Set 6:
Inflation



Horizon Problem

e The horizon in a decelerating universe scales as 1 oc a1 3%)/2,
w > —1/3. For example in a matter dominated universe
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e CMB decoupled at a, = 107 so subtends an angle on the sky
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e So why is the CMB sky isotropic to 10™° in temperature if it is

=al/? ~0.03~2°

composed of ~ 10? causally disconnected regions

o If smooth by fiat, why are there 10° fluctuations correlated on
superhorizon scales



Flatness & Relic Problems

e Flatness problem: why is the radius of curvature larger than the
observable universe. (Before the CMB determinations, why 1s it at
least comparable to observable universe x| < €2,,)
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e Also phrased as a coincidence problem: since px o< a™
om o< a3, why would they be comparable today — modern version

1s dark energy coincidence p, = const.

e Relic problem — why don’t relics like monopoles dominate the
energy density

e Inflation is a theory that solves all three problems at once and also
supplies a source for density perturbations



Accelerating Expansion

e In a matter or radiation dominated universe, comoving Hubble
length (1/aH) grows with a a so that there’s no way to establish
causal contact on larger scales, generally:
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o H? oxx poc a0+ qH oc a=(1+3w)/2 critical value of w = —1/3,

the division between acceleration and deceleration determines

whether as the universe expands comoving observers leave or
come into causal contact

e Recall this 1s our fate in the current accelerating expansion —
observers that were once in causal contact will no longer be able to
communicate with each other due to the rapid expansion



Causal Contact

e True horizon always grows meaning that one always sees more and
more of the universe. But the comoving Hubble length decreases:
the difference in conformal time, the distance a photon can travel
between two epochs denoted by the scale factor decreases.
Regions that were 1n causal contact, leave causal contact.

e Horizon problem solved if the universe was in an acceleration
phase up to 7; and the conformal time since then 1s shorter than the
total conformal age

Mo > Mo — i

total distance > distance traveled since inflation

apparent horizon



Flatness & Relic

e Comoving radius of curvature 1s constant and can even be small
compared to the full horizon R < ng yet still ng > R > no — n;

e In physical coordinates, the rapid expansion of the universe makes
the current observable universe much smaller than the curvature
scale

e Likewise, the number density of relics formed before the
accelerating (or inflationary) epoch is diluted to make them rare in
the current observable volume

e Common to place the zero point of (conformal) time at the end of
inflation 7 = 1 — 7;. Here conformal time 1s negative during
inflation and size reflects the distance a photon can travel from that
epoch to the end of inflation. To avoid confusion with the original
zero point n(a = 0) = 0 let’s call this 7.



Sufficient Inflation

e If the accelerating component has equation of state w = —1, p =
const., H = H; const. so that a o< exp(Ht)
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e In particular, the current horizon scale Hyng ~ 1 exited the horizon
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Sufficient Inflation

e Given some energy scale for inflation that defines H,, this tells us
what the scale factor ay was when the current horizon left the
horizon during inflation

e If we knew what the scale factor a; was at the end of inflation, we
could figure out the number of efolds N = In(a;/ay) between
these two epochs

e A rough way to characterize this is to quote it in terms of an
effective temperature 7" oc Tovpa ™' at the end of inflation
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e So inflation lasted at least ~ 60efolds - a more detailed calculation

would involve the epoch of reheating and g, factors, so 1T; # T cheat



Inflation: Acceleration from Scalar Field

e Unlike a true cosmological V(9): potential energy

constant, the period

small

of exponential expansion kinetic

Hubble

must end to produce ubl
friction

the hot big bang phase

e A cosmological constant is P
like potential energy - so imagine a ball rolling slowly 1n into a
valley eventually converting potential into kinetic energy

e Technically, this is a scalar field: where the position on the hill is ¢
and the height of the potential is V' (¢)

e In spacetime ¢(x,t) is a function of position: different spacetime
points can be at different field positions



Scalar Fields

Inflation ends when the field rolls sufficiently down the potential
that 1ts kinetic energy becomes comparable to its potential energy

The field then oscillates at the bottom of the potential and small
couplings to standard model particles “reheats” the universe
converting the inflaton energy into particles

Due to the uncertainty principle in quantum mechanics, the field
cannot remain perfectly unperturbed

The small field fluctuations mean that inflation ends at a slightly
different time at different points in space - leaving fluctuations in
the scale factor, which are curvature or gravitational potential
fluctuations

Gravitational attraction into these potential wells forms all of the
structure in the universe



Scalar Fields

e Mathematically, the scalar field obeys the Klein-Gordon equation
in an expanding universe
d°¢ do
e +3H pm +V' =0
where V' = dV/d¢ is the slope of the potential - the first and third
term look like the equations of motion of a ball rolling down a hill
- acceleration = gradient of potential

e The second d¢/dt term is a friction term provided by the
expansion - “Hubble friction” - just like particle numbers and
energy density dilute with the expansion, so too does the kinetic
energy of the scalar field.



