Supplement: Statistical Physics

Fitting in a Box

• Counting momentum states with momentum q and de Broglie wavelength

$$\lambda = \frac{h}{q} = \frac{2\pi\hbar}{q}$$

- In a discrete volume L^3 there is a discrete set of states that satisfy periodic boundary conditions
- We will hereafter set $\hbar = c = 1$
- As in Fourier analysis

$$e^{2\pi ix/\lambda} = e^{iqx} = e^{iq(x+L)} \rightarrow e^{iqL} = 1$$

Fitting in a Box

Periodicity yields a discrete set of allowed states

$$Lq = 2\pi m_i, \quad m_i = 1, 2, 3...$$
$$q_i = \frac{2\pi}{L} m_i$$

In each of 3 directions

$$\sum_{m_{xi}m_{yj}m_{zk}} \to \int d^3m$$

• The differential number of allowed momenta in the volume

$$d^3m = \left(\frac{L}{2\pi}\right)^3 d^3q$$

Density of States

- The total number of states allows for a number of internal degrees of freedom, e.g. spin, quantified by the degeneracy factor g
- Total density of states:

$$\frac{dN_s}{V} = \frac{g}{V}d^3m = \frac{g}{(2\pi)^3}d^3q$$

• If all states were occupied by a single particle, then particle density

$$n_s = \frac{N_s}{V} = \frac{1}{V} \int dN_s = \int \frac{g}{(2\pi)^3} d^3q$$

Distribution Function

• The distribution function f quantifies the occupation of the allowed momentum states

$$n = \frac{N}{V} = \frac{1}{V} \int f dN_s = \int \frac{g}{(2\pi)^3} f d^3q$$

- f, aka phase space occupation number, also quantifies the density of particles per unit phase space $dN/(\Delta x)^3(\Delta q)^3$
- For photons, the spin degeneracy g=2 accounting for the 2 polarization states
- Energy $E(q) = (q^2 + m^2)^{1/2}$
- Momentum \rightarrow frequency $q=2\pi/\lambda=2\pi\nu=\omega=E$ (where m=0 and $\lambda\nu=c=1$)

- Integrals over the distribution function define the bulk properties of the collection of particles
- Number density

$$n(\mathbf{x},t) \equiv \frac{N}{V} = g \int \frac{d^3q}{(2\pi)^3} f$$

Energy density

$$\rho(\mathbf{x},t) = g \int \frac{d^3q}{(2\pi)^3} E(q) f$$

where $E^2 = q^2 + m^2$

Momentum density

$$(\rho + p)\mathbf{v}(\mathbf{x}, t) = g \int \frac{d^3q}{(2\pi)^3} \mathbf{q} f$$

• Pressure: particles bouncing off a surface of area A in a volume spanned by L_x : per momentum state

$$p_{q} = \frac{F}{A} = \frac{N_{\text{part}}}{A} \frac{\Delta q}{\Delta t}$$

$$(\Delta q = 2|q_{x}|, \quad \Delta t = 2L_{x}/v_{x},)$$

$$= \frac{N_{\text{part}}}{V}|q_{x}||v_{x}| = \frac{N_{\text{part}}}{V} \frac{|q||v|}{3}$$

$$(v = \gamma mv/\gamma m = q/E)$$

$$= \frac{N_{\text{part}}}{V} \frac{q^{2}}{3E}$$

So that summed over occupied momenta states

$$p(\mathbf{x},t) = g \int \frac{d^3q}{(2\pi)^3} \frac{|q|^2}{3E(q)} f$$

- Pressure is just one of the quadratic in q moments, in particular the isotropic one
- The remaining 5 components are the anisotropic stress (vanishes in the background)

$$\pi^{i}_{j}(\mathbf{x},t) = g \int \frac{d^{3}q}{(2\pi)^{3}} \frac{3q^{i}q_{j} - q^{2}\delta^{i}_{j}}{3E(q)} f$$

• We shall see that these are related to the 5 quadrupole moments of the angular distribution

 These are more generally the components of the stress-energy tensor

$$T^{\mu}_{\ \nu} = g \int \frac{d^3q}{(2\pi)^3} \frac{q^{\mu}q_{\nu}}{E(q)} f$$

- 0-0: energy density
- 0-*i*: momentum density
- i i: pressure
- $i \neq j$: anisotropic stress
- In the FRW background cosmology, isotropy requires that there be only a net energy density and pressure

