Transfer Function

e Transfer function transfers the initial Newtonian curvature to its
value today (linear response theory)

(I)(]f, a = 1) (I)(knorma ainit)
(I)(]C, ainit) (I)<knorm7 a — 1)

e Conservation of Bardeen curvature: Newtonian curvature 1s a

T(k) =

constant when stress perturbations are negligible: above the
horizon during radiation and dark energy domination, on all scales
during matter domination

e When stress fluctuations dominate, perturbations are stabilized by
the Jeans mechanism

e Hybrid Poisson equation: Newtonian curvature, comoving density
perturbation A = (dp/p)com implies @ decays

(k* = 3K)® = 4nGa’pA ~ n2A



Transfer Function

Freezing of A stops at 7

O~ (Fneq) A ~ (F1eq) ™ Pinie

Transfer function has a &~ fall-off beyond k., ~ ne—ql

T \?2
Neq = 15.7(th2)_1 (—2 7K) Mpc

Small correction since growth with a smooth radiation component
1s logarithmic not frozen

Transfer function is a direct output of an Einstein-Boltzmann code



Fitting Function

e Alternately accurate fitting formula exist, e.g. pure CDM form:

B L(q)
T = T T ce

L(q) = In(e + 1.84q)
325
1+ 60.5¢*11
q = k/Qnh*Mpce ™ (Toms/2.7K)?

C(q) =144+

e In h Mpc!, the critical scale depends on I = ,,,h also known as
the shape parameter



Transfer Function

e Numerical calculation
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Baryon Acoustic Oscillations

e Baryons caught up in the acoustic oscillations of the CMB and
impart acoustic oscillations to the transfer function. Density
enhancements are produced kinematically through the continuity
equation o, ~ (kn)v, and hence are out of phase with CMB
temperature peaks

e Dissipation of the acoustic oscillations eliminates both the CMB
and baryon perturbations — known as Silk damping for the
baryons. This suppression and the general fact that baryons are
caught up with photons was one of the main arguments for CDM

e Detected first in the SDSS LRG survey.

e An excellent standard ruler for angular diameter distance D 4(z)
since 1t does not evolve in redshift in linear theory

e Radial extent of BAO gives H(z)



Power Spectrum
e SDSS data
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e Power spectrum defines large scale structure observables: galaxy
clustering, velocity field, Ly« forest clustering, cosmic shear



Set 8:

Nonlinear Structure



Nonlinear regime

_ . o e 10" —————
e Inflationary initial S
linear

regime

non-linear

perturbations provide ol
density perturbations 10’
6 = 0p/p that grow as g o'}
0 o< a in the linear regime

o A =EkP(k)/2m*
contribution to variance A
(6%) per d1In k ’ D keMpey

e Linear theory would predict that for & > 0.1hMpc~!, (6?) > 1.

e Linear approximation breaks down at this point and we must
follow the nonlinear equations

e Nonlinearities further enhance the formation of structure



Cosmological Simulations

e To evolve structure further requires cosmological simulations (see
video)

e Many simulation results can be understood using simple analytic
arguments

e High density fluctuations break away from the cosmological
expansion and form bound objects called dark matter halos

e Halo formation can be understood in the spherical collapse model
as an FRW background expansion in a slightly closed (positive
curvature) universe

e If observable properties such as galaxies (stars) and gas can be
associated with halos, then they can be modeled 1n a “halo model”



Newtonian Cosmology

e Recall that in the Newtonian interpretation of the expansion we
can model the dynamics of a spherical volume of constant density
using mass conservation

e Energy conservation Y
1 GM
E = —mv? — m_ const
2 r
1 /dr\® GM
— | — — — const
2 \ dt r
1 /1dr\*® GM ~ const
2 \rdt r3 2
2 _ 8mGp  const




