{align*}
 d\Sigma^2 &= \frac{1}{1 - D_A^2 K} dD_A^2 + D_A^2 (d\theta^2 + \sin^2 \theta d\phi^2)
\end{align*}
\]

where $K < 0$ for a negatively curved space
Line Element or Metric Uses

• Metric also defines the volume element

\[dV = (dD)(D_A d\theta)(D_A \sin \theta d\phi) \]

\[= D_A^2 dD d\Omega \]

where \(d\Omega = \sin \theta d\theta d\phi \) is solid angle

• Most of classical cosmology boils down to these three quantities, (comoving) radial distance, (comoving) angular diameter distance, and volume element

• For example, distance to a high redshift supernova, angular size of the horizon at last scattering and BAO feature, number density of clusters...
Comoving Coordinates

- Remaining degree of freedom (preserving homogeneity and isotropy) is the **temporal evolution** of overall scale factor
- Relates the **geometry** (fixed by the radius of curvature R) to **physical coordinates** – a function of time only

$$d\sigma^2 = a^2(t) d\Sigma^2$$

Our conventions are that the scale factor today $a(t_0) \equiv 1$

- Similarly **physical distances** are given by $d(t) = a(t) D$, $d_A(t) = a(t) D_A$.

- Distances in **upper case** are **comoving**; lower, physical

 Comoving coordinates do not change with time and

 Simplest coordinates to work out geometrical effects
Time and Conformal Time

- Spacetime separation (with $c = 1$)

$$ds^2 = -dt^2 + d\sigma^2$$

$$= -dt^2 + a^2(t)d\Sigma^2$$

- Taking out the scale factor in the time coordinate

$$ds^2 \equiv a^2(t) (-d\eta^2 + d\Sigma^2)$$

$d\eta = dt/a$ defines conformal time – useful in that photons travelling radially from observer on null geodesics $ds^2 = 0$

$$\Delta D = \Delta \eta = \int \frac{dt}{a}$$

so that time and distance may be interchanged
FRW Metric

- Aside for advanced students: Relationship between coordinate differentials and space-time separation defines the metric \(g_{\mu \nu} \)

\[
 ds^2 \equiv g_{\mu \nu} dx^\mu dx^\nu = a^2(\eta) (-d\eta^2 + d\Sigma^2)
\]

Einstein summation - repeated lower-upper pairs summed

- Usually we will use comoving coordinates and conformal time as the \(x^\mu \) unless otherwise specified – metric for other choices are related by \(a(t) \)

- Aside: scale factor plays the role of a conformal rescaling (which preserves spacetime “angles”, i.e. light cone and causal structure - hence conformal time)
Horizon

- Distance travelled by a photon in the whole lifetime of the universe defines the horizon.
- Since $ds = 0$, the horizon is simply the elapsed conformal time $D_{\text{horizon}}(t) = \int_0^t \frac{dt'}{a} = \eta(t)$.
- Horizon always grows with time.
- Always a point in time before which two observers separated by a distance D could not have been in causal contact.
- Horizon problem: why is the universe homogeneous and isotropic on large scales especially for objects seen at early times, e.g. CMB, when horizon small.
Special vs. General Relativity

- From our class perspective, the big advantage of comoving coordinates and conformal time is that we have largely reduced general relativity to special relativity.
- In these coordinates, aside from the difference between D and D_A, we can think of photons propagating in flat spacetime.
- Now let’s relate this discussion to observables.
- Rule of thumb to avoid dealing with the expansion directly:
 - Convert from physical quantities to conformal-comoving quantities at emission.
 - In conformal-comoving coordinates, light propagates as usual.
 - At reception $a = 1$, conformal-comoving coordinates are physical, so interpret as usual.
Hubble Parameter

- Useful to define the expansion rate or Hubble parameter

\[H(t) \equiv \frac{1}{a} \frac{da}{dt} = \frac{d \ln a}{dt} \]

fractional change in the scale factor per unit time - \(\ln a = N \) is also known as the e-folds of the expansion

- **Cosmic time** becomes

\[t = \int dt = \int \frac{d \ln a}{H(a)} \]

