
Set 2:
Cosmic Geometry



Newton vs Einstein
• Even though locally Newtonian gravity is an excellent

approximation to General Relativity, in cosmology we deal with
spatial and temporal scales across which the global picture benefits
from a basic understanding of General Relativity

• An example is: as we have seen in the previous set of notes, it is
much more convenient to think of the space between galaxies
expanding rather than galaxies receding through space

• While latter is a good description locally, its preferred coordinates
place us at center and does not allow us to talk about distances
beyond which galaxies are receding faster than light - though these
distances as we shall see are also not directly observable

• To get a global picture of the expansion of the universe we need to
think geometrically, like Einstein not Newton

• Best of both: think globally (Einstein), act locally (Newton)



Gravity as Geometry
• Einstein says Gravity as a force is really the geometry of spacetime

• Force between objects is a fiction of geometry - imagine the
curved space of the 2-sphere - e.g. the surface of the earth

• Two people walk from equator to pole on lines of constant
longitude

• Intersect at poles as if an attractive force exists between them

• Both walk on geodesics or straight lines of the shortest distance



Gravity as Geometry
• General relativity has two aspects

– A metric theory: geometry tells matter how to move

– Field equations: matter tells geometry how to curve

• Metric defines distances or separations in the spacetime and freely
falling matter moves on a path that extremizes the distance

• Expansion of the universe carries two corresponding pieces

– Friedmann-Robertson-Walker geometry or metric tells matter,
including light, how to move – allows us to chart out the
expansion with light

– Matter content of the universe tells it how to expand – allows
us to infer the components of the universe

• Useful to separate out these two pieces both conceptually and for
understanding alternate cosmologies



FRW Geometry
• FRW geometry = homogeneous and isotropic on large scales

• Universe observed to be nearly isotropic (e.g. CMB, radio point
sources, galaxy surveys)

• Copernican principle: we’re not special, must be isotropic to all
observers (all locations)

Implies homogeneity

Verified through galaxy redshift surveys

• FRW cosmology (homogeneity, isotropy & field equations)
generically implies the expansion of the universe, except for
special unstable cases



Isotropy & Homogeneity
• Isotropy: CMB isotropic to 10−3, 10−5 if dipole subtracted

• Redshift surveys show return to homogeneity on the >100Mpc
scale

COBE DMR Microwave Sky at 53GHz

SDSS Galaxies



FRW Geometry
.

• Spatial geometry
is that of
constant curvature

Positive: sphere

Negative: saddle

Flat: plane

• Metric
tells us how to
measure distances
on this surface



FRW Geometry
• Closed: sphere of radius R and (real) curvature K = 1/R2

• Suppress 1 dimension α represents total angular separation
between two points on the sky (θ1, φ1) and (θ2, φ2)

• Embedding diagram (to help visualization, universe is on surface):

R

dα

(θ1,φ1) (θ2,φ2)



FRW Geometry
• Geometry tells matter how to move: take (null) geodesic motion

for light along this generalized sense of longitude or radial
distance D

• This arc distance is the distance our photon traveler experiences

• We receive light from two different trajectories as observer at pole

• Compared with our Euclidean expectation that the angle between
the rays should be related to the separation at emission Σ as
dα ≈ Σ/D the angular size appears larger because of the “lensing”
magnification of the background

• This leads to the so called angular diameter distance - the most
relevant sense of distance for the observer

• In General Relativity, we are free to use any distance coordinate
we like but the two have distinct uses



FRW Geometry
• To define the angular diameter distance, look for a DA such that

dΣ = DAdα

Draw a circle at the distance D, its radius is DA = R sin(D/R)

D

DA

dα

dα

dΣ

DA=Rsin(D/R)



FRW Geometry
• Angular diameter distance

• Positively curved geometry DA < D and objects are further than
they appear

• Negatively curved universe R is imaginary and

R sin(D/R) = i|R| sin(D/i|R|) = |R| sinh(D/|R|)
and DA > D objects are closer than they appear

