
Set 5:
Hot Big Bang and Origin of Species



Hot Big Bang
• CMB blackbody at 2.7K and the redshifting of the energy and

hence temperature, implies that the Universe began in a hot dense
state

• Rapid interactions in the hot dense plasma kept particle species in
equilibrium

• When reaction rates become too low compared with the expansion
rate, various particle species freeze out

• “Origin of species” as relics of the hot big bang

• For those of you who haven’t had statistical physics and want a
crash course or those of you who have but want a review, see
supplemental notes



Brief Thermal History



Origin Examples
• Neutrino background (weak freezeout)

• CDM freezeout (annihilation freezout)

• Light elements (nuclear statistical equilibrium freezeout)

• Baryogenesis (freezeout of baryon number changing processes)

• Blackbody freezeout (thermalization)

• Atomic hydrogen (recombination; free electron freezout)

• Next lecture set: origin of structure from inflation - freezeout of
quantum fluctuations



Particle Distributions
• Phase space distribution of particles f gives the occupancy of

quantum states of a given allowed momentum q and position x

• Number density is the integral over momentum states

n =

∫
g

(2π)3
fd3q

where g is quantum degeneracy of state (e.g. spin)

• Energy density is the integral weighted by energy

ρ =

∫
g

(2π)3
E(q)fd3q, E(q) = (q2 +m2)1/2

• Pressure from change in momentum reflection of a wall

p(x, t) = g

∫
d3q

(2π)3

|q|2

3E(q)
f



Vacuum Energy
• Aside for advanced students: we’ve excluded the energy density

associated with the state of no particles or “vacuum”

• In QFT, like the simple harmonic oscillator in ordinary quantum
mechanics, there is a zero point energy to the ground state

• For bosons, h̄ω/2 = E(q)/2, so the most naive version of the
cosmological constant problem is that ρ ∝M4 where
M = MPl = 1/

√
8πG if the theory applies out to the Planck scale

• The critical energy density ρc = 3H2
0/8πG ≈ 8× 10−47h2GeV4 is

more than 10120 off M4
Pl ≈ 2× 1076 GeV4.

• This is the cosmological constant problem in its basic form - a
more sophisticated QFT version is even given renormalization we
expect ρvac ∼ m4 for each particle of mass m



Freezeout Rule of Thumb
• Non expanding medium - given Γ, rate of thermalizing interactions

∂f

∂t
= Γ (f − feq)

• Add in expansion in a homogeneous medium - de Broglie
wavelength λ ∝ q−1 ∝ a stretches with the expansion

∂f

∂t
+
dq

dt

∂f

∂q
= Γ (f − feq)

(q ∝ a−1 → 1

q

dq

dt
= −1

a

da

dt
= H)

∂f

∂t
−H ∂f

∂ ln q
= Γ (f − feq)

• So equilibrium will be maintained if collision rate exceeds
expansion rate Γ = n〈σv〉 > H



Thermal Physics
• In thermal physics there are two quantities of interest that become

equal on the two sides of an interaction

– Temperature T - from energy exchange

– Chemical potential µ - from particle exchange

• These quantities maximize the entropy or number of accessible
states between systems that can exchange energy and particles

• The latter is associated with the law of mass action - for a change
in number of species i,

∑
i µidNi = 0 – e.g. e− + p↔ H + γ sets

µe + µp = µH + µγ

• If a particle can be created freely then its chemical potential is
driven to zero, e.g. bremsstrahlung e− + p↔ e− + p+ γ implies
µe + µp = µe + µp + µγ or µγ = 0



Statistical Mechanics
• All allowed quantum states are equally likely to be occupied - so

the average number of particles in thermal equilibrium can just be
found by maximizing the total number of allowed states between a
system and a larger reservoir

• In the supplement we derive the probability of system being in
state of energy Ei and number Ni (Gibbs Factor)

P (Ei, Ni) ∝ exp[−(Ei − µNi)/T ]

• Mean occupation of the state in thermal equilibrium

f ≡
∑
NiP (Ei, Ni)∑
P (Ei, Ni)

where the total energy is related to the particle energy as
Ei = NiE (ignoring zero pt)



Fermi-Dirac Distribution
• For fermions, the occupancy can only be Ni = 0, 1

f =
P (E, 1)

P (0, 0) + P (E, 1)

