Set 7:
CMB and Large Scale Structure



CMB Temperature Anisotropy

e Planck 2015 map of the temperature anisotropy (first discovered
by COBE) from recombination:
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CMB Temperature Anisotropy

e Power spectrum shows characteristic scales where the intensity of
variations peak - reveals geometry and contents of the universe:
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CMB Parameter Inferences

e Spectrum constrains the matter-energy contents of the universe

e Planck 2018 results [arXiv:1807.06209]

TT+lowE TE+lowE EE+lowE TT,TE.EE+lowE TT,TE . EE+lowE+lensing  TT,TE,EE+lowE+Ilensing+BAO
Parameter 68% limits 68% limits 68% limits 68% limits 68% limits 68% limits

Qh?. . 0.02212+ 0.00022  0.02249 +£ 0.00025  0.0240 + 0.0012 0.02236 + 0.00015 0.02237 £ 0.00015 0.02242 + 0.00014

QhZ. . ... 0.1206 + 0.0021 0.1177 £ 0.0020 0.1158 + 0.0046 0.1202 + 0.0014 0.1200 + 0.0012 0.11933 + 0.00091
1006yc - . - . .. .. 1.04077 £ 0.00047  1.04139+£ 0.00049  1.03999 + 0.00089  1.04090 + 0.00031 1.04092 + 0.00031 1.04101 + 0.00029

T oo 0.0522 + 0.0080 0.0496 + 0.0085 0.0527 + 0.0090 0.05441'8:88;? 0.0544 + 0.0073 0.0561 + 0.0071
In(10'°Ay) . . . . ... 3.040+0.016 3.018ﬁ8:8%g 3.052+0.022 3.045+0.016 3.044+0.014 3.047+0.014

Mg o vve e 0.9626 + 0.0057 0.967+0.011 0.980 + 0.015 0.9649 + 0.0044 0.9649 + 0.0042 0.9665 + 0.0038

Hy [kms™'Mpc™'] .. 66.88+092 68.44+ 091 699+27 67.27 +0.60 67.36 £ 0.54 67.66 + 042



CMB Power Spectra

e Power spectra
of CMB

— temperature
— polarization

— lensing
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Galaxy Redshift Surveys

e Galaxy redshift surveys (e.g. 2dF and SDSS) measure the three
dimensional distribution of galaxies today:
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Gravitational Lensing

e Gravitational Lensing measures projected mass

e Planck CMB lensing map




Py (k) [(h~"Mpc)®]

Matter Power Spectrum
e Compilation of Redshift Surveys, Lensing, CMB
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Structure Formation

e Small perturbations from inflation over the course of the 14Gyr life
of the universe are gravitationally enhanced into all of the structure
seen today

e Cosmic microwave background shows a snapshot at a few hundred
thousand years old at recombination

e Discovery in 1992 of cosmic microwave background anisotropy
provided the observational breakthrough - convincing support for
adiabatic initial density fluctuations of amplitude 10~°

e Combine with galaxy clustering - large scale structure seen in
galaxy surveys - right amplitude given cold dark matter



Schematic CMB Spectrum

e Take apart features in the power spectrum
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Fluid Approximation

e Thomson scattering of photons and free electrons before
recombination is sufficiently rapid that the bayrons and photons
are 1in equilibrium and hence move together

e Mean free path of the photons for z ~ 10° and Q,h? ~ 0.02

1
Ao = ~ 2.0Mpc
NeOTA

small by cosmological standards!

e On scales A > A¢ photons are tightly coupled to the electrons by
Thomson scattering which in turn are tightly coupled to the
baryons by Coulomb interactions

e Specifically, their bulk velocities are defined by a single fluid
velocity v, = v, and the photons carry no anisotropy in the rest
frame of the baryons



Zeroth Order Approximation

e Momentum density of a fluid is (p + p)v, where p is the pressure

e Neglect the momentum density of the baryons

(b + Do) _ Pt Do 3P
(py +Py)vy  py Dy Apy

0 2
~ 0.6 uh ( ¢ )
0.02 103
since p., o< T is fixed by the CMB temperature 7' = 2.73(1 + 2)K
— OK substantially before recombination

R

e Neglect radiation in the expansion

2
P _ 36 (Sl ( a )
Or 0.15 10—3

e Neglect gravity




Fluid Equations

e Density p, oc T* so define temperature fluctuation ©

0y = 45% = 40
e Real space continuity eqn.: the local number or energy density of
photons changes if there 1s a divergence of the velocity field - a
flow inwards or outwards from the volume

e Transformed to Fourier space V(e™*) — ik(e™*) and

V-v=—kv



Fluid Equations

e Euler equation (neglecting gravity for now): momentum
conservation says that pressure gradients generate changes in
momentum density kdp., = kc3dp,

kc?