• Flat universe, R→∞ and DA = D



FRW Geometry
• Now add that point 2 may have a different radial distance

• What is the distance dΣ between x1 = (θ1, φ1, D1) and point 2
x2 = (θ2, φ2, D2), separated by dα in angle and dD in distance?

dD
DAdα

dΣ

x1

x2



Angular Diameter Distance
• For small angular and radial separations, space is nearly flat so that

the Pythagorean theorem holds for differentials

dΣ2 = dD2 +D2
Adα

2

• Now restore the fact that the angular separation can involve two
angles on the sky - the curved sky is just a copy of the spherical
geometry with unit radius that we were suppressing before

dΣ2 = dD2 +D2
Adα

2

= dD2 +D2
A(dθ2 + sin2 θdφ2)

• DA useful for describing observables (flux, angular positions)

• D useful for theoretical constructs (causality, relationship to
temporal evolution)



Alternate Notation
• Aside: line element is often also written using DA as the

coordinate distance

dD2
A =

(
dDA

dD

)2

dD2

(
dDA

dD

)2

= cos2(D/R) = 1− sin2(D/R) = 1− (DA/R)2

dD2 =
1

1− (D2
A/R)2

dD2
A

and defining the curvature K = 1/R2 the line element becomes

dΣ2 =
1

1−D2
AK

dD2
A +D2

A(dθ2 + sin2 θdφ2)

where K < 0 for a negatively curved space



Line Element or Metric Uses
• Metric also defines the volume element

dV = (dD)(DAdθ)(DA sin θdφ)

= D2
AdDdΩ

where dΩ = sin θdθdφ is solid angle

• Most of classical cosmology boils down to these three quantities,
(comoving) radial distance, (comoving) angular diameter distance,
and volume element

• For example, distance to a high redshift supernova, angular size of
the horizon at last scattering and BAO feature, number density of
clusters...



Comoving Coordinates
• Remaining degree of freedom (preserving homogeneity and

isotropy) is the temporal evolution of overall scale factor

• Relates the geometry (fixed by the radius of curvature R) to
physical coordinates – a function of time only

dσ2 = a2(t)dΣ2

our conventions are that the scale factor today a(t0) ≡ 1

• Similarly physical distances are given by d(t) = a(t)D,
dA(t) = a(t)DA.

• Distances in upper case are comoving; lower, physical

Comoving coordinates do not change with time

Simplest coordinates to work out geometrical effects



Time and Conformal Time
• Spacetime separation (with c = 1)

ds2 = −dt2 + dσ2

= −dt2 + a2(t)dΣ2

• Taking out the scale factor in the time coordinate

ds2 ≡ a2(t) (−dη2 + dΣ2)

dη = dt/a defines conformal time – useful in that photons
travelling radially from observer on null geodesics ds2 = 0

∆D = ∆η =

∫
dt

a

so that time and distance may be interchanged



FRW Metric
• Aside for advanced students: Relationship between coordinate

differentials and space-time separation defines the metric gµν

ds2 ≡ gµνdx
µdxν = a2(η)(−dη2 + dΣ2)

Einstein summation - repeated lower-upper pairs summed

• Usually we will use comoving coordinates and conformal time as
the xµ unless otherwise specified – metric for other choices are
related by a(t)

• Aside: scale factor plays the role of a conformal rescaling (which
preserves spacetime “angles”, i.e. light cone and causal structure -
hence conformal time)



Horizon
• Distance travelled by a photon in the whole lifetime of the universe

defines the horizon

• Since ds = 0, the horizon is simply the elapsed conformal time

Dhorizon(t) =

∫ t

0

dt′

a
= η(t)

• Horizon always grows with time

• Always a point in time before which two observers separated by a
distance D could not have been in causal contact

• Horizon problem: why is the universe homogeneous and isotropic
on large scales especially for objects seen at early times, e.g.
CMB, when horizon small



