
Set 7:
CMB and Large Scale Structure



CMB Temperature Anisotropy
• Planck 2015 map of the temperature anisotropy (first discovered

by COBE) from recombination:
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CMB Temperature Anisotropy
• Power spectrum shows characteristic scales where the intensity of

variations peak - reveals geometry and contents of the universe:
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CMB Parameter Inferences
• Spectrum constrains the matter-energy contents of the universe

• Planck 2018 results [arXiv:1807.06209]

TT+lowE TE+lowE EE+lowE TT,TE,EE+lowE TT,TE,EE+lowE+lensing TT,TE,EE+lowE+lensing+BAO
Parameter 68% limits 68% limits 68% limits 68% limits 68% limits 68% limits

Ωbh2 . . . . . . . . . . 0.02212 ± 0.00022 0.02249 ± 0.00025 0.0240 ± 0.0012 0.02236 ± 0.00015 0.02237 ± 0.00015 0.02242 ± 0.00014

Ωch2 . . . . . . . . . . 0.1206 ± 0.0021 0.1177 ± 0.0020 0.1158 ± 0.0046 0.1202 ± 0.0014 0.1200 ± 0.0012 0.11933 ± 0.00091

100θMC . . . . . . . . 1.04077 ± 0.00047 1.04139 ± 0.00049 1.03999 ± 0.00089 1.04090 ± 0.00031 1.04092 ± 0.00031 1.04101 ± 0.00029

τ . . . . . . . . . . . . 0.0522 ± 0.0080 0.0496 ± 0.0085 0.0527 ± 0.0090 0.0544+0.0070
−0.0081 0.0544 ± 0.0073 0.0561 ± 0.0071

ln(1010A s) . . . . . . . 3.040 ± 0.016 3.018+0.020
−0.018 3.052 ± 0.022 3.045 ± 0.016 3.044 ± 0.014 3.047 ± 0.014

ns . . . . . . . . . . . 0.9626 ± 0.0057 0.967 ± 0.011 0.980 ± 0.015 0.9649 ± 0.0044 0.9649 ± 0.0042 0.9665 ± 0.0038

H0 [km s−1 Mpc−1] . . 66.88 ± 0.92 68.44 ± 0.91 69.9 ± 2.7 67.27 ± 0.60 67.36 ± 0. 7645 .66 ± 0.42

Ω . . . . . . . . . . . 0.679 ± 0.013 0.699 ± 0.012 0.711+0.033 0.6834 ± 0.0084 0.6847 ± 0.0073 0.6889 ± 0.0056



CMB Power Spectra
.
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• Power spectra
of CMB

– temperature

– polarization

– lensing



Galaxy Redshift Surveys
• Galaxy redshift surveys (e.g. 2dF and SDSS) measure the three

dimensional distribution of galaxies today:
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FIG. 2: The distribution of the 6,476 LRGs (black) and 32,417 main galaxies (green/grey) that are within 1.25◦ of the Equatorial plane.
The solid circles indicate the boundaries of our NEAR, MID and FAR subsamples. The “safe13” main galaxy sample analyzed here and
in [28] is more local, extending out only to 600h−1 Mpc (dashed circle).

III. POWER SPECTRUM MEASUREMENTS

We measure the power spectrum of our various samples
using the PKL method described in [28]. We follow the
procedure of [28] exactly, with some additional numeri-
cal improvements described in Appendix A, so we merely
summarize the process very briefly here. The first step
is to adjust the galaxy redshifts slightly to compress so-

called fingers-of-god (FOGs), virialized galaxy clusters
that appear elongated along the line-of-sight in redshift
space; we do this with several different thresholds and
return to how this affects the results in Section IVF2.
The LRGs are not just brightest cluster galaxies; about
20% of them appear to reside in a dark matter halo with
one or more other LRG’s. The second step is to expand
the three-dimensional galaxy density field in N three-



Gravitational Lensing
• Gravitational Lensing measures projected mass

• Planck CMB lensing map
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Matter Power Spectrum
• Compilation of Redshift Surveys, Lensing, CMB

Planck (2018) I



Structure Formation
• Small perturbations from inflation over the course of the 14Gyr life

of the universe are gravitationally enhanced into all of the structure
seen today

• Cosmic microwave background shows a snapshot at a few hundred
thousand years old at recombination