Newtonian Energy Interpretation

~ o Constant determines whether
the system recollapses
or expands forever

e These equations define
the evolution of not just the
homogeneous cosmology but
also a spherically symmetric
“top hat” or spatially constant
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density perturbation in a matter dominated universe

e An overdense region will eventually collapse and form a “dark

matter halo” just like a positive curvature universe




Closed Universe

e Friedmann equation in a closed universe K > 0

K 8nG
H? +— = —
" a? 3 7
when K /a* = 8wGp/3 then H = 0 and the expansion of the

universe turns around into recollapse. In cosmo parameters

1 da _ _
a% = HO (Qm@ - (Qm — 1)@ 2)

this would occur when a = €2,,, /(€2,,, — 1)

1/2

e Now consider an initially small local overdensity

p(x,t) = pt)[1 +0(x,1)]

in a globally €2,,, = 1 universe- a local observer would see this as a
slightly closed universe with an €2, > 1



Spherical Collapse

e Spherical collapse calculation makes use of this remapping by
matching the initial density perturbations to the local expansion
parameters and determining the epoch of collapse

e Basic idea: mass M enclosed by the region r = ary remains
constant so solve for r(¢) and match to the initial density
perturbation o; at a;

e Completing this step (details below) we have the following
parametric solution

3 T;
— 2 i
r(9) T 57;( cos 0)
1 3 a; 3/2
te) = i g — sin 6
0 = o (5&_) (9 — sin6)

where 6 is the development angle with § = 7 the turnaround point,
6 = 27 the collapse point



Spherical Collapse Relations

e Scale factor a o t2/3

3\*? /34 ,
: — —_Z — . /3
a (4) (5&) (0 — sin )

e Atcollapse 8 = 27

3\ 23 /3¢, a;
== 220 (21)23 ~ 1.686—
e <4> (5 57;) 27) 0;

e In linear theory and a matter dominated universe 0 o< a SO
Oinear = (Gco1/a;)0; = 1.686 — Rule of thumb to remember —
perturbation collapses when linear theory predicts 0. = 1.686

e Interpretation: when linear theory predicts an O(1) density
perturbation, in the real universe, that density perturbation has
already collapsed to a nonlinear object



Spherical Collapse

e Derivation for advanced students: since » = arg we can use the
Friedmann solution for « in a closed universe to find r(¢)

o In terms of development angle § = Hyn(2,,, — 1)/, scaled
conformal time 7

r(@) = A(1l — cosb)
t(@) = B(0—sinb)
where A = 199Q,,/2(Q,, — 1), B = H;'Q,,/2(Q,, — 1)3/2.
e Turn around atd = 7w, r = 2A,t = Bmr.

e Collapse at) = 2w, r — 0,t =275

e Now we need to find the A and B constants given an initial density
perturbation



Spherical Collapse

e Parametric Solution:
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B a




Correspondence

e Eliminate cosmological correspondence in A and 53 in terms of
enclosed mass M

e Related as A% = G M B?, and to initial perturbation

6—0

. B 1 4 L s
i) = B<69 N 1209)

e Leading Order: r = A#*/2,t = B#°/6

A /6t Y3
-4

1 1
limr(f) = A (502 — ﬂe‘l)



Next Order

e Leading order 1s unperturbed matter dominated expansion

roc a oc t2/3

e Iterate r and ¢ solutions
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Next Order

e Substitute back into (6)

2 2
i) = AL (1_9—)
2 12
AN 1 e\
N E(E) b5 <B>

2/3]
= (60O 1 (675)




Density Correspondence

e Density

1 | 3 /er\¥?
- 1+
6712G 20 \ B




Density Correspondence

e Time — scale factor

Lt = - a3/

3Ho 0

3 179N 2/3
6 = 550 (4/ BH\$,.?)

e A and B constants — initial cond.