Special vs. General Relativity
• From our class perspective, the big advantage of comoving

coordinates and conformal time is that we have largely reduced
general relativity to special relativity

• In these coordinates, aside from the difference between D and DA,
we can think of photons propagating in flat spacetime

• Now let’s relate this discussion to observables

• Rule of thumb to avoid dealing with the expansion directly:

– Convert from physical quantities to conformal-comoving
quantities at emission

– In conformal-comoving coordinates, light propagates as usual

– At reception a = 1, conformal-comoving coordinates are
physical, so interpret as usual



Recession as Expansion
• Recession and redshifting as coordinate expansion



Redshift
.

Recession 
Velocity

Expansion 
Redshift

• Wavelength of light “stretches”
with the scale factor

• The physical wavelength λemit

associated with an observed
wavelength today λobs
(or comoving=physical units today) is

λemit

λobs
=
a(temit)

a(tobs)
= a(temit)

so that the redshift of spectral lines measures the scale factor of the
universe at t, 1 + z = 1/a.

• Interpreting the redshift as a Doppler shift, objects recede in an
expanding universe



Hubble Parameter
• Since a = 1/(1 + z) is a direct observable, useful to cast it as the

independent variable

• Convert using the expansion rate or Hubble parameter

H(t) ≡ 1

a

da

dt
=
d ln a

dt

fractional change in the scale factor per unit time - ln a = N is also
known as the e-folds of the expansion

• Cosmic time becomes

t =

∫
dt =

∫
d ln a

H(a)

• Conformal time becomes

η =

∫
dt

a
=

∫
d ln a

aH(a)



Distance-Redshift Relation
• Given atomically known rest wavelength λemit, redshift can be

precisely measured from spectra

• Combined with a measure of distance, distance-redshift
D(z) ≡ D(z(a)) can be inferred - given that photons travel
D = ∆η this tells us how the scale factor of the universe evolves
with time.

• Related to the expansion history as

D(a) =

∫
dD =

∫ 1

a

d ln a′

a′H(a′)

[d ln a′ = −d ln(1 + z) = −a′dz]

D(z) = −
∫ 0

z

dz′

H(z′)
=

∫ z

0

dz′

H(z′)



Hubble Law
• Note limiting case is the Hubble law

lim
z→0

D(z) = z/H(z = 0) ≡ z/H0

independently of the geometry and expansion dynamics

• Hubble constant usually quoted as as dimensionless h

H0 = 100h km s−1Mpc−1

• Observationally h ∼ 0.7 (see below)

• With c = 1, H−10 = 9.7778 (h−1 Gyr) defines the time scale
(Hubble time, ∼ age of the universe)

• As well as H−10 = 2997.9 (h−1 Mpc) a length scale (Hubble scale
∼ Horizon scale)



Standard Ruler
• Standard Ruler: object of known physical size λ

• Let’s apply our rule of thumb: at emission the comoving size is Λ :

λ = a(t)Λ

Now everything about light is normal: the object of comoving size
Λ subtends an observed angle α on the sky α

α =
Λ

DA(z)

• This is the easiest way of thinking about it. But we could also
define an effective physical distance dA(z) which corresponds to
what we would infer in a non expanding spacetime

α ≡ λ

dA(z)
=

aΛ

dA(z)
=

Λ

DA(z)
→ dA(z) = aDA(z) =

DA(z)

1 + z



Standard Ruler
• Since DA → DA(Dhorizon) whereas (1 + z) unbounded, angular

size of a fixed physical scale at high redshift actually increases
with radial distance

• Paradox: the further away something is, the bigger it appears
– Easily resolved by thinking about comoving coordinates - a
fixed physical scale λ as the universe shrinks and a→ 0 will
eventually encompass the whole observable universe out to the
horizon in comoving coordinates so of course it subtends a big
angle on the sky!
– But there are no such bound objects in the early universe -
there is no causal way such bigger-than-the-horizon objects
could form