• Discovery in 1992 of cosmic microwave background anisotropy
provided the observational breakthrough - convincing support for
adiabatic initial density fluctuations of amplitude 10−5

• Combine with galaxy clustering - large scale structure seen in
galaxy surveys - right amplitude given cold dark matter



Schematic CMB Spectrum
• Take apart features in the power spectrum
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Fluid Approximation
• Thomson scattering of photons and free electrons before

recombination is sufficiently rapid that the bayrons and photons
are in equilibrium and hence move together

• Mean free path of the photons for z ≈ 103 and Ωbh
2 ≈ 0.02

λC ≡
1

neσTa
∼ 2.5Mpc

small by cosmological standards!

• On scales λ� λC photons are tightly coupled to the electrons by
Thomson scattering which in turn are tightly coupled to the
baryons by Coulomb interactions

• Specifically, their bulk velocities are defined by a single fluid
velocity vγ = vb and the photons carry no anisotropy in the rest
frame of the baryons



Zeroth Order Approximation
• Momentum density of a fluid is (ρ+ p)v, where p is the pressure

• Neglect the momentum density of the baryons

R ≡ (ρb + pb)vb
(ργ + pγ)vγ

=
ρb + pb
ργ + pγ

=
3ρb
4ργ

≈ 0.6

(
Ωbh

2

0.02

)( a

10−3

)
since ργ ∝ T 4 is fixed by the CMB temperature T = 2.73(1 + z)K
– OK substantially before recombination

• Neglect radiation in the expansion

ρm
ρr

= 3.6

(
Ωmh

2

0.15

)( a

10−3

)
• Neglect gravity



Fluid Equations
• Density ργ ∝ T 4 so define temperature fluctuation Θ

δγ = 4
δT

T
≡ 4Θ

• Real space continuity eqn.: the local number or energy density of
photons changes if there is a divergence of the velocity field - a
flow inwards or outwards from the volume

• Transformed to Fourier space∇(eik·x)→ ik(eik·x) and
∇ · v = −kv

δ̇γ = −(1 + wγ)kvγ

Θ̇ = −1

3
kvγ



Fluid Equations
• Euler equation (neglecting gravity for now): momentum

conservation says that pressure gradients generate changes in
momentum density kδpγ = kc2

sδργ

v̇γ =
kc2

s

1 + wγ
δγ

= kc2
s

3

4
δγ = 3c2

skΘ

where the sound speed c2
s = δp/δρ is the pressure response to a

density fluctuation

• So if you squeeze the photon gas to raise its density, its going to
respond with a restoring force by raising the pressure and resisting
compression→ acoustic oscillations



Oscillator: Take One
• Combine these to form the simple harmonic oscillator equation

Θ̈ + c2
sk

2Θ = 0

where the sound speed is adiabatic

c2
s =

δp

δρ
=
ṗγ
ρ̇γ

here c2
s = 1/3 since we are photon-dominated

• General solution:

Θ(η) = Θ(0) cos(ks) +
Θ̇(0)

kcs
sin(ks)

where the sound horizon is defined as s ≡
∫
csdη



Harmonic Extrema
.
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(a) Peak Scales (b) Baryons• All modes begin at
end of inflation
and are frozen in at
recombination (denoted
with a subscript ∗)
• Temperature perturbations

of different amplitude for
different modes.

• For the adiabatic (curvature mode) initial conditions

Θ̇(0) = 0

• So solution

Θ(η∗) = Θ(0) cos(ks∗)



Harmonic Extrema
• Modes caught in the extrema of their oscillation will have

enhanced fluctuations

kns∗ = nπ

yielding a fundamental scale or frequency, related to the inverse
sound horizon

kA = π/s∗

and a harmonic relationship to the other extrema as 1 : 2 : 3...



Peak Location
• The fundmental physical scale is translated into a fundamental

angular scale by simple projection according to the angular
diameter distance DA

θA = λA/DA

`A = kADA

• In a flat universe, the distance is simply DA = D ≡ η0 − η∗ ≈ η0,
the horizon distance, and kA = π/s∗ =

√
3π/η∗ so

θA ≈
η∗
η0

• In a matter-dominated universe η ∝ a1/2 so θA ≈ 1/30 ≈ 2◦ or

`A ≈ 200



Curvature
.