B = 1 SCLZ' 3/2

3 T,
A = —=
10 o;

e End derivation for advanced student




Virialization
e A real density perturbation 1s neither spherical nor homogeneous
e Shell crossing if 9; doesn’t monotonically decrease
e Collapse does not proceed to a point but reaches virial equilibrium
1
U = 2K, E=U+K = §U(rvir)[: U (7 max)]
3

Imax since U o< 7~ 1. Thus 6, = 27

1

conserving £ so 1y, = 3

e Overdensity at virialization
pm (0 = 3m/2)

pm (0 = 27)
e Threshold A, = 178 often used to define a collapsed object

— 1872 ~ 178

e Equivalently relation between virial mass, radius, overdensity:
__ 4m .3
Mvir — ?TvirpmAv



Virialization

e Schematic Picture:

4 —————y




The Mass Function

e Spherical collapse predicts the end state as virialized halos given
an 1nitial density perturbation

e Allows us to predict, from a linear analysis, the outcome of a
nonlinear simulation, e.g. the abundance of halos

e Initial density perturbation 1s a Gaussian random field

e Compare the variance in the linear density field to threshold
0. = 1.686 to determine collapse fraction

e Combine to form the mass function, the number density of halos in
a range dM around M.

e Halo density defined entirely by linear theory



Press-Schechter Formalism

Smooth linear density density field on mass scale M with tophat

1/3
R (%)
4

Result is a Gaussian random field with variance o*( M)

Fluctuations above the threshold 0. correspond to collapsed
regions. The fraction in halos > M becomes

= )., e (~zm) =5 (%)
where v = 6,/ (M)

Problem: even as o(M) — oo, v — 0, collapse fraction — 1/2 —

only overdense regions participate in spherical collapse.

Multiply by 2! Justified by underdensity within overdensity



Press-Schechter Mass Function

e Differentiate in M to find fraction in range dM and multiply by
pm /M the number density of halos if all of the mass were
composed of such halos — differential number density of halos

dn _ fm erfe [ —
dinM  MdlnM NG)
2 pp dIno™1 5
= VM dmar VP2

e High mass: exponential cut off above M, where o (M, ) = 0.

M, ~10"h 'M, today
e Low mass divergence: (too many for the observations?)

dn

~ M1
dln M X




Numerical Mass Function

e Fit cosmological simulations to Press Schechter motivated form
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Halo Bias

e If halos are formed without regard to the underlying density
fluctuation and move under the gravitational field then their
number density 1s an unbiased tracer of the dark matter density

()= ()

e However spherical collapse says the probability of forming a halo

fluctuation

depends on the initial density field

e Large scale density field acts as “background” enhancement of
probability of forming a halo or “peak”

e Peak-Background Split (
)



Peak-Background Split
ic Picture:
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Perturbed Mass Function
e Density fluctuation split
0 = 0p + 0,

e Lowers the threshold for collapse

5cp — 50 — 56

so that v = d., /0

e Taylor expand number density n,; = dn/dIn M

dn s dv (v* —1)
0p ... = 1 0
T dv dé, " nM[ - oV b]

if mass function 1s given by Press-Schechter

ny o vexp(—v?/2)



Halo Bias

e Halos are biased tracers of the “background” dark matter field with
a bias b( M) that is given by spherical collapse and the form of the
mass function

e Combine the enhancement with the original unbiased expectation

O _ a0,

3
e For Press-Schechter

2 —1
Oc

e Improved by the Sheth-Torman mass function

b(M) =1+

av?® — 1 2D
b(M)=1
( ) + 50 + 56[1 4+ (CLVZ)p]

with ¢ = 0.75 and p = 0.3 to match simulations.




Numerical Bias

e Example of halo bias from a simulation
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NFW Profile

e Density profile well-described by (

_ Ps
PO = Gy )
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The Halo Model

e NFW halos, of abundance n,; given by mass function, clustered
according to the halo bias (M) and the linear theory P (k)

e Power spectrum example:

4

10° ¢

non-linear

A’ (k)

=~ e
halo correlation” ~ 3

-1 [ /:I
10-¢ /" halo profile

0 10010 10
k (h Mpc )



Galaxy Power Spectrum

- e For galaxies, one R

galaxy

defines a halo occupation densiy

10

distribution which

10°

determines the number f

of galaxies (satisfying o

a certain observational 10’

criteria) that can occupy a wE

halo of mass M |-

k (lh Mpc™) 0
e (Galaxy clustering or power spectrum composed from the

distribution of galaxies in halos and the clustering of halos in large
scale structure

e Generalize to clustering statistic of any observable that is
associated with dark matter haloes, e.g. gas, gravitational lensing
etc.



