
Supplement:
Statistical Physics



Fitting in a Box
.

• Counting momentum states with
momentum q and de Broglie wavelength

λ =
h

q
=

2πh̄

q

• In a discrete volume L3 there
is a discrete set of states that satisfy
periodic boundary conditions

• We will hereafter set h̄ = c = 1

• As in Fourier analysis

e2πix/λ = eiqx = eiq(x+L) → eiqL = 1



Fitting in a Box
• Periodicity yields a discrete set of allowed states

Lq = 2πmi, mi = 1, 2, 3...

qi =
2π

L
mi

• In each of 3 directions∑
mximyjmzk

→
∫
d3m

• The differential number of allowed momenta in the volume

d3m =

(
L

2π

)3

d3q



Density of States
• The total number of states allows for a number of internal degrees

of freedom, e.g. spin, quantified by the degeneracy factor g

• Total density of states:

dNs

V
=

g

V
d3m =

g

(2π)3
d3q

• If all states were occupied by a single particle, then particle density

ns =
Ns

V
=

1

V

∫
dNs =

∫
g

(2π)3
d3q



Distribution Function
• The distribution function f quantifies the occupation of the

allowed momentum states

n =
N

V
=

1

V

∫
fdNs =

∫
g

(2π)3
fd3q

• f , aka phase space occupation number, also quantifies the density
of particles per unit phase space dN/(∆x)3(∆q)3

• For photons, the spin degeneracy g = 2 accounting for the 2
polarization states

• Energy E(q) = (q2 +m2)1/2

• Momentum→ frequency q = 2π/λ = 2πν = ω = E (where
m = 0 and λν = c = 1)



Bulk Properties
• Integrals over the distribution function define the bulk properties of

the collection of particles

• Number density

n(x, t) ≡ N

V
= g

∫
d3q

(2π)3
f

• Energy density

ρ(x, t) = g

∫
d3q

(2π)3
E(q)f

where E2 = q2 +m2

• Momentum density

(ρ+ p)v(x, t) = g

∫
d3q

(2π)3
qf



Bulk Properties
.

Lx

v
vx

• Pressure: particles bouncing
off a surface of area A in a volume
spanned by Lx: per momentum state

pq =
F

A
=
Npart

A

∆q

∆t
(∆q = 2|qx|, ∆t = 2Lx/vx, )

=
Npart

V
|qx||vx| =

Npart

V

|q||v|
3

(v = γmv/γm = q/E)

=
Npart

V

q2

3E



Bulk Properties
• So that summed over occupied momenta states

p(x, t) = g

∫
d3q

(2π)3
|q|2

3E(q)
f

• Pressure is just one of the quadratic in q moments, in particular the
isotropic one

• The remaining 5 components are the anisotropic stress (vanishes in
the background)

πij(x, t) = g

∫
d3q

(2π)3
3qiqj − q2δij

3E(q)
f

• We shall see that these are related to the 5 quadrupole moments of
the angular distribution



Bulk Properties
• These are more generally the components of the stress-energy

tensor

T µν = g

∫
d3q

(2π)3
qµqν
E(q)

f

• 0-0: energy density

• 0-i: momentum density

• i− i: pressure

• i 6= j: anisotropic stress

• In the FRW background cosmology, isotropy requires that there be
only a net energy density and pressure



Equilibrium
• Thermal physics describes the equilibrium distribution of particles

for a medium at temperature T

• Expect that the typical energy of a particle by equipartition is
E ∼ T , so that feq(E/T, ?) in equilibrium

• Must be a second variable of import. Number density

n = g

∫
d3q

(2πh̄)3
feq(E/T ) =? n(T )

• If particles are conserved then n cannot simply be a function of
temperature.