Scalar Fields

1 (do :
Pkinetic — 2 dt

so, without the V' forcing term, how does the energy density

e Kinetic energy 1s

decay?

e Solve

&2 do do
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so kinetic energy would decay as pyipetic o< @0 = a3 TWkinetic)  op
Wkinetic — +1
e Compare with the potential energy at fixed field position

Wpotential — —1



Scalar Fields

e As the field rolls it slowly loses total energy to friction, which
defines the slow roll parameter
dinH 3
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e Requirement that inflation last for the sufficient ~60 efolds
requires that ey < 1/60 < 1
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e This requirement also means that e;; must also be slowly varying
so as not to grow much during these 60 efolds
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with |d;| < 1 (advanced students: its defined this way since it also
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determines how close the roll i1s to friction dominated
S3Hd¢/dt ~ —V")



Perturbation Generation

e Horizon scale 77 during inflation acts like an event horizon - things
that are separated by more than this distance leave causal contact

e Result of treating field fluctuations as a quantum simple harmonic
oscillator (advanced students: see supplement) is that the
uncertainty principle leads to inevitable fluctuations

e Fluctuations freeze in when the comoving wavelength A = 27 /k
becomes larger than the comoving horizon 1/aH, so that parts of
the fluctuation are no longer in causal contact with itself, 1.e. when
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e We can also view this as an “origins” problem. Quantum
fluctuations behave as a simple harmonic oscillator with frequency

or rate w =~ k/a and freezeout occurs when w = H,so k/a = H



Perturbation Generation

e Interpretation: universe 1s expanding quickly enough that various
parts of the wave cannot “find” each other to maintain
“equilibrium” (continue oscillating)

e Can heuristically understand the freezout value in the same way as
Hawking radiation from a black hole - virtual particles become
real when separated by the horizon

e Here H defines the horizon area (or in black hole language the
Hawking temperature) and dimensional analysis says the field
fluctuation must scale with //, the only dimensionful quantity

e Because H remains roughly constant during inflation the result 1s a
scale 1nvariant spectrum of fluctuations



Curvature Fluctuation

e Field fluctuations change the scale factor at which inflation ends

dlna dt H? dt
e it 46"’ " omds
e Using the equation V(9)

of state of ¢ we

can convert d¢/dt to eg

Pé end of inflation
_ (dg/di)?/2 -V :
- (do/dt)2)2 +V
_ (dojdr
N 1%

and H? ~ 87GV/3 from Friedmann



Curvature Fluctuation

e SO

3(do/dr)? . (d/dr)
2V H?

and the variance of fluctuations per log wavenumber d In £
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8% = (RY) = e

A12 H?%ep 7 eq

e Remember this: A% o< H?/eg!



Tilt
e Curvature power spectrum 1s scale invariant to the extent that A/
and ey are constant
A% o< H? /ey ~ const
e But with a small tilt that indicates inflation must end 1n ~60 efolts

din A% _ dInH  dlney
dlnk dink  dlnk

= Ng — 1 =
e Evaluate at horizon crossing where fluctuation freezes k = a
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Power Spectrum: Ag, ng

e Tilt in the slow-roll approximation

ng—lz _4€H_251

e Power spectrum parameters:

) k 'rLS—]_
A2 = A
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with pivot scale 0.05 Mpc~! chosen to be approximately where the

data constrains inflation



Gravitational Waves

e Gravitational wave amplitude satisfies Klein-Gordon equation
(K = 0), same as scalar field

dhy dhy . k?
dt2 —|_ 3H dt —|_ gh.hx — O .

e Acquires quantum fluctuations in same manner as ¢. Canonical

normalization (Lagrangian) sets the normalization

e Scale-invariant gravitational wave amplitude

HQ
(27)

e Gravitational wave power o« H? oc V o< E} where Ej is the energy

A%, = 167G

scale of inflation



Gravitational Waves

e Tensor-scalar ratio 1s therefore generally small
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e Tensor tilt:

dIn A® dln H
- T =np =2 - = —2epqg

dln k

e Consistency relation between tensor-scalar ratio and tensor tilt

r = 16e = —8nr

e Measurement of scalar tilt and gravitational wave amplitude

constrains inflationary model in the slow roll context

e Comparision of tensor-scalar ratio and tensor tilt tests the 1dea of

slow roll itself



Observability

e Gravitational waves from inflation can be measured via its imprint
on the polarization of the CMB. ..