• Knowing λ or Λ and measuring α and z allows us to infer the
comoving angular diameter distance DA(z)



Standard Candle
• Standard Candle: objects of same luminosity L, measured flux F

• Apply rules again: at emission in conformal-comoving coordinates
– L is the energy per unit time at emission
– Since E ∝ λ−1 and comoving wavelength Λ ∝ λ/a so
comoving energy E ∝ Λ−1 ∝ aE

– Per unit time at emission ∆t = a∆η in conformal time
– So observed luminosity today is L = E/∆η = a2L

– All photons must pass through the sphere at a given distance,
so the comoving surface area is 4πD2

A

• Put this together to the observed flux at a = 1

F =
L

4πD2
A

=
L

4πD2
A

1

(1 + z)2

Notice the flux is diminished by two powers of (1 + z)



Luminosity Distance
• We can again define a physical “luminosity” distance that

corresponds to our non-expanding spacetime intuition

F ≡ L

4πd2L

• So luminosity distance

dL = (1 + z)DA = (1 + z)2dA

• As z → 0, dL = dA = DA

• But as z →∞, dL � dA - key to understanding Olber’s paradox



Olber’s Paradox Redux
• Surface brightness - object of physical size λ

S =
F

∆Ω
=

L

4πd2L

d2A
λ2

• In a non-expanding geometry (regardless of curvature), surface
brightness is conserved dA = dL

S = const.

– each site line in universe full of stars will eventually end on
surface of star, night sky should be as bright as sun (not infinite)

• Age finite so even if stars exist in the early universe, not all site
lines end on stars

• In an expanding universe

S ∝ (1 + z)−4



Olber’s Paradox Redux
• But even as age goes to infinity and the number of site lines goes

to 100%, surface brightness of distant objects (of fixed physical
size) goes to zero

– Angular size increases

– Redshift of “luminosity” i.e. energy and arrival time dilation

• In an expanding universe

S ∝ (1 + z)−4



Measuring D(z)
• Astro units side: since flux ratios are very large in cosmology, its

more useful to take the log

m1 −m2 = −2.5 log10(F1/F2)

related to dL by definition by inverse square law

m1 −m2 = 5 log10[dL(z1)/dL(z2)]

• To quote in terms of a single object, introduce absolute magnitude
as the magnitude that would be measured for the object at 10 pc

m−M = 5 log10[dL(z)/10pc]

Knowing absolute magnitude is the same as knowing the absolute
distance, otherwise distances are relative



Measuring D(z)
• If absolute magnitude unknown, then both standard candles and

standard rulers measure relative sizes and fluxes – ironically this
means that measuring the change in H is easier than measuring H0

– acceleration easier than rate!

For standard candle, e.g. compare magnitudes low z0 to a high z
object - using the Hubble law dL(z0) = z0/H0 we have

∆m = mz −mz0 = 5 log10

dL(z)

dL(z0)
= 5 log10

H0dL(z)

z0

Likewise for a standard ruler comparison at the two redshifts

dA(z)

dA(z0)
=

H0dA(z)

z0

• Distances are measured in units of h−1 Mpc.



Measuring D(z)
• Since z is a direct observable, in both cases H0DA(z) is the

measured quantity

• We can relate that back to H0D(z) recalling that

H0DA = H0R sin(H0D/H0R)

and use h−1 Mpc as the unit for all lengths – furthermore, local
observations are at distances much smaller than R so
H0DA = H0D is a good approximation

• Then since D(z) =
∫
dz/H(z) we have

H0D(z) =

∫
dz

H0

H(z)

• Fundamentally our low to high z comparison tells us the change in
expansion rate H(z)/H0



Supernovae as Standard Candles
.

