
Transfer Function
• Transfer function transfers the initial Newtonian curvature to its

value today (linear response theory)

T (k) =
Φ(k, a = 1)

Φ(k, ainit)

Φ(knorm, ainit)

Φ(knorm, a = 1)

• Conservation of Bardeen curvature: Newtonian curvature is a
constant when stress perturbations are negligible: above the
horizon during radiation and dark energy domination, on all scales
during matter domination

• When stress fluctuations dominate, perturbations are stabilized by
the Jeans mechanism

• Hybrid Poisson equation: Newtonian curvature, comoving density
perturbation ∆ ≡ (δρ/ρ)com implies Φ decays

(k2 − 3K)Φ = 4πGa2ρ∆ ∼ η−2∆



Transfer Function
• Freezing of ∆ stops at ηeq

Φ ∼ (kηeq)
−2∆H ∼ (kηeq)

−2Φinit

• Transfer function has a k−2 fall-off beyond keq ∼ η−1eq

ηeq = 15.7(Ωmh
2)−1

(
T

2.7K

)2

Mpc

• Small correction since growth with a smooth radiation component
is logarithmic not frozen

• Transfer function is a direct output of an Einstein-Boltzmann code



Fitting Function
• Alternately accurate fitting formula exist, e.g. pure CDM form:

T (k(q)) =
L(q)

L(q) + C(q)q2

L(q) = ln(e+ 1.84q)

C(q) = 14.4 +
325

1 + 60.5q1.11

q = k/Ωmh
2Mpc−1(TCMB/2.7K)2

• In h Mpc−1, the critical scale depends on Γ ≡ Ωmh also known as
the shape parameter



Transfer Function
• Numerical calculation
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Baryon Acoustic Oscillations
• Baryons caught up in the acoustic oscillations of the CMB and

impart acoustic oscillations to the transfer function. Density
enhancements are produced kinematically through the continuity
equation δb ∼ (kη)vb and hence are out of phase with CMB
temperature peaks

• Dissipation of the acoustic oscillations eliminates both the CMB
and baryon perturbations – known as Silk damping for the
baryons. This suppression and the general fact that baryons are
caught up with photons was one of the main arguments for CDM

• Detected first in the SDSS LRG survey.

• An excellent standard ruler for angular diameter distance DA(z)

since it does not evolve in redshift in linear theory

• Radial extent of BAO gives H(z)



Power Spectrum
• SDSS data

• Power spectrum defines large scale structure observables: galaxy
clustering, velocity field, Lyα forest clustering, cosmic shear



Set 8:
Nonlinear Structure



Nonlinear regime
.
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• Inflationary initial
perturbations provide
density perturbations
δ = δρ/ρ that grow as
δ ∝ a in the linear regime

• ∆2 = k3P (k)/2π2

contribution to variance
〈δ2〉 per d ln k

• Linear theory would predict that for k > 0.1hMpc−1, 〈δ2〉 > 1.

• Linear approximation breaks down at this point and we must
follow the nonlinear equations

• Nonlinearities further enhance the formation of structure



Cosmological Simulations
• To evolve structure further requires cosmological simulations (see

video)

• Many simulation results can be understood using simple analytic
arguments

• High density fluctuations break away from the cosmological
expansion and form bound objects called dark matter halos

• Halo formation can be understood in the spherical collapse model
as an FRW background expansion in a slightly closed (positive
curvature) universe

• If observable properties such as galaxies (stars) and gas can be
associated with halos, then they can be modeled in a “halo model”



Newtonian Cosmology
• Recall that in the Newtonian interpretation of the expansion we

can model the dynamics of a spherical volume of constant density
using mass conservation

.

r

m
v

M=4πr3ρ/3

• Energy conservation
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Newtonian Energy Interpretation
. • Constant determines whether

the system recollapses
or expands forever

• These equations define
the evolution of not just the
homogeneous cosmology but
also a spherically symmetric
“top hat” or spatially constant
density perturbation in a matter dominated universe

• An overdense region will eventually collapse and form a “dark
matter halo” just like a positive curvature universe



Closed Universe
• Friedmann equation in a closed universe K > 0

H2 +
K

a2
=

8πG

3
ρ

when K/a2 = 8πGρ/3 then H = 0 and the expansion of the
universe turns around into recollapse. In cosmo parameters