_ 5 s
Uy 1+w77

3
= kczz% = 3c’k©

where the sound speed ¢? = 0p/dp is the pressure response to a
density fluctuation

e So if you squeeze the photon gas to raise its density, its going to
respond with a restoring force by raising the pressure and resisting
compression — acoustic oscillations



Oscillator: Take One

e Combine these to form the simple harmonic oscillator equation
O+ k0 =0
where the sound speed 1s adiabatic

2_51?_]&

C, = — = =
0p Py

here ¢? = 1/3 since we are photon-dominated

e General solution:

O(0)
kc,

O(n) = O(0) cos(ks) + sin(ks)

where the sound horizon is defined as s = [ c.dn



Harmonic Extrema

e All modes begin at | (a) Peak Scales _
end of inflation Yil2 i Initial conditions (k<<7t/s..) |

and are frozen 1n at

o+¥

recombination (denoted
with a subscript *)

m— | st peak (k=Tt/s..)

e Temperature perturbations W2 p 2nd peak (k=211/s,) ]
of different amplitude for S R S S
. 0.2 04 0.6 0.8
different modes. s/5+

e For the adiabatic (curvature mode) initial conditions

e So solution



Harmonic Extrema

e Modes caught in the extrema of their oscillation will have
enhanced fluctuations

k.S, = nmw

yielding a fundamental scale or frequency, related to the inverse
sound horizon

kA:T(/S*

and a harmonic relationship to the other extremaas 1 : 2 : 3...



Peak LLocation

e The fundmental physical scale 1s translated into a fundamental
angular scale by simple projection according to the angular
diameter distance D 4

QA = )\A/DA
614 = ]CADA

e In a flat universe, the distance 1s ssmply D4 = D = 19 — 1. = 10,
the horizon distance, and k4 = 7/s, = V37 /My SO

(914%E
7o

e In a matter-dominated universe 1 o< a'/? so 04 ~ 1/30 ~ 2° or

gA ~ 200



Curvature

e In a curved

universe, the apparent g o \
or angular diameter : .
distance 1s no longer

the conformal distance

D4 = Rsin(D/R) # D A

e Objects in a closed

universe are further than
they appear! gravitational lensing of the background...

e Curvature scale of the universe must be substantially larger than
current horizon



Curvature

e Flat universe indicates critical
density and implies missing
energy given local measures of
the matter density “dark energy”

e [ also depends
on dark energy density {2pg and
equation of state w = ppg/pPpE.

e Expansion rate at recombination
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or matter-radiation ratio enters into calculation of £ 4.



Restoring Gravity

e Take a simple photon dominated system with gravity

e Continuity altered since a gravitational potential represents a
stretching of the spatial fabric that dilutes number densities —
formally a spatial curvature perturbation

e Think of this as a perturbation to the scale factor a — a(1 + ®) so
that the cosmogical redshift 1s generalized to
a a

- = -+
a a

so that the continuity equation becomes

. 1 .
@: —gkvv—q)



Restoring Gravity

e (Gravitational force in momentum conservation F = —mVW
generalized to momentum density modifies the Euler equation to

0 = k(O + 0)

e General relativity says that ® and W are the relativistic analogues
of the Newtonian potential and that & ~ —W.

e In our matter-dominated approximation, ¢ represents matter
density fluctuations through the cosmological Poisson equation

k*® = 4nGa’p,\,,

where the difference comes from the use of comoving coordinates
for k (a® factor), the removal of the background density into the
background expansion (pA,,) and finally a coordinate subtlety that
enters into the definition of A,



Constant Potentials

¢ In the matter dominated epoch potentials are constant because
infall generates velocities as v,, ~ knW

e Velocity divergence generates density perturbations as
A~ —knu, ~ —(kn)*W

e And density perturbations generate potential fluctuations

_ArGapA 3H26L2A A

)] ~ —
2 2 )2 (kn)2

~ —

keeping them constant. Note that because of the expansion, density
perturbations must grow to keep potentials constant.



Constant Potentials

e More generally, if stress perturbations are negligible compared
with density perturbations ( 0p < dp ) then potential will remain
roughly constant

e More specifically a variant called the Bardeen or comoving
curvature 1s strictly constant
5+ 3w

R = t ~ d
CONSY ™ 3T 80

where the approximation holds when w ~const.