=
e−(E−µ)/T

1 + e−(E−µ)/T

=
1

e(E−µ)/T + 1

• In the non-relativistic, non-degenerate limit

E = (q2 +m2)1/2 ≈ m+
1

2

q2

m

and m� T so the distribution is Maxwell-Boltzmann

f = e−(m−µ)/T e−q
2/2mT = e−(m−µ)/T e−mv

2/2T



Bose-Einstein Distribution
• For bosons each state can have multiple occupation,

f =

d
dµ/T

∑∞
N=0(e−(E−µ)/T )N∑∞

N=0(e−(E−µ)/T )N
with

∞∑
N=0

xN =
1

1− x

=
1

e(E−µ)/T − 1

• Again, non relativistic distribution is Maxwell-Boltzmann

f = e−(m−µ)/T e−q
2/2mT = e−(m−µ)/T e−mv

2/2T

with a spatial number density

n = ge−(m−µ)/T

∫
d3q

(2π)3
e−q

2/2mT

= ge−(m−µ)/T

(
mT

2π

)3/2



Ultra-Relativistic Bulk Properties
• Chemical potential µ = 0, ζ(3) ≈ 1.202

• Number density

nboson = gT 3 ζ(3)

π2
ζ(n+ 1) ≡ 1

n!

∫ ∞
0

dx
xn

ex − 1

nfermion =
3

4
gT 3 ζ(3)

π2

• Energy density

ρboson = gT 4 3

π2
ζ(4) = gT 4π

2

30

ρfermion =
7

8
gT 4 3

π2
ζ(4) =

7

8
gT 4π

2

30

• Pressure q2/3E = E/3→ p = ρ/3, wr = 1/3



Entropy Density
• First law of thermodynamics

dS =
1

T
(dρ(T )V + p(T )dV )

so that

∂S

∂V

∣∣∣
T

=
1

T
[ρ(T ) + p(T )],

∂S

∂T

∣∣∣
V

=
V

T

dρ

dT

• Since S(V, T ) ∝ V is extensive

S =
V

T
[ρ(T ) + p(T )] σ =

S

V
=

1

T
[ρ(T ) + p(T )]

So

∂S

∂V
= σ,

∂

∂V

(
∂S

∂T

)
=

1

T

dρ

dT



Entropy Density
• Integrability condition ∂2S/∂V ∂T = ∂2S/∂T∂V relates the

evolution of entropy density

dσ

dT
=

1

T

dρ

dT
dσ

dt
=

1

T

dρ

dt
=

1

T
[−3(ρ+ p)]

d ln a

dt
= −3σ

d ln a

dt

→ d lnσ

dt
= −3

d ln a

dt
→ σ ∝ a−3

comoving entropy density is conserved in thermal equilibrium

• Ultra relativisitic bosons σboson = 3.602nboson; for fermions ×7/8

given scaling of ρ

g∗ =
∑

bosons

gb +
7

8

∑
gf



Evolution of Temperature
• We will use this to derive the evolution of T as different particle

species annihilate in thermal equilibrium

• Setting the entropy density before and after is equivalent to setting

g∗T
3
∣∣∣
initial

= g∗T
3
∣∣∣
final

• When particle species disappear through annihilation, they dump
their entropy into the remaining species and hence raise the
temperature



Neutrino Freezeout
• Neutrino equilibrium maintained by weak interactions, e.g.
e+ + e− ↔ ν + ν̄

• Weak interaction cross section T10 = T/1010K ∼ T/1MeV

σw ∼ G2
FE

2
ν ≈ 4× 10−44 T 2

10cm2

• Rate Γ = nνσw = H at T10 ∼ 3 or t ∼ 0.2s

• After neutrino freezeout, electrons and positrons annihilate
dumping their entropy into the photons

• Before g∗: γ, e+, e− = 2 + 7
8
(2 + 2) = 11

2

• After g∗: γ = 2; so conservation of entropy gives

g∗T
3
∣∣∣
initial

= g∗T
3
∣∣∣
final

Tν =

(
4

11

)1/3

Tγ



Relic Neutrinos
• Relic number density (zero chemical potential; now required by

oscillations & BBN)

nν = nγ
3

4

4

11
= 112cm−3

• Relic energy density assuming one species with finite mν :
ρν = mνnν

ρν = 112
mν

eV
eV cm−3 ρc = 1.05× 104h2 eVcm−3

Ωνh
2 =

mν

93.7eV

• Candidate for dark matter? an eV mass neutrino goes non
relativistic around z ∼ 1000 and retains a substantial velocity
dispersion σν .



Hot Dark Matter
• Momenta for a nonrelativistic species redshifts like temperature

for a relativistic one, so average momentum is still given by

〈q〉 = 3Tν = mνσν

σν = 3
( mν

1eV

)−1
(
Tν

1eV

)
= 3

( mν

1eV

)−1
(

Tν
104K

)
= 6× 10−4

( mν

1eV

)−1

= 200km/s
( mν

1eV

)−1

• Of order the rotation velocity of galactic halos and higher at higher
redshift - small objects can’t form: top down structure formation –
not observed – must not constitute the bulk of the dark matter



Cold Dark Matter
.