Hierarchical Structure Formation

e With the density power spectrum from linear theory implying that
the variance increases as IR decreases and time increases, small
halos form first

e Exponential suppression of high mass halos — evolution starts with
low masses and progresses to higher masses as halos merge (see
video)

e Small halos are not hot enough to stimulate atomic line transitions
and then cool and fragment by radiating

e Stars form in halos only at 2z < 10 and radiation from stars can
then reionize the plasma



Galaxy Formation

e Merging proto-Galactic objects of 10 — 108, can eventually
assemble the galaxies of 102 M, we see today. Both lower and
upper range determined by cooling.

e Proto-galactic objects can form 1f cooling 1s sufficiently rapid that
the heating of the gas during collapse (which would prevent
collapse due to pressure, internal motions) can be overcome

e Recall virial theorem supplies estimate of thermal kinetic energy

—2(K) = (U)
1 SGMNumpg
—2N = 2= =
QM1 T 5 R

where pmy 1s the average mass of particles in the gas, M 1is the
total mass and o 1is the rms velocity



Galaxy Formation

e Solve for velocity dispersion for a self gravitating system

3GM\ 2
o= (5?)

e Associate the average kinetic energy with a temperature, called the
virial temperature

1 3
5 ,umHO_ kTvu‘lal

where 1 1s the mean molecular weight. Solve for virial temperature

Ump o> _ pmy GM o P g o dmp /3
3k bk R bk 3

e Cooling 1s a function of the gas temperature through the cooling

Tvirial —

function.



Galaxy Formation

100: T Tiilkh T I.IIE'll I lllllilt LI O |

- @ Cooling rate (luminosity) per volume

Teool = n2A(T )

ANIO W m?)

n? (number density squared) since
cooling 1s usually a 2 body process — vl e ol 1ol
for T > 10°K thermal bremsstrahlung T e T
and Compton scattering, for 7' ~ 10* — 10°K from the collisional
excitation of atomic lines of hydrogen and helium

1 -

e (Galaxy formation only starts when dark matter mass makes the
virial temperture exceed 7' ~ 10*K when cooling becomes
efficient M ~ 10%M,, -first objects and current dwarf ellipticals

e Atz < 10, these halos abundant enough for UV light from their
stars to reionize H — final ACDM parameter 7, optical depth to
Thomson scattering



Galaxy Formation

e Cooling time 1s the time required to radiate away all of the thermal
energy of the gas

3
7Acool‘/tcool — §NkTvirial
4 L 3 kTvirial
cool — 2 1 A

e Compared with the free fall time - from our dimensional relation

GM ~ Rv* ~ R(R*/t%), M x pR®

we get tg o< (Gp)~'/? with the proportionality given for the time
of collapse for a homogeneneous sphere of 1nitial density p

b 31\ 2
T\ 32G)



Galaxy Formation

o If{.,o < tg then the object will collapse essentially 1n free fall -
fragment and form stars. If opposite, then gravitational potential
energy heats the gas making it stabilized by pressure establishing
virial equilibrium

te \ _ (37 1 Y29 pA
tcool 32 G/O 3 kTvirial

o Taking typical numbers 7' ~ 10°K and n ~ 5 x 10*m~2 and with

the density of the collapsing medium being associated with the gas
p = wmpgn gives an upper limit on the gas mass that can cool of
10'? M, comparable to a large galaxy.



Disk Formation

e Proto-galactic gas fragment and collide retaining initial angular
momentum provided from torques from other proto-galactic
systems

e Rotationally supported gas disk, cooling in dense regions until HI
clouds form from which star formation occurs - thick disk

e Cool molecular gas settles to midplane of thick disk efficiently
forming stars - thinness 1s self regulating - if disk continued to get
thinner then density and star formation goes up heating the
material and re-puffing out the disk