Oscillator: Take Two

e Combine these to form the simple harmonic oscillator equation

. L2 .
@+éﬁ@:—§m—¢

e In a CDM dominated expansion ® = ¥ = 0. Also for photon
domination ¢? = 1/3 so the oscillator equation becomes

O+ U+ Ak2(O+ W) =0
e Solution is just an offset version of the original
O+ Ul(n) =[O + V](0) cos(ks)

e O + W is also the observed temperature fluctuation since photons
lose energy climbing out of gravitational potentials at
recombination



Effective Temperature

e Photons climb out of potential wells at last scattering
e Lose energy to gravitational redshifts

e Observed or effective temperature

O+ WV
e Effective temperature oscillates around zero with amplitude given
by the initial conditions

e Note: 1nitial conditions are set when the perturbation 1s outside of
horizon, need inflation or other modification to matter-radiation
FRW universe.

e GR says that initial temperature 1s given by initial potential



Sachs-Wolfe Eftect and the Magic 1/3

e A gravitational potential 1s a perturbation to the temporal
coordinate [formally a gauge transformation]
0t

R
t

e Convert this to a perturbation in the scale factor, in a matter
dominated expansion a o t*/3 so

da B 2 0t

a 3t
o CMB temperature is cooling as 7' o< @~ so

5T 5 1
O+T ="tV =-"tpT=_1
T a 3



Sachs-Wolfe Normalization

e Use measurements of AT /T = 107" in the Sachs-Wolfe effect to
infer A%

e Recall in matter domination ¥ = —3R /5 and so AT/T = —R/5

e So that the amplitude of initial curvature fluctuations is
A R~ H X 10_5

e This then determines the amplitude of the inflationary power
spectrum Ag = A% in the previous lecture set



Baryon Loading
Baryons add extra mass to the photon-baryon fluid

Controlling parameter 1s the momentum density ratio:

Py ¥ P zSOQth( a )
Py T P 103

of order unity at recombination

R

Momentum density of the joint system 1s conserved

(/07 - p'y)vv T (,Ob + pb)vb ~ (pv + Dy T+ Pb T ,07)?}7
= (1+ R)(py + py) vy

Momentum density ratio enters as

(1+ R)vy] = kO + (14 Rk



New Euler Equation

e Photon continuity remains the same

. L .
@ = _§U7b_q)

e Modification of oscillator equation

d . 1 2 L 1 2 d i
[+ RO+ 3k°0 = —2k*(1+ RV — - [(1+ R)9]

e In a CDM dominated expansion ® = U = 0 and the adiabatic
approximation where the sound speed evolves slowly

\/1 1
Cs =\ z7—=
31+ R

O+ (1+ R)V]|(n) =104 (14 R)¥]|(0) cos(ks)




Baryon Peak Phenomenology

e Photon-baryon

ratio enters in three ways
e Overall larger amplitude:

0 + (14 R)W](0) = %(1 +3R)T(0)

e Even-odd peak modulation of

effective temperature | /s

© + Upeass = [£(1+87) — 3R] S (0)
O+ U, — [0+ U, = [-63]%@(0)

e Shifting of the sound horizon down or /4 up

lyxVvV1I+ R



Photon Baryon Ratio Evolution

e Actual effects smaller since X evolves

e Oscillator equation has time evolving mass

, d

ch—n(cf@) +c2k*0 =0

e Effective mass is is m.z = 3¢, * = (1 + R)
e Adiabatic invariant

E 1 1
= §meﬁwA2 = 5308_21@03142 x A%(1+4 R)Y2 = const.

W

e Amplitude of oscillation A o< (1 + 1)~/ decays adiabatically as
the photon-baryon ratio changes



Baryons in the Power Spectrum
e Relative heights of peaks
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Oscillator: Take Three and a Half

e The not-quite-so simple harmonic oscillator equation 1s a forced
harmonic oscillator
k* d

((38_2@) —+ C§k2@ = —g\lj — Czd—n(cs_2q))

d

¢ —

dn
changes 1n the gravitational potentials alter the form of the

acoustic oscillations

e If the forcing term has a temporal structure that is related to the
frequency of the oscillation, this becomes a driven harmonic
oscillator

e Term involving W is the ordinary gravitational force

e Term involving ® involves the ® term in the continuity equation as
a (curvature) perturbation to the scale factor



Potential Decay

e Matter-to-radiation ratio

P 24th2( a )
Pr 103

of order unity at recombination in a low {2,,, universe

e Radiation 1s not stress free and so impedes the growth of structure

20 = 4nGa’p, A\,

4

A, ~ 40 oscillates around a constant value, p, o< a~" so the

Netwonian curvature decays.

e General rule: potential decays if the dominant energy component
has substantial stress fluctuations, i.e. below the generalized sound
horizon or Jeans scale



Radiation Driving

e Decay 1s timed precisely to drive the oscillator - close to fully
coherent

[©+ Ul(n)| =1]1©+ T](0)+ AV — AD|

— %\p(o) —20(0)| = !§\If(0)|

NTATYT=
lA A‘ A\ /o :
dr]VI]; ' ' @+‘P ;

& L Dol
5 15 20
ks/mt

e 5x the amplitude of the Sachs-Wolfe effect!