1

a

da

dt
= H0

(
Ωma

−3 − (Ωm − 1)a−2
)1/2

this would occur when a = Ωm/(Ωm − 1)

• Now consider an initially small local overdensity

ρ(x, t) = ρ̄(t)[1 + δ(x, t)]

in a globally Ωm = 1 universe- a local observer would see this as a
slightly closed universe with an Ωm > 1



Spherical Collapse
• Spherical collapse calculation makes use of this remapping by

matching the initial density perturbations to the local expansion
parameters and determining the epoch of collapse

• Basic idea: mass M enclosed by the region r = ar0 remains
constant so solve for r(t) and match to the initial density
perturbation δi at ai
• Completing this step (details below) we have the following

parametric solution

r(θ) =
3

10

ri
δi

(1− cos θ)

t(θ) =
1

2H0Ω
1/2
m

(
3

5

ai
δi

)3/2

(θ − sin θ)

where θ is the development angle with θ = π the turnaround point,
θ = 2π the collapse point



Spherical Collapse Relations
• Scale factor a ∝ t2/3

a =

(
3

4

)2/3(
3

5

ai
δi

)
(θ − sin θ)2/3

• At collapse θ = 2π

acol =

(
3

4

)2/3(
3

5

ai
δi

)
(2π)2/3 ≈ 1.686

ai
δi

• In linear theory and a matter dominated universe δ ∝ a so
δlinear = (acol/ai)δi = 1.686 – Rule of thumb to remember –
perturbation collapses when linear theory predicts δc ≡ 1.686

• Interpretation: when linear theory predicts an O(1) density
perturbation, in the real universe, that density perturbation has
already collapsed to a nonlinear object



Spherical Collapse
• Derivation for advanced students: since r = ar0 we can use the

Friedmann solution for a in a closed universe to find r(t)

• In terms of development angle θ = H0η(Ωm − 1)1/2, scaled
conformal time η

r(θ) = A(1− cos θ)

t(θ) = B(θ − sin θ)

where A = r0Ωm/2(Ωm − 1), B = H−1
0 Ωm/2(Ωm − 1)3/2.

• Turn around at θ = π, r = 2A, t = Bπ.

• Collapse at θ = 2π, r → 0, t = 2πB

• Now we need to find the A and B constants given an initial density
perturbation



Spherical Collapse
• Parametric Solution:
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Correspondence
• Eliminate cosmological correspondence in A and B in terms of

enclosed mass M

M =
4π

3
r3

0Ωmρc =
4π

3
r3

0Ωm
3H2

0

8πG

• Related as A3 = GMB2, and to initial perturbation

lim
θ→0

r(θ) = A

(
1

2
θ2 − 1

24
θ4

)
lim
θ→0

t(θ) = B

(
1

6
θ3 − 1

120
θ5

)
• Leading Order: r = Aθ2/2, t = Bθ3/6

r =
A

2

(
6t

B

)2/3



Next Order
• Leading order is unperturbed matter dominated expansion
r ∝ a ∝ t2/3

• Iterate r and t solutions

lim
θ→0

t(θ) =
θ3

6
B

[
1− 1

20

(
6t

B

)2/3
]

θ ≈
(
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B

)1/3
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]



Next Order
• Substitute back into r(θ)

r(θ) = A
θ2

2

(
1− θ2

12

)
=

A

2

(
6t

B

)2/3
[
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Density Correspondence
• Density

ρm =
M

4
3
πr3

=
1

6πt2G

[
1 +

3

20

(
6t

B

)2/3
]

• Density perturbation

δ ≡ ρm − ρ̄m
ρ̄m

≈ 3

20

(
6t

B

)2/3



Density Correspondence
• Time→ scale factor

t =
2

3H0Ω
1/2
m

a3/2

δ =
3

20
a
(
4/BH0Ω1/2

m

)2/3

• A and B constants→ initial cond.