Equilibrium

- ullet Thermal physics describes the equilibrium distribution of particles for a medium at temperature T
- Expect that the typical energy of a particle by equipartition is $E \sim T$, so that $f_{eq}(E/T,?)$ in equilibrium
- Must be a second variable of import. Number density

$$n = g \int \frac{d^3q}{(2\pi\hbar)^3} f_{eq}(E/T) = ? \quad n(T)$$

- If particles are conserved then *n* cannot simply be a function of temperature.
- The integration constant that concerns particle conservation is called the chemical potential. Relevant for photons when creation and annihilation processes are ineffective

Temperature and Chemical Potential

- Fundamental assumption of statistical mechanics is that all accessible states have an equal probability of being populated. The number of states G defines the entropy $S(U, N, V) = \ln G$ where U is the energy, N is the number of particles and V is the volume
- When two systems are placed in thermal contact they may exchange energy, particles, leading to a wider range of accessible states

$$G(U, N, V) = \sum_{U_1, N_1} G_1(U_1, N_1, V_1) G_2(U - U_1, N - N_1, V_2)$$

• The most likely distribution of U_1 and U_2 is given for the maximum $dG/dU_1=0$

$$\left(\frac{\partial G_1}{\partial U_1}\right)_{N_1,V_1} G_2 dU_1 + G_1 \left(\frac{\partial G_2}{\partial U_2}\right)_{N_2,V_2} dU_2 = 0 \qquad dU_1 + dU_2 = 0$$

Temperature and Chemical Potential

• Or equilibrium requires

$$\left(\frac{\partial \ln G_1}{\partial U_1}\right)_{N_1, V_1} = \left(\frac{\partial \ln G_2}{\partial U_2}\right)_{N_2, V_2} \equiv \frac{1}{T}$$

which is the definition of the temperature (equal for systems in thermal contact)

• Likewise define a chemical potential μ for a system in diffusive equilibrium

$$\left(\frac{\partial \ln G_1}{\partial N_1}\right)_{U_1, V_1} = \left(\frac{\partial \ln G_2}{\partial N_2}\right)_{U_2, V_2} \equiv -\frac{\mu}{T}$$

defines the most likely distribution of particle numbers as a system with equal chemical potentials: generalize to multiple types of particles undergoing "chemical" reaction \rightarrow law of mass action $\sum_i \mu_i dN_i = 0$

Temperature and Chemical Potential

• Equivalent definition: the chemical potential is the free energy cost associated with adding a particle at fixed temperature and volume

$$\mu = \frac{\partial F}{\partial N}\Big|_{T,V}, \quad F = U - TS$$

free energy: balance between minimizing energy and maximizing entropy ${\cal S}$

• Temperature and chemical potential determine the probability of a state being occupied if the system is in thermal and diffusive contact with a large reservoir at temperature T

Gibbs or Boltzmann Factor

• Suppose the system has two states unoccupied $N_1 = 0$, $U_1 = 0$ and occupied $N_1 = 1$, $U_1 = E$ then the ratio of probabilities in the occupied to unoccupied states is given by

$$P = \frac{\exp[\ln G_{\text{res}}(U - E, N - 1, V)]}{\exp[\ln G_{\text{res}}(U, N, V)]}$$

Taylor expand

$$\ln G_{\rm res}(U-E,N-1,V) \approx \ln G_{\rm res}(U,N,V) - \frac{E}{T} + \frac{\mu}{T}$$

$$P \approx \exp[-(E - \mu)/T]$$

This is the Gibbs factor.

Gibbs or Boltzmann Factor

• More generally the probability of a system being in a state of energy E_i and particle number N_i is given by the Gibbs factor

$$P(E_i, N_i) \propto \exp[-(E_i - \mu N_i)/T]$$

- Unlikely to be in an energy state $E_i \gg T$ mitigated by the number of particles
- Dropping the diffusive contact, this is the Boltzmann factor

Thermal & Diffusive Equilibrium

- ullet A gas in thermal & diffusive contact with a reservoir at temperature T
- Probability of system being in state of energy E_i and number N_i (Gibbs Factor)

$$P(E_i, N_i) \propto \exp[-(E_i - \mu N_i)/T]$$

where μ is the chemical potential (defines the free energy "cost" for adding a particle at fixed temperature and volume)

- Chemical potential appears when particles are conserved
- CMB photons can carry chemical potential if creation and annihilation processes inefficient, as they are after $t \sim 1 \text{yr}$.