• The integration constant that concerns particle conservation is
called the chemical potential. Relevant for photons when creation
and annihilation processes are ineffective



Temperature and Chemical Potential
• Fundamental assumption of statistical mechanics is that all

accessible states have an equal probability of being populated. The
number of states G defines the entropy S(U,N, V ) = lnG where
U is the energy, N is the number of particles and V is the volume

• When two systems are placed in thermal contact they may
exchange energy, particles, leading to a wider range of accessible
states

G(U,N, V ) =
∑
U1,N1

G1(U1, N1, V1)G2(U − U1, N −N1, V2)

• The most likely distribution of U1 and U2 is given for the
maximum dG/dU1 = 0(

∂G1

∂U1

)
N1,V1

G2dU1 +G1

(
∂G2

∂U2

)
N2,V2

dU2 = 0 dU1 + dU2 = 0



Temperature and Chemical Potential
• Or equilibrium requires(

∂ lnG1

∂U1

)
N1,V1

=

(
∂ lnG2

∂U2

)
N2,V2

≡ 1

T

which is the definition of the temperature (equal for systems in
thermal contact)

• Likewise define a chemical potential µ for a system in diffusive
equilibrium(

∂ lnG1

∂N1

)
U1,V1

=

(
∂ lnG2

∂N2

)
U2,V2

≡ −µ
T

defines the most likely distribution of particle numbers as a system
with equal chemical potentials: generalize to multiple types of
particles undergoing “chemical” reaction→ law of mass action∑

i µidNi = 0



Temperature and Chemical Potential
• Equivalent definition: the chemical potential is the free energy cost

associated with adding a particle at fixed temperature and volume

µ =
∂F

∂N

∣∣∣
T,V

, F = U − TS

free energy: balance between minimizing energy and maximizing
entropy S

• Temperature and chemical potential determine the probability of a
state being occupied if the system is in thermal and diffusive
contact with a large reservoir at temperature T



Gibbs or Boltzmann Factor
• Suppose the system has two states unoccupied N1 = 0, U1 = 0 and

occupied N1 = 1, U1 = E then the ratio of probabilities in the
occupied to unoccupied states is given by

P =
exp[lnGres(U − E,N − 1, V )]

exp[lnGres(U,N, V )]

• Taylor expand

lnGres(U − E,N − 1, V ) ≈ lnGres(U,N, V )− E

T
+
µ

T

P ≈ exp[−(E − µ)/T ]

• This is the Gibbs factor.



Gibbs or Boltzmann Factor
• More generally the probability of a system being in a state of

energy Ei and particle number Ni is given by the Gibbs factor

P (Ei, Ni) ∝ exp[−(Ei − µNi)/T ]

• Unlikely to be in an energy state Ei � T mitigated by the number
of particles

• Dropping the diffusive contact, this is the Boltzmann factor



Thermal & Diffusive Equilibrium
• A gas in thermal & diffusive contact with a reservoir at

temperature T

• Probability of system being in state of energy Ei and number Ni

(Gibbs Factor)

P (Ei, Ni) ∝ exp[−(Ei − µNi)/T ]

where µ is the chemical potential (defines the free energy “cost”
for adding a particle at fixed temperature and volume)

• Chemical potential appears when particles are conserved

• CMB photons can carry chemical potential if creation and
annihilation processes inefficient, as they are after t ∼ 1yr.



Distribution Function
• Mean occupation of the state in thermal equilibrium

f ≡
∑
NiP (Ei, Ni)∑
P (Ei, Ni)

where the total energy is related to the particle energy as
Ei = NiE (ignoring zero pt)

• Density of (energy) states in phase space makes the net spatial
density of particles

n = g

∫
d3p

(2π)3
f

where g is the number of spin states



Fermi-Dirac Distribution
• For fermions, the occupancy can only be Ni = 0, 1

f =
P (E, 1)

P (0, 0) + P (E, 1)

=
e−(E−µ)/T

1 + e−(E−µ)/T

=
1

e(E−µ)/T + 1

• In the non-relativistic, non-degenerate limit

E = (q2 +m2)1/2 ≈ m+
1

2

q2

m

and m� T so the distribution is Maxwell-Boltzmann

f = e−(m−µ)/T e−q
2/2mT = e−(m−µ)/T e−mv

2/2T



Bose-Einstein Distribution
• For bosons each state can have multiple occupation,

f =

d
dµ/T

∑∞
N=0(e

−(E−µ)/T )N∑∞
N=0(e

−(E−µ)/T )N
with

∞∑
N=0

xN =
1

1− x

=
1

e(E−µ)/T − 1

• Again, non relativistic distribution is Maxwell-Boltzmann

f = e−(m−µ)/T e−q
2/2mT = e−(m−µ)/T e−mv

2/2T

with a spatial number density

n = ge−(m−µ)/T
∫

d3q

(2π)3
e−q

2/2mT

= ge−(m−µ)/T
(
mT

2π

)3/2



Ultra-Relativistic Bulk Properties
• Chemical potential µ = 0, ζ(3) ≈ 1.202

• Number density

nboson = gT 3 ζ(3)

π2
ζ(n+ 1) ≡ 1

n!