- **Conformal time** becomes

\[\eta = \int \frac{dt}{a} = \int \frac{d \ln a}{aH(a)} \]

- Advantageous since conservation laws give matter evolution with \(a; \ a = (1 + z)^{-1} \) is a direct observable...
Redshift

- **Wavelength** of light “stretches” with the scale factor
- The physical wavelength λ_{emit} associated with an observed wavelength today λ_{obs} (or comoving=physical units today) is

\[
\lambda_{\text{emit}} = a(t)\lambda_{\text{obs}}
\]

so that the redshift of spectral lines measures the scale factor of the universe at t, $1 + z = 1/a$.

- Interpreting the redshift as a **Doppler shift**, objects recede in an expanding universe
Distance-Redshift Relation

- Given atomically known rest wavelength λ_{emit}, redshift can be precisely measured from spectra.

- Combined with a measure of distance, distance-redshift $D(z) \equiv D(z(a))$ can be inferred - given that photons travel $D = \Delta \eta$ this tells us how the scale factor of the universe evolves with time.

- Related to the expansion history as

$$D(a) = \int dD = \int_1^a \frac{d \ln a'}{a' H(a')}$$

$$\left[d \ln a' = -d \ln(1 + z) = -a'dz \right]$$

$$D(z) = -\int_0^z \frac{dz'}{H(z')} = \int_0^z \frac{dz'}{H(z')}$$
Hubble Law

• Note limiting case is the Hubble law

\[
\lim_{z \to 0} D(z) = z / H(z = 0) \equiv z / H_0
\]

independently of the geometry and expansion dynamics

• Hubble constant usually quoted as as dimensionless \(h \)

\[
H_0 = 100h \text{ km s}^{-1}\text{Mpc}^{-1}
\]

• Observationally \(h \sim 0.7 \) (see below)

• With \(c = 1 \), \(H_0^{-1} = 9.7778 \, (h^{-1} \text{ Gyr}) \) defines the time scale (Hubble time, \(\sim \) age of the universe)

• As well as \(H_0^{-1} = 2997.9 \, (h^{-1} \text{ Mpc}) \) a length scale (Hubble scale \(\sim \) Horizon scale)
Standard Ruler

- **Standard Ruler**: object of known physical size λ
- Let’s apply our rule of thumb: at emission the comoving size is Λ:
 \[\lambda = a(t)\Lambda\]

Now everything about light is normal: the object of comoving size Λ subtends an **observed angle** α on the sky α

\[\alpha = \frac{\Lambda}{D_A(z)}\]

- This is the easiest way of thinking about it. But we could also define an effective **physical** distance $d_A(z)$ which corresponds to what we would infer in a non expanding spacetime

\[\alpha \equiv \frac{\lambda}{d_A(z)} = \frac{\Lambda}{aD_A(z)} \rightarrow d_A(z) = aD_A(z) = \frac{D_A(z)}{1 + z}\]
Standard Ruler

- Since $D_A \rightarrow D_A(D_{\text{horizon}})$ whereas $(1 + z)$ unbounded, angular size of a fixed physical scale at high redshift actually increases with radial distance.

- Paradox: the further away something is in d_A, the bigger it appears.
 - Easily resolved by thinking about comoving coordinates - a fixed physical scale λ as the universe shrinks and $a \rightarrow 0$ will eventually encompass the whole observable universe out to the horizon in comoving coordinates so of course it subtends a big angle on the sky!
 - But there are no such bound objects in the early universe - there is no causal way such bigger-than-the-horizon objects could form.

- Knowing λ or Λ and measuring α and z allows us to infer the comoving angular diameter distance $D_A(z)$.