B =
1

2H0Ω
1/2
m

(
3

5

ai
δi

)3/2

A =
3

10

ri
δi

• End derivation for advanced student



Virialization
• A real density perturbation is neither spherical nor homogeneous

• Shell crossing if δi doesn’t monotonically decrease

• Collapse does not proceed to a point but reaches virial equilibrium

U = −2K, E = U +K =
1

2
U(rvir)[= U(rmax)]

conserving E so rvir = 1
2
rmax since U ∝ r−1. Thus θvir = 3

2
π

• Overdensity at virialization

ρm(θ = 3π/2)

ρ̄m(θ = 2π)
= 18π2 ≈ 178

• Threshold ∆v = 178 often used to define a collapsed object

• Equivalently relation between virial mass, radius, overdensity:
Mvir = 4π

3
r3

virρm∆v



Virialization
• Schematic Picture:
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The Mass Function
• Spherical collapse predicts the end state as virialized halos given

an initial density perturbation

• Allows us to predict, from a linear analysis, the outcome of a
nonlinear simulation, e.g. the abundance of halos

• Initial density perturbation is a Gaussian random field

• Compare the variance in the linear density field to threshold
δc = 1.686 to determine collapse fraction

• Combine to form the mass function, the number density of halos in
a range dM around M .

• Halo density defined entirely by linear theory



Press-Schechter Formalism
• Smooth linear density density field on mass scale M with tophat

R =

(
3M

4π

)1/3

• Result is a Gaussian random field with variance σ2(M)

• Fluctuations above the threshold δc correspond to collapsed
regions. The fraction in halos > M becomes

1√
2πσ(M)

∫ ∞
δc

dδ exp

(
− δ2

2σ2(M)

)
=

1

2
erfc

(
ν√
2

)
where ν ≡ δc/σ(M)

• Problem: even as σ(M)→∞, ν → 0, collapse fraction→ 1/2 –
only overdense regions participate in spherical collapse.

• Multiply by 2! Justified by underdensity within overdensity



Press-Schechter Mass Function
• Differentiate in M to find fraction in range dM and multiply by
ρm/M the number density of halos if all of the mass were
composed of such halos→ differential number density of halos

dn

d lnM
=

ρm
M

d

d lnM
erfc

(
ν√
2

)
=

√
2

π

ρm
M

d lnσ−1

d lnM
ν exp(−ν2/2)

• High mass: exponential cut off above M∗ where σ(M∗) = δc

M∗ ∼ 1013h−1M� today

• Low mass divergence: (too many for the observations?)

dn

d lnM
∝∼M−1



Numerical Mass Function
• Fit cosmological simulations to Press Schechter motivated form
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Halo Bias
• If halos are formed without regard to the underlying density

fluctuation and move under the gravitational field then their
number density is an unbiased tracer of the dark matter density
fluctuation (

δn

n

)
halo

=

(
δρ

ρ

)
• However spherical collapse says the probability of forming a halo

depends on the initial density field

• Large scale density field acts as “background” enhancement of
probability of forming a halo or “peak”

• Peak-Background Split (Efstathiou 1998; Cole & Kaiser 1989; Mo & White

1997)



Peak-Background Split
• Schematic Picture:
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Perturbed Mass Function
• Density fluctuation split

δ = δb + δp

• Lowers the threshold for collapse

δcp = δc − δb

so that ν = δcp/σ

• Taylor expand number density nM ≡ dn/d lnM

nM +
dnM
dν

dν

dδb
δb . . . = nM

[
1 +

(ν2 − 1)

σν
δb

]
if mass function is given by Press-Schechter

nM ∝ ν exp(−ν2/2)



Halo Bias
• Halos are biased tracers of the “background” dark matter field with

a bias b(M) that is given by spherical collapse and the form of the
mass function

• Combine the enhancement with the original unbiased expectation

δnM
nM

= b(M)δb

• For Press-Schechter

b(M) = 1 +
ν2 − 1

δc

• Improved by the Sheth-Torman mass function

b(M) = 1 +
aν2 − 1

δc
+

2p

δc[1 + (aν2)p]

with a = 0.75 and p = 0.3 to match simulations.



Numerical Bias
• Example of halo bias from a simulation
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NFW Profile
• Density profile well-described by (Navarro, Frenk & White 1997)

ρ(r) =
ρs

(r/rs)(1 + r/rs)2
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The Halo Model
• NFW halos, of abundance nM given by mass function, clustered

according to the halo bias b(M) and the linear theory P (k)

• Power spectrum example:
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Galaxy Power Spectrum
.