∫ ∞
0

dx
xn

ex − 1

nfermion =
3

4
gT 3 ζ(3)

π2

• Energy density

ρboson = gT 4 3

π2
ζ(4) = gT 4π

2

30

ρfermion =
7

8
gT 4 3

π2
ζ(4) =

7

8
gT 4π

2

30

• Pressure q2/3E = E/3→ p = ρ/3, wr = 1/3



Boltzmann Equation
• Interactions or “collisions” between particles drive the various

distributions to equilibrium through the Boltzmann equation

• Boltzmann equation is also known as the particle transport or
radiative transfer equation

• Composed of two parts: the free propagation or Liouville equation
and the collisions



Liouville Equation
• Liouville theorem: phase space distribution function is conserved

along a trajectory in the absence of particle interactions

Df

Dt
=

[
∂

∂t
+
dq

dt

∂

∂q
+
dx

dt

∂

∂x

]
f = 0

Expanding universe: de Broglie wavelength of particles “stretches”

q ∝ a−1

• Homogeneous and isotropic limit

∂f

∂t
+
dq

dt

∂f

∂q
=
∂f

∂t
−H(a)

∂f

∂ ln q
= 0

• Implies energy conservation: dρ/dt = −3H(ρ+ p)



Boltzmann Equation
• Boltzmann equation says that Liouville theorem must be modified

to account for collisions

Df

Dt
= C[f ]

• Heuristically

C[f ] = particle sources - sinks

• Collision term: integrate over phase space of incoming particles,
connect to outgoing state with some interaction strength



Boltzmann Equation
• Form:

C[f ] =
1

E

∫
d(phase space)[energy-momentum conservation]

× |M |2[emission− absorption]

• Matrix element M , assumed T [or CP] invariant

• (Lorentz invariant) phase space element∫
d(phase space) = Πi

gi
(2π)3

∫
d3qi
2Ei

• Energy conservation: (2π)4δ(4)(q1 + q2 + ...)



Boltzmann Equation
• Emission - absorption term involves the particle occupation of the

various states

• For concreteness: take f to be the photon distribution function

• Interaction (γ +
∑
i↔

∑
µ); sums are over all incoming and

outgoing other particles

photon

other i states

other µ states other µ states

f

fi

photon

other i states

f

fi

fµ fµ

γ + i        µ

M M

absorption emission

• [emission-absorption] + = boson; − = fermion

ΠiΠµfµ(1± fi)(1± f)− ΠiΠµ(1± fµ)fif



Boltzmann Equation
• Photon Emission: fµ(1± fi)(1 + f)

fµ: proportional to number of emitters

(1± fi): if final state is occupied and a fermion, process blocked;
if boson the process enhanced

(1 + f): final state factor for photons: “1”: spontaneous emission
(remains if f = 0); “+f”: stimulated and proportional to the
occupation of final photon

• Photon Absorption: −(1± fµ)fif

(1± fµ): if final state is occupied and fermion, process blocked; if
boson the process enhanced

fi: proportional to number of absorbers

f : proportional to incoming photons



Boltzmann Equation
• If interactions are rapid they will establish an equilibrium

distribution where the distribution functions no longer change
C[feq] = 0

• Solve by inspection

ΠiΠµfµ(1± fi)(1± f)− ΠiΠµ(1± fµ)fif = 0

• Try fa = (eEa/T ∓ 1)−1 so that (1± fa) = e−Ea/T (eEa/T ∓ 1)−1

e−
∑

(Ei+E)/T − e−
∑
Eµ/T = 0

and energy conservation says E +
∑
Ei =

∑
Eµ, so identity is

satisfied if the constant T is the same for all species, i.e. are in
thermal equilibrium