• Problem with
neutrinos is they decouple
while relativistic and hence
have a comparable number
density to photons - for
a reasonable energy density,
the mass must be small

• The equilibrium distribution for a non-relativistic species declines
exponentially beyond the mass threshold

n = g(
mT

2π
)3/2e−m/T

• Exponential will eventually win soon after T < m, suppressing
annihilation rates



WIMP Miracle
• Freezeout when annihilation rate equal expansion rate Γ ∝ σA,

increasing annihilation cross section decreases abundance

Γ = n〈σAv〉 = H

H ∝ T 2 ∼ m2

ρfreeze = mn ∝ m3

〈σAv〉

ρc = ρfreeze(T/T0)−3 ∝ 1

〈σAv〉
independently of the mass of the CDM particle

• Plug in some typical numbers for a particle with weak interaction
scale cross sections or WIMPs (weakly interacting massive
particles) of 〈σAv〉 ≈ 10−36 cm2 and restore the proportionality
constant Ωch

2 is of the right order of magnitude (∼ 0.1)!



Axions
• Alternate solution: keep light particle but not created in thermal

equilibrium

• Example: axion dark matter - particle that solves the strong CP
problem

• Inflation sets initial conditions, fluctuation from potential
minimum

• Once Hubble scale smaller than the mass scale, field unfreezes

• Coherent oscillations of the axion field - condensate state. Can be
very light m� 1eV and yet remain cold.

• Same reason a quintessence dark energy candidate must be lighter
than the Hubble scale today



Big Bang Nucleosynthesis
• Integrating the Boltzmann equation for nuclear processes during

first few minutes leads to synthesis and freezeout of light elements



Big Bang Nucleosynthesis
• Most of light element synthesis can be understood through nuclear

statistical equilibrium and reaction rates

• Equilibrium abundance of species with mass number A and charge
Z (Z protons and A− Z neutrons)

nA = gA(
mAT

2π
)3/2e(µA−mA)/T

• In chemical equilibrium with protons and neutrons

µA = Zµp + (A− Z)µn

nA = gA(
mAT

2π
)3/2e−mA/T e(Zµp+(A−Z)µn)/T



Big Bang Nucleosynthesis
• Eliminate chemical potentials with np, nn

eµp/T =
np
gp

(
2π

mpT

)3/2

emp/T

eµn/T =
nn
gn

(
2π

mnT

)3/2

emn/T

nA = gAg
−Z
p gZ−An (

mAT

2π
)3/2

(
2π

mpT

)3Z/2(
2π

mnT

)3(A−Z)/2

× e−mA/T e(Zµp+(A−Z)µn)/TnZp n
A−Z
n

(gp = gn = 2;mp ≈ mn = mb = mA/A)

(BA = Zmp + (A− Z)mn −mA)

= gA2−A
(

2π

mbT

)3(A−1)/2

A3/2nZp n
A−Z
n eBA/T



Big Bang Nucleosynthesis
• Convenient to define abundance fraction

XA ≡ A
nA
nb

= AgA2−A
(

2π

mbT

)3(A−1)/2

A3/2nZp n
A−Z
n n−1

b eBA/T

= AgA2−A

(
2πn

2/3
b

mbT

)3(A−1)/2

A3/2eBA/TXZ
p X

A−Z
n

(nγ =
2

π2
T 3ζ(3) ηbγ ≡ nb/nγ)

= A5/2gA2−A

[(
2πT

mb

)3/2
2ζ(3)ηbγ
π2

]A−1

eBA/TXZ
p X

A−Z
n



Deuterium
• Deuterium A = 2, Z = 1, g2 = 3, B2 = 2.225 MeV

X2 =
3

π2

(
4πT

mb

)3/2

ηbγζ(3)eB2/TXpXn

.

• Deuterium
“bottleneck” is mainly
due to the low baryon-photon
number of the universe
ηbγ ∼ 10−9, secondarily due
to the low binding energy B2



Deuterium
• X2/XpXn ≈ O(1) at T ≈ 100keV or 109 K, much lower than the

binding energy B2

• Most of the deuterium formed then goes through to helium via
D + D→ 3He + p, 3He + D→ 4He + n

• Deuterium freezes out as number abundance becomes too small to
maintain reactions nD = const. independent of nb

• The deuterium freezeout fraction nD/nb ∝ η−1
bγ ∝ (Ωbh

2)−1 and so
is fairly sensitive to the baryon density.

• Observations of the ratio in quasar absorption systems give
Ωbh

2 ≈ 0.02



Helium
.