Distribution Function

Mean occupation of the state in thermal equilibrium

$$f \equiv \frac{\sum N_i P(E_i, N_i)}{\sum P(E_i, N_i)}$$

where the total energy is related to the particle energy as $E_i = N_i E$ (ignoring zero pt)

• Density of (energy) states in phase space makes the net spatial density of particles

$$n = g \int \frac{d^3p}{(2\pi)^3} f$$

where g is the number of spin states

Fermi-Dirac Distribution

• For fermions, the occupancy can only be $N_i = 0, 1$

$$f = \frac{P(E,1)}{P(0,0) + P(E,1)}$$

$$= \frac{e^{-(E-\mu)/T}}{1 + e^{-(E-\mu)/T}}$$

$$= \frac{1}{e^{(E-\mu)/T} + 1}$$

• In the non-relativistic, non-degenerate limit

$$E = (q^2 + m^2)^{1/2} \approx m + \frac{1}{2} \frac{q^2}{m}$$

and $m \gg T$ so the distribution is Maxwell-Boltzmann

$$f = e^{-(m-\mu)/T} e^{-q^2/2mT} = e^{-(m-\mu)/T} e^{-mv^2/2T}$$

Bose-Einstein Distribution

For bosons each state can have multiple occupation,

$$f = \frac{\frac{d}{d\mu/T} \sum_{N=0}^{\infty} (e^{-(E-\mu)/T})^N}{\sum_{N=0}^{\infty} (e^{-(E-\mu)/T})^N} \quad \text{with } \sum_{N=0}^{\infty} x^N = \frac{1}{1-x}$$
$$= \frac{1}{e^{(E-\mu)/T} - 1}$$

Again, non relativistic distribution is Maxwell-Boltzmann

$$f = e^{-(m-\mu)/T} e^{-q^2/2mT} = e^{-(m-\mu)/T} e^{-mv^2/2T}$$

with a spatial number density

$$n = ge^{-(m-\mu)/T} \int \frac{d^3q}{(2\pi)^3} e^{-q^2/2mT}$$
$$= ge^{-(m-\mu)/T} \left(\frac{mT}{2\pi}\right)^{3/2}$$

Ultra-Relativistic Bulk Properties

- Chemical potential $\mu = 0, \zeta(3) \approx 1.202$
- Number density

$$n_{\text{boson}} = gT^3 \frac{\zeta(3)}{\pi^2} \qquad \zeta(n+1) \equiv \frac{1}{n!} \int_0^\infty dx \frac{x^n}{e^x - 1}$$
$$n_{\text{fermion}} = \frac{3}{4} gT^3 \frac{\zeta(3)}{\pi^2}$$

Energy density

$$\rho_{\text{boson}} = gT^4 \frac{3}{\pi^2} \zeta(4) = gT^4 \frac{\pi^2}{30}$$

$$\rho_{\text{fermion}} = \frac{7}{8} gT^4 \frac{3}{\pi^2} \zeta(4) = \frac{7}{8} gT^4 \frac{\pi^2}{30}$$

• Pressure $q^2/3E = E/3 \to p = \rho/3, w_r = 1/3$

- Interactions or "collisions" between particles drive the various distributions to equilibrium through the Boltzmann equation
- Boltzmann equation is also known as the particle transport or radiative transfer equation
- Composed of two parts: the free propagation or Liouville equation and the collisions

Liouville Equation

• Liouville theorem: phase space distribution function is conserved along a trajectory in the absence of particle interactions

$$\frac{Df}{Dt} = \left[\frac{\partial}{\partial t} + \frac{d\mathbf{q}}{dt} \frac{\partial}{\partial \mathbf{q}} + \frac{d\mathbf{x}}{dt} \frac{\partial}{\partial \mathbf{x}} \right] f = 0$$

Expanding universe: de Broglie wavelength of particles "stretches"

$$q \propto a^{-1}$$

Homogeneous and isotropic limit

$$\frac{\partial f}{\partial t} + \frac{dq}{dt} \frac{\partial f}{\partial q} = \frac{\partial f}{\partial t} - H(a) \frac{\partial f}{\partial \ln q} = 0$$