λ

α
• In a curved

universe, the apparent
or angular diameter
distance is no longer
the conformal distance
DA = R sin(D/R) 6= D

• Objects in a closed
universe are further than
they appear! gravitational lensing of the background...

• Curvature scale of the universe must be substantially larger than
current horizon



Curvature
.
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• Flat universe indicates critical
density and implies missing
energy given local measures of
the matter density “dark energy”

• D also depends
on dark energy density ΩDE and
equation of state w = pDE/ρDE.

• Expansion rate at recombination
or matter-radiation ratio enters into calculation of kA.



Restoring Gravity
• Take a simple photon dominated system with gravity

• Continuity altered since a gravitational potential represents a
stretching of the spatial fabric that dilutes number densities –
formally a spatial curvature perturbation

• Think of this as a perturbation to the scale factor a→ a(1 + Φ) so
that the cosmogical redshift is generalized to

ȧ

a
→ ȧ

a
+ Φ̇

so that the continuity equation becomes

Θ̇ = −1

3
kvγ − Φ̇



Restoring Gravity
• Gravitational force in momentum conservation F = −m∇Ψ

generalized to momentum density modifies the Euler equation to

v̇γ = k(Θ + Ψ)

• General relativity says that Φ and Ψ are the relativistic analogues
of the Newtonian potential and that Φ ≈ −Ψ.

• In our matter-dominated approximation, Φ represents matter
density fluctuations through the cosmological Poisson equation

k2Φ = 4πGa2ρm∆m

where the difference comes from the use of comoving coordinates
for k (a2 factor), the removal of the background density into the
background expansion (ρ∆m) and finally a coordinate subtlety that
enters into the definition of ∆m



Constant Potentials
• In the matter dominated epoch potentials are constant because

infall generates velocities as vm ∼ kηΨ

• Velocity divergence generates density perturbations as
∆m ∼ −kηvm ∼ −(kη)2Ψ

• And density perturbations generate potential fluctuations

Φ =
4πGa2ρ∆

k2
≈ 3

2

H2a2

k2
∆ ∼ ∆

(kη)2
∼ −Ψ

keeping them constant. Note that because of the expansion, density
perturbations must grow to keep potentials constant.



Constant Potentials
• More generally, if stress perturbations are negligible compared

with density perturbations ( δp� δρ ) then potential will remain
roughly constant

• More specifically a variant called the Bardeen or comoving
curvature is strictly constant

R = const ≈ 5 + 3w

3 + 3w
Φ

where the approximation holds when w ≈const.



Oscillator: Take Two
• Combine these to form the simple harmonic oscillator equation

Θ̈ + c2
sk

2Θ = −k
2

3
Ψ− Φ̈

• In a CDM dominated expansion Φ̇ = Ψ̇ = 0. Also for photon
domination c2

s = 1/3 so the oscillator equation becomes

Θ̈ + Ψ̈ + c2
sk

2(Θ + Ψ) = 0

• Solution is just an offset version of the original

[Θ + Ψ](η) = [Θ + Ψ](0) cos(ks)

• Θ + Ψ is also the observed temperature fluctuation since photons
lose energy climbing out of gravitational potentials at
recombination



Effective Temperature
• Photons climb out of potential wells at last scattering

• Lose energy to gravitational redshifts

• Observed or effective temperature

Θ + Ψ

• Effective temperature oscillates around zero with amplitude given
by the initial conditions

• Note: initial conditions are set when the perturbation is outside of
horizon, need inflation or other modification to matter-radiation
FRW universe.

• GR says that initial temperature is given by initial potential



Sachs-Wolfe Effect and the Magic 1/3
• A gravitational potential is a perturbation to the temporal

coordinate [formally a gauge transformation]

δt

t
= Ψ

• Convert this to a perturbation in the scale factor, in a matter
dominated expansion a ∝ t2/3 so

δa

a
=

2

3

δt

t

• CMB temperature is cooling as T ∝ a−1 so

Θ + Ψ ≡ δT

T
+ Ψ = −δa

a
+ Ψ =

1

3
Ψ



Sachs-Wolfe Normalization
• Use measurements of ∆T/T ≈ 10−5 in the Sachs-Wolfe effect to

infer ∆2
R

• Recall in matter domination Ψ = −3R/5 and so ∆T/T = −R/5
• So that the amplitude of initial curvature fluctuations is