Standard Candle

- **Standard Candle**: objects of same luminosity L, measured flux F

- Apply rules again: at emission in conformal-comoving coordinates
 - L is the energy per unit time at emission
 - Since $E \propto \lambda^{-1}$ and comoving wavelength $\Lambda \propto \lambda/a$ so comoving energy $\mathcal{E} \propto \Lambda^{-1} \propto aE$
 - Per unit time at emission $\Delta t = a\Delta \eta$ in conformal time
 - So observed luminosity today is $\mathcal{L} = \mathcal{E}/\Delta \eta = a^2 L$
 - All photons must pass through the sphere at a given distance, so the comoving surface area is $4\pi D_A^2$

- Put this together to the observed flux at $a = 1$

$$ F = \frac{\mathcal{L}}{4\pi D_A^2} = \frac{L}{4\pi D_A^2} \frac{1}{(1 + z)^2} $$

Notice the flux is diminished by two powers of $(1 + z)$
Luminosity Distance

- We can again define a physical “luminosity” distance that corresponds to our non-expanding spacetime intuition

\[F \equiv \frac{L}{4\pi d^2_L} \]

- So luminosity distance

\[d_L = (1 + z)D_A = (1 + z)^2d_A \]

- As \(z \to 0 \), \(d_L = d_A = D_A \)

- But as \(z \to \infty \), \(d_L \gg d_A \) - key to understanding Olber’s paradox
Olber’s Paradox Redux

- **Surface brightness** - object of physical size λ

$$S = \frac{F}{\Delta \Omega} = \frac{L}{4\pi d_L^2} \frac{d_A^2}{\lambda^2}$$

- In a **non-expanding geometry** (regardless of curvature), **surface brightness** is conserved $d_A = d_L$

$$S = \text{const.}$$

 – each site line in universe full of stars will eventually end on surface of star, **night sky** should be as bright as **sun** (not infinite)

- In an expanding universe

$$S \propto (1 + z)^{-4}$$
Olber’s Paradox Redux

- Second piece: *age finite* so even if stars exist in the early universe, not all site lines end on stars

- But even as *age* goes to infinity and the number of site lines goes to 100%, *surface brightness* of distant objects (of fixed physical size) goes to *zero*
 - Angular size increases
 - Redshift of “luminosity” i.e. energy and arrival time dilation
Measuring $D(z)$

- Astro units side: since flux ratios are very large in cosmology, it's more useful to take the log

$$m_1 - m_2 = -2.5 \log_{10}(F_1/F_2)$$

related to d_L by definition by inverse square law

$$m_1 - m_2 = 5 \log_{10}[d_L(z_1)/d_L(z_2)]$$

- To quote in terms of a single object, introduce absolute magnitude as the magnitude that would be measured for the object at 10 pc

$$m - M = 5 \log_{10}[d_L(z)/10\text{pc}]$$

Knowing absolute magnitude is the same as knowing the absolute distance, otherwise, distances are relative
Measuring $D(z)$

- If absolute magnitude unknown, then both standard candles and standard rulers measure relative sizes and fluxes – ironically this means that measuring the change in H is easier than measuring H_0 – acceleration easier than rate!

For standard candle, e.g. compare magnitudes low z_0 to a high z object - using the Hubble law $d_L(z_0) = z_0/H_0$ we have

$$\Delta m = m_z - m_{z_0} = 5 \log_{10} \frac{d_L(z)}{d_L(z_0)} = 5 \log_{10} \frac{H_0 d_L(z)}{z_0}$$

Likewise for a standard ruler comparison at the two redshifts

$$\frac{d_A(z)}{d_A(z_0)} = \frac{H_0 d_A(z)}{z_0}$$

- Distances are measured in units of h^{-1} Mpc.
Measuring $D(z)$

- Since z is a direct observable, in both cases $H_0 D_A(z)$ is the measured quantity

- We can relate that back to $H_0 D(z)$ recalling that

$$H_0 D_A = H_0 R \sin(H_0 D/H_0 R)$$

and use h^{-1} Mpc as the unit for all lengths – furthermore, local observations are at distances much smaller than R so $H_0 D_A = H_0 D$ is a good approximation

- Then since $D(z) = \int dz / H(z)$ we have

$$H_0 D(z) = \int dz \frac{H_0}{H(z)}$$

- Fundamentally our low to high z comparison tells us the change in expansion rate $H(z)/H_0$
Supernovae as Standard Candles

- Type 1A supernovae are white dwarfs that reach Chandrashekar mass where electron degeneracy pressure can no longer support the star, hence a very regular explosion.