Peacock (1997)
compilation
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• For galaxies, one
defines a halo occupation
distribution which
determines the number
of galaxies (satisfying
a certain observational
criteria) that can occupy a
halo of mass M

• Galaxy clustering or power spectrum composed from the
distribution of galaxies in halos and the clustering of halos in large
scale structure

• Generalize to clustering statistic of any observable that is
associated with dark matter haloes, e.g. gas, gravitational lensing
etc.



Hierarchical Structure Formation
• With the density power spectrum from linear theory implying that

the variance increases as R decreases and time increases, small
halos form first

• Exponential suppression of high mass halos – evolution starts with
low masses and progresses to higher masses as halos merge (see
video)

• Small halos are not hot enough to stimulate atomic line transitions
and then cool and fragment by radiating

• Stars form in halos only at z < 10 and radiation from stars can
then reionize the plasma



Galaxy Formation
• Merging proto-Galactic objects of 106 − 108M� can eventually

assemble the galaxies of 1012M� we see today. Both lower and
upper range determined by cooling.

• Proto-galactic objects can form if cooling is sufficiently rapid that
the heating of the gas during collapse (which would prevent
collapse due to pressure, internal motions) can be overcome

• Recall virial theorem supplies estimate of thermal kinetic energy

−2〈K〉 = 〈U〉

−2N
1

2
µmHσ

2 = −3

5

GMNµmH

R

where µmH is the average mass of particles in the gas, M is the
total mass and σ is the rms velocity



Galaxy Formation
• Solve for velocity dispersion for a self gravitating system

σ =

(
3

5

GM

R

)1/2

• Associate the average kinetic energy with a temperature, called the
virial temperature

1

2
µmHσ

2 =
3

2
kTvirial

where µ is the mean molecular weight. Solve for virial temperature

Tvirial =
µmHσ

2

3k
=
µmH

5k

GM

R
≈ µmH

5k
GM2/3

(
4πρ

3

)1/3

• Cooling is a function of the gas temperature through the cooling
function.



Galaxy Formation
. • Cooling rate (luminosity) per volume

rcool = n2Λ(T )

n2 (number density squared) since
cooling is usually a 2 body process –
for T > 106K thermal bremsstrahlung
and Compton scattering, for T ∼ 104 − 105K from the collisional
excitation of atomic lines of hydrogen and helium

• Galaxy formation only starts when dark matter mass makes the
virial temperture exceed T ∼ 104K when cooling becomes
efficient M ∼ 108M� -first objects and current dwarf ellipticals

• At z < 10, these halos abundant enough for UV light from their
stars to reionize H – final ΛCDM parameter τ , optical depth to
Thomson scattering



Galaxy Formation
• Cooling time is the time required to radiate away all of the thermal

energy of the gas

rcoolV tcool =
3

2
NkTvirial

tcool =
3

2

kTvirial

nΛ

• Compared with the free fall time - from our dimensional relation

GM ∼ Rv2 ∼ R(R2/t2ff), M ∝ ρR3

we get tff ∝ (Gρ)−1/2 with the proportionality given for the time
of collapse for a homogeneneous sphere of initial density ρ

tff =

(
3π

32

1

Gρ

)1/2



Galaxy Formation
• If tcool < tff then the object will collapse essentially in free fall -

fragment and form stars. If opposite, then gravitational potential
energy heats the gas making it stabilized by pressure establishing
virial equilibrium(

tff
tcool

)
>

(
3π

32

1

Gρ

)1/2
2

3

nΛ

kTvirial

• Taking typical numbers T ∼ 106K and n ∼ 5× 104m−3 and with
the density of the collapsing medium being associated with the gas
ρ = µmHn gives an upper limit on the gas mass that can cool of
1012M� comparable to a large galaxy.



Disk Formation
• Proto-galactic gas fragment and collide retaining initial angular

momentum provided from torques from other proto-galactic
systems

• Rotationally supported gas disk, cooling in dense regions until HI
clouds form from which star formation occurs - thick disk

• Cool molecular gas settles to midplane of thick disk efficiently
forming stars - thinness is self regulating - if disk continued to get
thinner then density and star formation goes up heating the
material and re-puffing out the disk