Boltzmann Equation
• If the interaction does not create or destroy particles then the

distribution

feq = (e(E−µ)/T ∓ 1)−1

also solves the equilibrium equation: e.g. a scattering type reaction

γE + i→ γE′ + j

where i and j represent the same collection of particles but with
different energies after the scattering∑

(Ei − µi) + (E − µ) =
∑

(Ej − µj) + (E ′ − µ)

since µi = µj for each particle

• Not surprisingly, this is the Fermi-Dirac distribution for fermions
and the Bose-Einstein distribution for bosons



Boltzmann Equation
• More generally, equilibrium is satisfied if the sum of the chemical

potentials on both sides of the interaction are equal, γ + i↔ ν∑
µi + µ =

∑
µν

i.e. the law of mass action is satisfied

• If interactions that create or destroy particles are in equilibrium
then this law says that the chemical potential will vanish: e.g.
γ + e− → 2γ + e−

µe + µ = µe + 2µ→ µ = 0

so that the chemical potential is driven to zero if particle number is
not conserved in interaction



Maxwell Boltzmann Distribution
• For the nonrelativistic limit E = m+ 1

2
q2/m, nondegenerate limit

(E − µ)/T � 1 so both distributions go to the
Maxwell-Boltzmann distribution

feq = exp[−(m− µ)/T ] exp(−q2/2mT )

• Here it is even clearer that the chemical potential µ is the
normalization parameter for the number density of particles whose
number is conserved.

• µ and n can be used interchangably



Poor Man’s Boltzmann Equation
• Non expanding medium

∂f

∂t
= Γ (f − feq)

where Γ is some rate for collisions

• Add in expansion in a homogeneous medium

∂f

∂t
+
dq

dt

∂f

∂q
= Γ (f − feq)

(q ∝ a−1 → 1

q

dq

dt
= −1

a

da

dt
= H)

∂f

∂t
−H ∂f

∂ ln q
= Γ (f − feq)

• So equilibrium will be maintained if collision rate exceeds
expansion rate Γ > H



Non-Relativistic Bulk Properties
• Number density

n = ge−(m−µ)/T
4π

(2π)3

∫ ∞
0

q2dq exp(−q2/2mT )

= ge−(m−µ)/T
23/2

2π2
(mT )3/2

∫ ∞
0

x2dx exp(−x2)

= g(
mT

2π
)3/2e−(m−µ)/T

• Energy density E = m→ ρ = mn

• Pressure q2/3E = q2/3m→ p = nT , ideal gas law



Ultra-Relativistic Bulk Properties
• Chemical potential µ = 0, ζ(3) ≈ 1.202

• Number density

nboson = gT 3 ζ(3)

π2
ζ(n+ 1) ≡ 1

n!

∫ ∞
0

xn

ex − 1
dx

nfermion =
3

4
gT 3 ζ(3)

π2

• Energy density

ρboson = gT 4 3

π2
ζ(4) = gT 4π

2

30

ρfermion =
7

8
gT 4 3

π2
ζ(4) =

7

8
gT 4π

2

30

• Pressure q2/3E = E/3→ p = ρ/3, wr = 1/3



Entropy Density
• First law of thermodynamics

dS =
1

T
(dρ(T )V + p(T )dV )

so that

∂S

∂V

∣∣∣
T

=
1

T
[ρ(T ) + p(T )]

∂S

∂T

∣∣∣
V

=
V

T

dρ

dT

• Since S(V, T ) ∝ V is extensive

S =
V

T
[ρ(T ) + p(T )] σ = S/V =

1

T
[ρ(T ) + p(T )]



Entropy Density
• Integrability condition dS/dV dT = dS/dTdV relates the

evolution of entropy density

dσ

dT
=

1

T

dρ

dT
dσ

dt
=

1

T

dρ

dt
=

1

T
[−3(ρ+ p)]

d ln a

dt
d lnσ

dt
= −3

d ln a

dt
σ ∝ a−3

comoving entropy density is conserved in thermal equilibrium

• For ultra relativisitic bosons sboson = 3.602nboson; for fermions
factor of 7/8 from energy density.

g∗ =
∑
bosons

gb +
7

8

∑
gf