Matter-Radiation in the Power Spectrum

e Coherent approximation is exact
for a photon-baryon fluid but
reality 1s reduced to ~ 4 X
because neutrino contribution
1s free streaming not fluid like

e Neutrinos drive the oscillator
less efficiently and also slightly

change the phase of the oscillation

e Actual initial conditions are © + W = W /2 for radiation
domination but comparison to matter dominated SW correct

e With 3 peaks, it 1s possible to solve for both the baryons and dark
matter densities, providing a calibration for the sound horizon

e Higher peaks check consistency with assumptions: e.g. extra
relativistic d.o.f.s



Damping
e Tight coupling equations assume a perfect fluid: no viscosity, no

heat conduction

e Fluid imperfections are related to the mean free path of the
photons 1n the baryons

L' where 7 = n.ora

Ao =T
1s the conformal opacity to Thomson scattering

e Dissipation is related to the diffusion length: random walk
approximation

Ap = VNI = /1/ e Ao = /1o

the geometric mean between the horizon and mean free path

e \p/n. ~ few %, so expect the peaks :> 3 to be affected by
dissipation



Near Perftection 1n 6 Numbers

e All this precision
data described by
6 ACDM parameters

—Q.h%: CDM

— Qph?: baryons

— 6,: sound scale

— A,: amplitude

—ng: tilt

— T reionization
e Measured

to sub percent
precision (except 7)
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Predictive Power

e Predicts all other observables, which direct measurements test
BBN SNIa BAO

0.26 1 081 1.10 7 sDSs _
Standard BBN MGS  WiggleZ
0.4 -
& 0.25 1 AN Sl
> Aver et al. (2015) 0.0 a P
0.24 . 3 l DES (Dwm)
504 < |
% t  JLA and Pantheon E 1.00 ~ i
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3.4 Planck TT,TE,EE = -
0.05 5 BOSS
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£ ] _T_—+-_+‘ ¥ $ 7f++ LERRE & Q
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e Good agreement, even weak lensing, clusters, and yes H, (< 10%)



Transfer Function

e Transfer function transfers the initial Newtonian curvature to its
value today (linear response theory)

(I)(]f, a = 1) (I)(knorma ainit)
(I)(]C, ainit) (I)<knorm7 a — 1)

e Conservation of Bardeen curvature: Newtonian curvature 1s a

T(k) =

constant when stress perturbations are negligible: above the
horizon during radiation and dark energy domination, on all scales
during matter domination

e When stress fluctuations dominate, perturbations are stabilized by
the Jeans mechanism

e Hybrid Poisson equation: Newtonian curvature, comoving density
perturbation A = (dp/p)com implies @ decays

(k* = 3K)® = 4nGa’pA ~ n2A



Transfer Function

Freezing of A stops at 7

O~ (Fneq) A ~ (F1eq) ™ Pinie

Transfer function has a &~ fall-off beyond k., ~ ne—ql

T \?2
Neq = 15.7(th2)_1 (—2 7K) Mpc

Small correction since growth with a smooth radiation component
1s logarithmic not frozen

Transfer function is a direct output of an Einstein-Boltzmann code



Fitting Function

e Alternately accurate fitting formula exist, e.g. pure CDM form:

B L(q)
T = T T ce

L(q) = In(e + 1.84q)
325
1+ 60.5¢*11
q = k/Qnh*Mpce ™ (Toms/2.7K)?

C(q) =144+

e In h Mpc!, the critical scale depends on I = ,,,h also known as
the shape parameter



Transfer Function

e Numerical calculation

. :_.
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Baryon Acoustic Oscillations

e Baryons caught up in the acoustic oscillations of the CMB and
impart acoustic oscillations to the transfer function. Density
enhancements are produced kinematically through the continuity
equation o, ~ (kn)v, and hence are out of phase with CMB
temperature peaks

e Dissipation of the acoustic oscillations eliminates both the CMB
and baryon perturbations — known as Silk damping for the
baryons. This suppression and the general fact that baryons are
caught up with photons was one of the main arguments for CDM

e Detected first in the SDSS LRG survey.

e An excellent standard ruler for angular diameter distance D 4(z)
since 1t does not evolve in redshift in linear theory

e Radial extent of BAO gives H(z)



Power Spectrum
e SDSS data

104 |
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e Power spectrum defines large scale structure observables: galaxy
clustering, velocity field, Ly« forest clustering, cosmic shear