• Essentially all neutrons
around during nucleosynthesis
end up in Helium

• In equilibrium,
the neutron-to-proton
ratio is determined
by the mass difference
Q = mn −mp = 1.293 MeV

nn
np

= exp[−Q/T ]



Helium
• Equilibrium is maintained through weak interactions, e.g.
n↔ p+ e− + ν̄, ν + n↔ p+ e−, e+ + n↔ p+ ν̄ with rate

Γ

H
≈ T

0.8MeV

• Freezeout fraction
nn
np

= exp[−1.293/0.8] ≈ 0.2

• Finite lifetime of neutrons brings this to ∼ 1/7 by 109K

• Helium mass fraction

YHe =
4nHe
nb

=
4(nn/2)

nn + np

=
2nn/np

1 + nn/np
≈ 2/7

8/7
≈ 1

4



Helium
• Depends mainly on the expansion rate during BBN - measure

number of relativistic species

• Traces of 7Li as well. Measured abundances in reasonable
agreement with deuterium measure Ωbh

2 = 0.02 but the detailed
interpretation is still up for debate



Light Elements

Burles, Nollett, Turner (1999)



Baryogenesis
• What explains the small, but non-zero, baryon-to-photon ratio?

ηbγ = nb/nγ ≈ 3× 10−8Ωbh
2 ≈ 6× 10−10

• Must be a slight excess of baryons b to anti-baryons b̄ that remains
after annihilation

• Sakharov conditions

• Baryon number violation: some process must change the net
baryon number

• CP violation: process which produces b and b̄ must differ in rate

• Out of equilibrium: else equilibrium distribution with vanishing
chemical potential (processes exist which change baryon
number) gives equal numbers for b and b̄

• Expanding universe provides 3; physics must provide 1,2



Baryogenesis
• Example: out of equilibrium decay of some heavy boson X , X̄

• Suppose X decays through 2 channels with baryon number b1 and
b2 with branching ratio r and 1− r leading to a change in the
baryon number per decay of

rb1 + (1− r)b2

• And X̄ to −b1 and −b2 with ratio r̄ and 1− r̄

−r̄b1 − (1− r̄)b2

• Net production

∆b = (r − r̄)(b1 − b2)



Baryogenesis
• Condition 1: b1 6= 0, b2 6= 0

• Condition 2: r̄ 6= r

• Condition 3: out of equilibrium decay

• GUT and electroweak (instanton) baryogenesis mechanisms exist

• Active subject of research



Black Body Formation
.

Δ
T/

T e

0

10-5 10-4 10-3 10-2 10-1 1 10
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μ-distortion

blackbody

z/105=3.5

0.5

z*

• After z ∼ 106, photon creating
processes γ + e− ↔ 2γ + e−

and bremmstrahlung
e− + p↔ e− + p+ γ

drop out of equilibrium
for photon energies E ∼ T .

• Compton scattering remains
effective in redistributing energy via exchange with electrons

• Out of equilibrium processes like decays leave residual photon
chemical potential imprint

• Observed black body spectrum places tight constraints on any that
might dump energy into the CMB



Recombination
• Maxwell-Boltzmann distribution determines the equilibrium

distribution for reactions, e.g. big-bang nucleosynthesis,
recombination:

p+ e− ↔ H + γ

npne
nH
≈ e−B/T

(
meT

2π

)3/2

e(µp+µe−µH)/T

where B = mp +me −mH = 13.6eV is the binding energy,
gp = ge = 1

2
gH = 2, and µp + µe = µH in equilibrium

• Define ionization fraction

np = ne = xenb

nH = nb − ne = (1− xe)nb



Recombination
• Saha Equation

nenp
nHnb

=
x2
e

1− xe

=
1

nb

(
meT

2π

)3/2

e−B/T

• Naive guess of T∗ = B wrong due to the low baryon-photon ratio
– T∗ ≈ 0.3eV so recombination at z∗ ≈ 1000

• But the photon-baryon ratio is very low

ηbγ ≡ nb/nγ ≈ 3× 10−8Ωbh
2



Recombination
• Eliminate in favor of ηbγ and B/T through

nγ = 0.244T 3 ,
me

B
= 3.76× 104

• Big coefficient

xe
2

1− xe
= 3.16× 1015

(
B

T

)3/2

e−B/T

T = 1/3eV→ xe = 0.7, T = 0.3eV→ xe = 0.2

• Further delayed by inability to maintain equilibrium since net is
through 2γ process and redshifting out of line



Recombination

Saha
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CMB Anisotropy
• Recombination can be viewed as the epoch where (most) of the

CMB fluctuations freeze out

• Once neutral hydrogen forms, photons largely propagate
unimpeded to the observer today

• CMB fluctuations thus provide an image of the universe at
z ∼ 1000

• This leads to the famous horizon problem whose resolution is the
subject of the next set of lectures. . .