∆R ≈ 5× 10−5

• This then determines the amplitude of the inflationary power
spectrum AS = ∆2

R in the previous lecture set



Baryon Loading
• Baryons add extra mass to the photon-baryon fluid

• Controlling parameter is the momentum density ratio:

R ≡ pb + ρb
pγ + ργ

≈ 30Ωbh
2
( a

10−3

)
of order unity at recombination

• Momentum density of the joint system is conserved

(ργ + pγ)vγ + (ρb + pb)vb ≈ (pγ + pγ + ρb + ργ)vγ

= (1 +R)(ργ + pγ)vγb

• Momentum density ratio enters as

[(1 +R)vγb]
· = kΘ + (1 +R)kΨ



New Euler Equation
• Photon continuity remains the same

Θ̇ = −k
3
vγb − Φ̇

• Modification of oscillator equation

d

dη
[(1 +R)Θ̇] +

1

3
k2Θ = −1

3
k2(1 +R)Ψ− d

dη
[(1 +R)Φ̇]

• In a CDM dominated expansion Φ̇ = Ψ̇ = 0 and the adiabatic
approximation where the sound speed evolves slowly

cs =

√
1

3

1

1 +R

[Θ + (1 +R)Ψ](η) = [Θ + (1 +R)Ψ](0) cos(ks)



Baryon Peak Phenomenology
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(a) Peak Scales (b) Baryons• Photon-baryon
ratio enters in three ways

• Overall larger amplitude:

[Θ + (1 +R)Ψ](0) =
1

3
(1 + 3R)Ψ(0)

• Even-odd peak modulation of
effective temperature

[Θ + Ψ]peaks = [±(1 + 3R)− 3R]
1

3
Ψ(0)

[Θ + Ψ]1 − [Θ + Ψ]2 = [−6R]
1

3
Ψ(0)

• Shifting of the sound horizon down or `A up

`A ∝
√

1 +R



Photon Baryon Ratio Evolution
• Actual effects smaller since R evolves

• Oscillator equation has time evolving mass

c2
s

d

dη
(c−2
s Θ̇) + c2

sk
2Θ = 0

• Effective mass is is meff = 3c−2
s = (1 +R)

• Adiabatic invariant

E

ω
=

1

2
meffωA

2 =
1

2
3c−2
s kcsA

2 ∝ A2(1 +R)1/2 = const.

• Amplitude of oscillation A ∝ (1 +R)−1/4 decays adiabatically as
the photon-baryon ratio changes



Baryons in the Power Spectrum
• Relative heights of peaks

Ωbh2
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Oscillator: Take Three and a Half
• The not-quite-so simple harmonic oscillator equation is a forced

harmonic oscillator

c2
s

d

dη
(c−2
s Θ̇) + c2

sk
2Θ = −k

2

3
Ψ− c2

s

d

dη
(c−2
s Φ̇)

changes in the gravitational potentials alter the form of the
acoustic oscillations

• If the forcing term has a temporal structure that is related to the
frequency of the oscillation, this becomes a driven harmonic
oscillator

• Term involving Ψ is the ordinary gravitational force

• Term involving Φ involves the Φ̇ term in the continuity equation as
a (curvature) perturbation to the scale factor



Potential Decay
• Matter-to-radiation ratio

ρm
ρr
≈ 24Ωmh

2
( a

10−3

)
of order unity at recombination in a low Ωm universe

• Radiation is not stress free and so impedes the growth of structure

k2Φ = 4πGa2ρr∆r

∆r ∼ 4Θ oscillates around a constant value, ρr ∝ a−4 so the
Netwonian curvature decays.

• General rule: potential decays if the dominant energy component
has substantial stress fluctuations, i.e. below the generalized sound
horizon or Jeans scale



Radiation Driving
• Decay is timed precisely to drive the oscillator - close to fully

coherent

|[Θ + Ψ](η)| = |[Θ + Ψ](0) + ∆Ψ−∆Φ|

= |1
3

Ψ(0)− 2Ψ(0)| = |5
3

Ψ(0)|

105 15 20

Ψi

–Ψi

Ψ

Θ+Ψ

πγ

ks/π

damping

driving

• 5× the amplitude of the Sachs-Wolfe effect!