• Type 1A supernovae
are white dwarfs that reach
Chandrashekar mass where
electron degeneracy pressure
can no longer support the star,
hence a very regular explosion

• Moreover, the scatter in
absolute magnitude
is correlated with the
shape of the light curve - the
rate of decline from peak light,
empirical “Phillips relation”

• Higher 56Ni, brighter SN, higher opacity, longer light curve
duration



Beyond Hubble’s Law
.
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• Type 1A are therefore
“standardizable” candles
leading to a very low
scatter δm ∼ 0.15 and visible
out to high redshift z ∼ 1

• Two groups in 1999
found that SN more distant at
a given redshift than expected

• Cosmic acceleration



Acceleration of the Expansion
• Using SN as a relative indicator (independent of absolute

magnitude), comparison of low and high z gives

H0D(z) =

∫
dz
H0

H

more distant implies that H(z) not increasing at expect rate with z

• Intuition tells us (FRW dynamics shows) ordinary matter
decelerates expansion since gravity is attractive

Or equivalently that expansion rate decreases as it expands

• Ordinary expectation is that

H(z > 0) > H0

e.g. ∝ (1 + z)3/2, so that the Hubble parameter is higher at high
redshift



Acceleration of the Expansion
• More dim (more distant) supernovae indicate that H(z) grows

slower and hence is more constant than expected

• Take the limiting case where H(z) is strictly constant (a.k.a. de
Sitter expansion)

H =
1

a

da

dt
= const

dH

dt
=

1

a

d2a

dt2
−H2 = 0

1

a

d2a

dt2
= H2 > 0

• Indicates that the expansion of the universe is accelerating

• Notice that this a purely geometric inference and does not yet say
anything about what causes acceleration – topic of next set of
lectures on cosmic dynamics



Hubble Constant
.

• Getting H0 itself is harder since
need to know absolute distance
dL to objects: H0 = z0/dL

• Hubble actually inferred
too large a Hubble constant of
H0 ∼ 500km/s/Mpc

• Miscalibration of the Cepheid distance scale - absolute
measurement hard, checkered history

• Took 70 years to settle on this value with a factor of 2 discrepancy
persisting until late 1990’s - which is after the projects which
discovered acceleration were conceived!

• H0 now measured as 73.04± 1.04km/s/Mpc by SH0ES calibrating
off local, geometric absolute distances including AGN water maser



Hubble Constant History
• Difficult measurement since local galaxies have peculiar motions

and so their velocity is not entirely due to the “Hubble flow”

• A “distance ladder” of cross calibrated measurements

• Primary distance indicators cepheids, novae planetary nebula, tip
of red giant branch, or globular cluster luminosity function, AGN
water maser

• Use more luminous secondary distance indications to go out in
distance to Hubble flow

Tully-Fisher, fundamental plane, surface brightness
fluctuations, Type 1A supernova



Modern Distance Ladder
.
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• Geometry→ Cepheids→ SNIa

• Luminosity distance dL(m−M, z)→ H0

• SH0ES, 73.04± 1.04km/s/Mpc



Maser-Cepheid-SN Distance Ladder
.
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• Water maser around
AGN, gas in Keplerian orbit

• Measure proper motion,
radial velocity, acceleration
of orbit

• Method 1: radial velocity plus
orbit infer tangential velocity = distance × angular proper motion

vt = dA(dα/dt)

• Method 2: centripetal acceleration and radial velocity from line
infer physical size

a = v2/R, R = dAθ



Maser-Cepheid-SN Distance Ladder
• Calibrate Cepheid period-luminosity relation in same galaxy

• SH0ES project then calibrates SN distance in galaxies with
Cepheids

Also: consistent with recent HST parallax determinations of 10
galactic Cepheids (8% distance each) with ∼ 20% larger H0

error bars - normal metalicity as opposed to LMC Cepheids.

• Measure SN at even larger distances out into the Hubble flow

• Riess et al, arXiv: 2112.04510, 73.04± 1.04km/s/Mpc

• Currently, this differs from the CMB/BAO distance ladder
H0 = 67.66± 0.42 working from high redshifts at ∼ 5σ.... . .




	anm0: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