- Moreover, the scatter in absolute magnitude is correlated with the shape of the light curve - the rate of decline from peak light, empirical “Phillips relation”

- Higher ^{56}N, brighter SN, higher opacity, longer light curve duration
Beyond Hubble’s Law

- Type 1A are therefore “standardizable” candles leading to a very low scatter $\delta m \sim 0.15$ and visible out to high redshift $z \sim 1$

- Two groups in 1999 found that SN more distant at a given redshift than expected

- Cosmic acceleration
Acceleration of the Expansion

- Using SN as a relative indicator (independent of absolute magnitude), comparison of low and high z gives

$$H_0 D(z) = \int dz \frac{H_0}{H}$$

more distant implies that $H(z)$ not increasing at expect rate, i.e. is more constant

- Take the limiting case where $H(z)$ is a constant (a.k.a. de Sitter expansion)

$$H = \frac{1}{a} \frac{da}{dt} = \text{const}$$

$$\frac{dH}{dt} = \frac{1}{a} \frac{d^2a}{dt^2} - H^2 = 0$$

$$\frac{1}{a} \frac{d^2a}{dt^2} = H^2 > 0$$
Acceleration of the Expansion

- Indicates that the expansion of the universe is accelerating
- Intuition tells us (FRW dynamics shows) ordinary matter decelerates expansion since gravity is attractive
- Ordinary expectation is that

\[H(z > 0) > H_0 \]

so that the Hubble parameter is higher at high redshift

Or equivalently that expansion rate decreases as it expands

- Notice that this a purely geometric inference and does not yet say anything about what causes acceleration – topic of next set of lectures on cosmic dynamics
• Getting H_0 itself is harder since we need to know the absolute distance d_L to the objects: $H_0 = z_0/d_L$

• Hubble actually inferred too large a Hubble constant of $H_0 \sim 500\text{km/s/Mpc}$

• Miscalibration of the Cepheid distance scale - absolute measurement hard, checkered history

• Took 70 years to settle on this value with a factor of 2 discrepancy persisting until late 1990’s - which is after the projects which discovered acceleration were conceived!

• H_0 now measured as $73.48 \pm 1.66\text{km/s/Mpc}$ by SHOES calibrating off AGN water maser
Hubble Constant History

- Difficult measurement since local galaxies have peculiar motions and so their velocity is not entirely due to the “Hubble flow”
- A “distance ladder” of cross calibrated measurements
- Primary distance indicators cepheids, novae planetary nebula, tip of red giant branch, or globular cluster luminosity function, AGN water maser
- Use more luminous secondary distance indications to go out in distance to Hubble flow
 - Tully-Fisher, fundamental plane, surface brightness fluctuations, Type 1A supernova
Modern Distance Ladder

- Geometry → Cepheids → SN Ia
- Luminosity distance $d_L(m-M, z) \rightarrow H_0$
- SH0ES, Riess et al 2016
Maser-Cepheid-SN Distance Ladder

- **Water maser** around AGN, gas in Keplerian orbit
- **Measure** proper motion, radial velocity, acceleration of orbit
- **Method 1:** radial velocity plus orbit infer tangential velocity $= \text{distance} \times \text{angular proper motion}$

$$v_t = d_A \frac{d\alpha}{dt}$$

- **Method 2:** centripetal acceleration and radial velocity from line infer physical size

$$a = \frac{v^2}{R}, \quad R = d_A \theta$$
Maser-Cepheid-SN Distance Ladder

- Calibrate Cepheid period-luminosity relation in same galaxy
- SHOES project then calibrates SN distance in galaxies with Cepheids
 Also: consistent with recent HST parallax determinations of 10 galactic Cepheids (8% distance each) with ~ 20% larger H_0 error bars - normal metallicity as opposed to LMC Cepheids.
- Measure SN at even larger distances out into the Hubble flow
- Riess et al (2019) $H_0 = 74.03 \pm 1.42$ km/s/Mpc more precise (1.9%) than the HST Key Project calibration (11%).
- As of Spring 2019, this differs from the CMB/BAO distance ladder $H_0 = 67.66 \pm 0.42$ working from high redshifts at 4σ......