Matter-Radiation in the Power Spectrum
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• Coherent approximation is exact
for a photon-baryon fluid but
reality is reduced to ∼ 4×
because neutrino contribution
is free streaming not fluid like

• Neutrinos drive the oscillator
less efficiently and also slightly
change the phase of the oscillation

• Actual initial conditions are Θ + Ψ = Ψ/2 for radiation
domination but comparison to matter dominated SW correct

• With 3 peaks, it is possible to solve for both the baryons and dark
matter densities, providing a calibration for the sound horizon

• Higher peaks check consistency with assumptions: e.g. extra
relativistic d.o.f.s



Damping
• Tight coupling equations assume a perfect fluid: no viscosity, no

heat conduction

• Fluid imperfections are related to the mean free path of the
photons in the baryons

λC = τ̇−1 where τ̇ = neσTa

is the conformal opacity to Thomson scattering

• Dissipation is related to the diffusion length: random walk
approximation

λD =
√
NλC =

√
η/λC λC =

√
ηλC

the geometric mean between the horizon and mean free path

• λD/η∗ ∼ few %, so expect the peaks :> 3 to be affected by
dissipation



Near Perfection in 6 Numbers
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• All this precision
data described by
6 ΛCDM parameters

– Ωch
2: CDM

– Ωbh
2: baryons

– θs: sound scale

– As: amplitude

– ns: tilt

– τ : reionization

• Measured
to sub percent
precision (except τ )



Predictive Power
• Predicts all other observables, which direct measurements test
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Transfer Function
• Transfer function transfers the initial Newtonian curvature to its

value today (linear response theory)

T (k) =
Φ(k, a = 1)

Φ(k, ainit)

Φ(knorm, ainit)

Φ(knorm, a = 1)

• Conservation of Bardeen curvature: Newtonian curvature is a
constant when stress perturbations are negligible: above the
horizon during radiation and dark energy domination, on all scales
during matter domination

• When stress fluctuations dominate, perturbations are stabilized by
the Jeans mechanism

• Hybrid Poisson equation: Newtonian curvature, comoving density
perturbation ∆ ≡ (δρ/ρ)com implies Φ decays

(k2 − 3K)Φ = 4πGa2ρ∆ ∼ η−2∆



Transfer Function
• Freezing of ∆ stops at ηeq

Φ ∼ (kηeq)−2∆H ∼ (kηeq)−2Φinit

• Transfer function has a k−2 fall-off beyond keq ∼ η−1
eq

ηeq = 15.7(Ωmh
2)−1

(
T

2.7K

)2

Mpc

• Small correction since growth with a smooth radiation component
is logarithmic not frozen

• Transfer function is a direct output of an Einstein-Boltzmann code



Fitting Function
• Alternately accurate fitting formula exist, e.g. pure CDM form:

T (k(q)) =
L(q)

L(q) + C(q)q2

L(q) = ln(e+ 1.84q)

C(q) = 14.4 +
325

1 + 60.5q1.11

q = k/Ωmh
2Mpc−1(TCMB/2.7K)2

• In h Mpc−1, the critical scale depends on Γ ≡ Ωmh also known as
the shape parameter



Transfer Function
• Numerical calculation

1

0.1

0.0001 0.001 0.01 0.1 1
0.01

T(
k)

k (h–1 Mpc)

wiggles

k–2



Baryon Acoustic Oscillations
• Baryons caught up in the acoustic oscillations of the CMB and

impart acoustic oscillations to the transfer function. Density
enhancements are produced kinematically through the continuity
equation δb ∼ (kη)vb and hence are out of phase with CMB
temperature peaks

• Dissipation of the acoustic oscillations eliminates both the CMB
and baryon perturbations – known as Silk damping for the
baryons. This suppression and the general fact that baryons are
caught up with photons was one of the main arguments for CDM

• Detected first in the SDSS LRG survey.

• An excellent standard ruler for angular diameter distance DA(z)

since it does not evolve in redshift in linear theory

• Radial extent of BAO gives H(z)



Power Spectrum
• SDSS data

• Power spectrum defines large scale structure observables: galaxy
clustering, velocity field, Lyα forest clustering, cosmic shear


