
Set 6:
Inflation



Horizon Problem
• The horizon in a decelerating universe scales as η ∝ a(1+3w)/2,
w > −1/3. For example in a matter dominated universe

η ∝ a1/2

• CMB decoupled at a∗ = 10−3 so subtends an angle on the sky

η∗
η0

= a1/2
∗ ≈ 0.03 ≈ 2◦

• So why is the CMB sky isotropic to 10−5 in temperature if it is
composed of ∼ 104 causally disconnected regions

• If smooth by fiat, why are there 10−5 fluctuations correlated on
superhorizon scales



Flatness & Relic Problems
• Flatness problem: why is the radius of curvature larger than the

observable universe. (Before the CMB determinations, why is it at
least comparable to observable universe |ΩK | ∼< Ωm)

• Also phrased as a coincidence problem: since ρK ∝ a−2 and
ρm ∝ a−3, why would they be comparable today – modern version
is dark energy coincidence ρΛ = const.

• Relic problem – why don’t relics like monopoles dominate the
energy density

• Inflation is a theory that solves all three problems at once and also
supplies a source for density perturbations



Accelerating Expansion
• In a matter or radiation dominated universe, comoving Hubble

length (1/aH) grows with a a so that there’s no way to establish
causal contact on larger scales, generally:

η =

∫
d ln a

1

aH(a)

• H2 ∝ ρ ∝ a−3(1+w), aH ∝ a−(1+3w)/2, critical value of w = −1/3,
the division between acceleration and deceleration determines
whether as the universe expands comoving observers leave or
come into causal contact

• Recall this is our fate in the current accelerating expansion –
observers that were once in causal contact will no longer be able to
communicate with each other due to the rapid expansion



Causal Contact
• True horizon always grows meaning that one always sees more and

more of the universe. But the comoving Hubble length decreases:
the difference in conformal time, the distance a photon can travel
between two epochs denoted by the scale factor decreases.
Regions that were in causal contact, leave causal contact.

• Horizon problem solved if the universe was in an acceleration
phase up to ηi and the conformal time since then is shorter than the
total conformal age

η0 � η0 − ηi
total distance� distance traveled since inflation

apparent horizon



Flatness & Relic
• Comoving radius of curvature is constant and can even be small

compared to the full horizon R� η0 yet still η0 � R� η0 − ηi
• In physical coordinates, the rapid expansion of the universe makes

the current observable universe much smaller than the curvature
scale

• Likewise, the number density of relics formed before the
accelerating (or inflationary) epoch is diluted to make them rare in
the current observable volume

• Common to place the zero point of (conformal) time at the end of
inflation η̃ ≡ η − ηi. Here conformal time is negative during
inflation and size reflects the distance a photon can travel from that
epoch to the end of inflation. To avoid confusion with the original
zero point η(a = 0) = 0 let’s call this η̃.



Sufficient Inflation
• If the accelerating component has equation of state w = −1, ρ =

const., H = Hi const. so that a ∝ exp(Ht)

η̃ =

∫ a

ai

d ln a
1

aH
= − 1

aHi

∣∣∣a
ai

≈ − 1

aHi

(ai � a)

• In particular, the current horizon scale H0η̃0 ≈ 1 exited the horizon
during inflation at

η̃0 ≈ H−1
0 =

1

aHHi

aH =
H0

Hi



Sufficient Inflation
• Given some energy scale for inflation that defines Hi, this tells us

what the scale factor aH was when the current horizon left the
horizon during inflation

• If we knew what the scale factor ai was at the end of inflation, we
could figure out the number of efolds N = ln(ai/aH) between
these two epochs

• A rough way to characterize this is to quote it in terms of an
effective temperature T ∝ TCMBa

−1 at the end of inflation

ln
ai
aH

= ln
TCMB

Ti

Hi

H0

= 65 + 2 ln

(
ρ

1/4
i

1014GeV

)
− ln

(
Ti

1010GeV

)
• So inflation lasted at least ∼ 60efolds - a more detailed calculation

would involve the epoch of reheating and g∗ factors, so Ti 6= Treheat



Inflation: Acceleration from Scalar Field
.

V(φ): potential energy

φ

small
kinetic
energy

reheating

Hubble
friction

• Unlike a true cosmological
constant, the period
of exponential expansion
must end to produce
the hot big bang phase

• A cosmological constant is
like potential energy - so imagine a ball rolling slowly in into a
valley eventually converting potential into kinetic energy

• Technically, this is a scalar field: where the position on the hill is φ
and the height of the potential is V (φ)

• In spacetime φ(x, t) is a function of position: different spacetime
points can be at different field positions



Scalar Fields
• Inflation ends when the field rolls sufficiently down the potential

that its kinetic energy becomes comparable to its potential energy

• The field then oscillates at the bottom of the potential and small
couplings to standard model particles “reheats” the universe
converting the inflaton energy into particles

• Due to the uncertainty principle in quantum mechanics, the field
cannot remain perfectly unperturbed

• The small field fluctuations mean that inflation ends at a slightly
different time at different points in space - leaving fluctuations in
the scale factor, which are curvature or gravitational potential
fluctuations

• Gravitational attraction into these potential wells forms all of the
structure in the universe



Scalar Fields
• Mathematically, the scalar field obeys the Klein-Gordon equation

in an expanding universe

d2φ

dt2
+ 3H

dφ

dt
+ V ′ = 0

where V ′ = dV/dφ is the slope of the potential - the first and third
term look like the equations of motion of a ball rolling down a hill
- acceleration = gradient of potential

• The second dφ/dt term is a friction term provided by the
expansion - “Hubble friction” - just like particle numbers and
energy density dilute with the expansion, so too does the kinetic
energy of the scalar field.