• Implies energy conservation: $d\rho/dt = -3H(\rho + p)$

• Boltzmann equation says that Liouville theorem must be modified to account for collisions

$$\frac{Df}{Dt} = C[f]$$

Heuristically

$$C[f]$$
 = particle sources - sinks

• Collision term: integrate over phase space of incoming particles, connect to outgoing state with some interaction strength

• Form:

$$C[f] = \frac{1}{E} \int d(\text{phase space}) [\text{energy-momentum conservation}] \\ \times |M|^2 [\text{emission} - \text{absorption}]$$

- Matrix element M, assumed T [or CP] invariant
- (Lorentz invariant) phase space element

$$\int d(\text{phase space}) = \Pi_i \frac{g_i}{(2\pi)^3} \int \frac{d^3 q_i}{2E_i}$$

• Energy conservation: $(2\pi)^4 \delta^{(4)}(q_1 + q_2 + ...)$

- Emission absorption term involves the particle occupation of the various states
- \bullet For concreteness: take f to be the photon distribution function
- Interaction $(\gamma + \sum i \leftrightarrow \sum \mu)$; sums are over all incoming and outgoing other particles

• [emission-absorption] + = boson; - = fermion

$$\Pi_i \Pi_\mu f_\mu (1 \pm f_i) (1 \pm f) - \Pi_i \Pi_\mu (1 \pm f_\mu) f_i f$$

• Photon Emission: $f_{\mu}(1 \pm f_i)(1 + f)$

 f_{μ} : proportional to number of emitters

 $(1 \pm f_i)$: if final state is occupied and a fermion, process blocked; if boson the process enhanced

(1+f): final state factor for photons: "1": spontaneous emission (remains if f=0); "+f": stimulated and proportional to the occupation of final photon

• Photon Absorption: $-(1 \pm f_{\mu})f_i f$

 $(1 \pm f_{\mu})$: if final state is occupied and fermion, process blocked; if boson the process enhanced

 f_i : proportional to number of absorbers

f: proportional to incoming photons

- If interactions are rapid they will establish an equilibrium distribution where the distribution functions no longer change $C[f_{\rm eq}]=0$
- Solve by inspection

$$\Pi_i \Pi_\mu f_\mu (1 \pm f_i)(1 \pm f) - \Pi_i \Pi_\mu (1 \pm f_\mu) f_i f = 0$$

• Try $f_a = (e^{E_a/T} \mp 1)^{-1}$ so that $(1 \pm f_a) = e^{-E_a/T} (e^{E_a/T} \mp 1)^{-1}$

$$e^{-\sum (E_i+E)/T} - e^{-\sum E_{\mu}/T} = 0$$

and energy conservation says $E + \sum E_i = \sum E_{\mu}$, so identity is satisfied if the constant T is the same for all species, i.e. are in thermal equilibrium

 If the interaction does not create or destroy particles then the distribution

$$f_{\rm eq} = (e^{(E-\mu)/T} \mp 1)^{-1}$$

also solves the equilibrium equation: e.g. a scattering type reaction

$$\gamma_E + i \rightarrow \gamma_{E'} + j$$

where i and j represent the same collection of particles but with different energies after the scattering

$$\sum (E_i - \mu_i) + (E - \mu) = \sum (E_j - \mu_j) + (E' - \mu)$$

since $\mu_i = \mu_j$ for each particle

 Not surprisingly, this is the Fermi-Dirac distribution for fermions and the Bose-Einstein distribution for bosons

• More generally, equilibrium is satisfied if the sum of the chemical potentials on both sides of the interaction are equal, $\gamma+i\leftrightarrow\nu$

$$\sum \mu_i + \mu = \sum \mu_{\nu}$$

i.e. the law of mass action is satisfied

• If interactions that create or destroy particles are in equilibrium then this law says that the chemical potential will vanish: e.g.

$$\gamma + e^- \rightarrow 2\gamma + e^-$$

$$\mu_e + \mu = \mu_e + 2\mu \to \mu = 0$$

so that the chemical potential is driven to zero if particle number is not conserved in interaction