Scalar Fields
• Kinetic energy is

ρkinetic =
1

2

(
dφ

dt

)2

so, without the V ′ forcing term, how does the energy density
decay?

• Solve

d2φ

dt2
+ 3H

dφ

dt
= 0→ dφ

dt
∝ a−3

so kinetic energy would decay as ρkinetic ∝ a−6 = a−3(1+wkinetic), or
wkinetic = +1

• Compare with the potential energy at fixed field position
wpotential = −1



Scalar Fields
• As the field rolls it slowly loses total energy to friction, which

defines the slow roll parameter

εH = −d lnH

d ln a
=

3

2
(1 + wφ)

• Requirement that inflation last for the sufficient ∼60 efolds
requires that εH . 1/60� 1

• This requirement also means that εH must also be slowly varying
so as not to grow much during these 60 efolds

δ1 =
1

2

d ln εH
d ln a

− εH

with |δ1| � 1 (advanced students: its defined this way since it also
determines how close the roll is to friction dominated
3Hdφ/dt ≈ −V ′)



Perturbation Generation
• Horizon scale η̃ during inflation acts like an event horizon - things

that are separated by more than this distance leave causal contact

• Result of treating field fluctuations as a quantum simple harmonic
oscillator (advanced students: see supplement) is that the
uncertainty principle leads to inevitable fluctuations

• Fluctuations freeze in when the comoving wavelength λ = 2π/k

becomes larger than the comoving horizon 1/aH , so that parts of
the fluctuation are no longer in causal contact with itself, i.e. when
k ≈ aH

δφ ≈ H

2π

• We can also view this as an “origins” problem. Quantum
fluctuations behave as a simple harmonic oscillator with frequency
or rate ω ≈ k/a and freezeout occurs when ω = H , so k/a = H



Perturbation Generation
• Interpretation: universe is expanding quickly enough that various

parts of the wave cannot “find” each other to maintain
“equilibrium” (continue oscillating)

• Can heuristically understand the freezout value in the same way as
Hawking radiation from a black hole - virtual particles become
real when separated by the horizon

• Here H defines the horizon area (or in black hole language the
Hawking temperature) and dimensional analysis says the field
fluctuation must scale with H , the only dimensionful quantity

• Because H remains roughly constant during inflation the result is a
scale invariant spectrum of fluctuations



Curvature Fluctuation
• Field fluctuations change the scale factor at which inflation ends

R = −δ ln a = −d ln a

dt

dt

dφ
δφ = −H

2

2π

dt

dφ

.

V(φ)

φ

Hubble
friction

end of inflation

δφ

R=-δa/a

• Using the equation
of state of φ we
can convert dφ/dt to εH

wφ =
pφ
ρφ

=
(dφ/dt)2/2− V
(dφ/dt)2/2 + V

≈ (dφ/dt)2

V
− 1

and H2 ≈ 8πGV/3 from Friedmann



Curvature Fluctuation
• So

εH ≈
3

2

(dφ/dt)2

V
≈ 4πG

(dφ/dt)2

H2

and the variance of fluctuations per log wavenumber d ln k

∆2
R ≡ 〈R2〉 ≈ H4

4π2

4πG

H2εH
≈ G

π

H2

εH

• Remember this: ∆2
R ∝ H2/εH!



Tilt
• Curvature power spectrum is scale invariant to the extent that H

and εH are constant

∆2
R ∝ H2/εH ≈ const

• But with a small tilt that indicates inflation must end in ∼60 efolts

d ln ∆2
R

d ln k
≡ nS − 1 = 2

d lnH

d ln k
− d ln εH

d ln k

• Evaluate at horizon crossing where fluctuation freezes k = aH

d lnH

d ln k
≈ d lnH

d ln a
= −εH

d ln ε

d ln k
≈ d ln ε

d ln a
= 2(δ1 + εH)



Power Spectrum: AS, nS
• Tilt in the slow-roll approximation

nS − 1 = −4εH − 2δ1

• Power spectrum parameters:

∆2
R = AS

(
k

0.05Mpc−1

)nS−1

with pivot scale 0.05 Mpc−1 chosen to be approximately where the
data constrains inflation



Gravitational Waves
• Gravitational wave amplitude satisfies Klein-Gordon equation

(K = 0), same as scalar field

d2h+,×

dt2
+ 3H

dh+,×

dt
+
k2

a2
h+,× = 0 .

• Acquires quantum fluctuations in same manner as φ. Canonical
normalization (Lagrangian) sets the normalization

• Scale-invariant gravitational wave amplitude

∆2
+,× = 16πG

H2

(2π)2

• Gravitational wave power ∝ H2 ∝ V ∝ E4
i where Ei is the energy

scale of inflation



Gravitational Waves
• Tensor-scalar ratio is therefore generally small

r ≡ 4
∆2

+

∆2
R

= 16εH

• Tensor tilt:

d ln ∆2
+

d ln k
≡ nT = 2

d lnH

d ln k
= −2εH

• Consistency relation between tensor-scalar ratio and tensor tilt

r = 16ε = −8nT

• Measurement of scalar tilt and gravitational wave amplitude
constrains inflationary model in the slow roll context

• Comparision of tensor-scalar ratio and tensor tilt tests the idea of
slow roll itself



Observability
• Gravitational waves from inflation can be measured via its imprint

on the polarization of the CMB. . .