Maxwell Boltzmann Distribution

• For the nonrelativistic limit $E=m+\frac{1}{2}q^2/m$, nondegenerate limit $(E-\mu)/T\gg 1$ so both distributions go to the Maxwell-Boltzmann distribution

$$f_{\rm eq} = \exp[-(m-\mu)/T] \exp(-q^2/2mT)$$

- Here it is even clearer that the chemical potential μ is the normalization parameter for the number density of particles whose number is conserved.
- \bullet μ and n can be used interchangably

Poor Man's Boltzmann Equation

Non expanding medium

$$\frac{\partial f}{\partial t} = \Gamma \left(f - f_{\text{eq}} \right)$$

where Γ is some rate for collisions

Add in expansion in a homogeneous medium

$$\frac{\partial f}{\partial t} + \frac{dq}{dt} \frac{\partial f}{\partial q} = \Gamma \left(f - f_{eq} \right)$$

$$\left(q \propto a^{-1} \to \frac{1}{q} \frac{dq}{dt} = -\frac{1}{a} \frac{da}{dt} = H \right)$$

$$\frac{\partial f}{\partial t} - H \frac{\partial f}{\partial \ln q} = \Gamma \left(f - f_{eq} \right)$$

• So equilibrium will be maintained if collision rate exceeds expansion rate $\Gamma > H$

Non-Relativistic Bulk Properties

Number density

$$n = ge^{-(m-\mu)/T} \frac{4\pi}{(2\pi)^3} \int_0^\infty q^2 dq \exp(-q^2/2mT)$$

$$= ge^{-(m-\mu)/T} \frac{2^{3/2}}{2\pi^2} (mT)^{3/2} \int_0^\infty x^2 dx \exp(-x^2)$$

$$= g(\frac{mT}{2\pi})^{3/2} e^{-(m-\mu)/T}$$

- Energy density $E = m \rightarrow \rho = mn$
- Pressure $q^2/3E = q^2/3m \rightarrow p = nT$, ideal gas law

Ultra-Relativistic Bulk Properties

- Chemical potential $\mu = 0, \zeta(3) \approx 1.202$
- Number density

$$n_{\text{boson}} = gT^3 \frac{\zeta(3)}{\pi^2} \qquad \zeta(n+1) \equiv \frac{1}{n!} \int_0^\infty \frac{x^n}{e^x - 1} dx$$
$$n_{\text{fermion}} = \frac{3}{4} gT^3 \frac{\zeta(3)}{\pi^2}$$

Energy density

$$\rho_{\text{boson}} = gT^4 \frac{3}{\pi^2} \zeta(4) = gT^4 \frac{\pi^2}{30}$$

$$\rho_{\text{fermion}} = \frac{7}{8} gT^4 \frac{3}{\pi^2} \zeta(4) = \frac{7}{8} gT^4 \frac{\pi^2}{30}$$

• Pressure $q^2/3E = E/3 \to p = \rho/3, w_r = 1/3$

Entropy Density

First law of thermodynamics

$$dS = \frac{1}{T}(d\rho(T)V + p(T)dV)$$

so that

$$\frac{\partial S}{\partial V}\Big|_{T} = \frac{1}{T} [\rho(T) + p(T)]$$

$$\frac{\partial S}{\partial T}\Big|_{V} = \frac{V}{T} \frac{d\rho}{dT}$$

• Since $S(V,T) \propto V$ is extensive

$$S = \frac{V}{T}[\rho(T) + p(T)] \quad \sigma = S/V = \frac{1}{T}[\rho(T) + p(T)]$$

Entropy Density

• Integrability condition dS/dVdT = dS/dTdV relates the evolution of entropy density

$$\frac{d\sigma}{dT} = \frac{1}{T} \frac{d\rho}{dT}$$

$$\frac{d\sigma}{dt} = \frac{1}{T} \frac{d\rho}{dt} = \frac{1}{T} [-3(\rho + p)] \frac{d\ln a}{dt}$$

$$\frac{d\ln \sigma}{dt} = -3 \frac{d\ln a}{dt} \qquad \sigma \propto a^{-3}$$

comoving entropy density is conserved in thermal equilibrium

• For ultra relativisitic bosons $s_{\rm boson} = 3.602 n_{\rm boson}$; for fermions factor of 7/8 from energy density.

$$g_* = \sum_{\text{bosons}} g_b + \frac{7}{8} \sum g_f$$