Supplement:
Statistical Physics



Fitting 1n a Box

e Counting momentum states with

momentum ¢ and de Broglie wavelength

o h_2mh
q q ]

e In a discrete volume L3 there

1s a discrete set of states that satisfy
periodic boundary conditions

e We will hereafterset h = c =1

e As in Fourier analysis
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Fitting 1n a Box

e Periodicity yields a discrete set of allowed states
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e In each of 3 directions
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e The differential number of allowed momenta in the volume
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Density of States

e The total number of states allows for a number of internal degrees
of freedom, e.g. spin, quantified by the degeneracy factor g

e Total density of states:
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e If all states were occupied by a single particle, then particle density
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Distribution Function

e The distribution function f quantifies the occupation of the
allowed momentum states
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e f, aka phase space occupation number, also quantifies the density

of particles per unit phase space dN/(Ax)?(Aq)?

e For photons, the spin degeneracy g = 2 accounting for the 2
polarization states

e Energy E(q) = (¢* +m?*)"/?

e Momentum — frequency ¢ = 27/ = 27v = w = F (where
m=0and \v =c=1)



Bulk Properties

e Integrals over the distribution function define the bulk properties of
the collection of particles

e Number density

e Energy density

where E? = ¢ + m?
e Momentum density
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Bulk Properties

e Pressure: particles bouncing
off a surface of area A in a volume
spanned by L,: per momentum state
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Bulk Properties

e So that summed over occupied momenta states
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e Pressure 1s just one of the quadratic in ¢ moments, in particular the
1sotropic one

e The remaining 5 components are the anisotropic stress (vanishes in
the background)
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e We shall see that these are related to the 5 quadrupole moments of
the angular distribution



Bulk Properties

These are more generally the components of the stress-energy
tensor

L °q q¢"q,
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0-0: energy density

0-2: momentum density
1 — 1. pressure

© # J: anisotropic stress

In the FRW background cosmology, 1sotropy requires that there be
only a net energy density and pressure



Equilibrium
e Thermal physics describes the equilibrium distribution of particles

for a medium at temperature 1’

e Expect that the typical energy of a particle by equipartition 1is
E ~ T, sothat fo(E/T,?) in equilibrium

e Must be a second variable of import. Number density
[ o falB/T) =2 (1)
n —= — 5 Je —. mn
Y| 2rn)s’e

e If particles are conserved then n cannot simply be a function of
temperature.

e The integration constant that concerns particle conservation is
called the chemical potential. Relevant for photons when creation
and annihilation processes are ineffective



Temperature and Chemical Potential

e Fundamental assumption of statistical mechanics is that all
accessible states have an equal probability of being populated. The
number of states ¢ defines the entropy S(U, N, V') = In G where
U 1s the energy, NV 1s the number of particles and V' 1s the volume

e When two systems are placed in thermal contact they may
exchange energy, particles, leading to a wider range of accessible
states

G(U,N, V)= >  Gi(Ur, N;,V1)Gs(U = Ui, N — Ny, Vo)

Ui,N1

e The most likely distribution of U; and U, 1s given for the
maximum dG/dU; = 0
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Temperature and Chemical Potential

e Or equilibrium requires
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U1 ) v, Uy )y, T

which 1s the definition of the temperature (equal for systems in
thermal contact)

e Likewise define a chemical potential  for a system 1n diffusive
equilibrium
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defines the most likely distribution of particle numbers as a system
with equal chemical potentials: generalize to multiple types of
particles undergoing “chemical” reaction — law of mass action
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Temperature and Chemical Potential

e Equivalent definition: the chemical potential 1s the free energy cost
associated with adding a particle at fixed temperature and volume
OF
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free energy: balance between minimizing energy and maximizing
entropy S

e Temperature and chemical potential determine the probability of a
state being occupied if the system is in thermal and diffusive
contact with a large reservoir at temperature I’



G1bbs or Boltzmann Factor

e Suppose the system has two states unoccupied N; = 0, U; = 0 and
occupied N; = 1, U; = E then the ratio of probabilities 1n the
occupied to unoccupied states is given by

_explnGies(U - E,N —1,V)]

P
exp|ln G, (U, N, V)]

e Taylor expand

In Gres(U — E, N — 1, V) ~ In Gres(Ua N? V) o +
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P ~ exp|—(E — p)/T]

e This 1s the Gibbs factor.



G1bbs or Boltzmann Factor

e More generally the probability of a system being in a state of
energy [v; and particle number V; 1s given by the Gibbs factor

P(E;, N;) o< exp[—(E; — uN;) /T

e Unlikely to be 1n an energy state F; > 1" mitigated by the number
of particles

e Dropping the diffusive contact, this is the Boltzmann factor



Thermal & Diffusive Equilibrium

e A gas in thermal & diffusive contact with a reservoir at
temperature '

e Probability of system being in state of energy F£; and number V;
(Gibbs Factor)

P(E;, N;) o< exp[—(E; — puN;) /T]
where w1 1s the chemical potential (defines the free energy “cost”
for adding a particle at fixed temperature and volume)
e Chemical potential appears when particles are conserved

e CMB photons can carry chemical potential if creation and
annihilation processes inefficient, as they are after ¢ ~ 1lyr.



Distribution Function

e Mean occupation of the state in thermal equilibrium

_ > N:P(E;, N;)
/= > P(E;, N;)

where the total energy is related to the particle energy as

F; = N; I/ (1gnoring zero pt)

e Density of (energy) states in phase space makes the net spatial
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where ¢ 1s the number of spin states

density of particles




Fermi-Dirac Distribution

e For fermions, the occupancy can only be NV, = 0, 1

P(E.1)
P(0,0) + P(E, 1)
o~ (E—p)/T
1+ e (E-p)/T
1
e(E—p)/T 1 1

f=

e In the non-relativistic, non-degenerate limit

2 2\1/2 1q°
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and m > T so the distribution 1s Maxwell-Boltzmann

f= o~ (m=w)/T ;—q*/2mT _ —(m—p)/T ,—mv?/2T



Bose-Einstein Distribution
e For bosons each state can have multiple occupation,
_d N> —(E—p)/T\N 00
_ duJT 2 n—ol€ ) , N 1
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e Again, non relativistic distribution 1s Maxwell-Boltzmann

f= o~ (m=w)/T ,—¢*/2mT _ —(m—p)/T ,—mu?/2T

with a spatial number density
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Ultra-Relativistic Bulk Properties
e Chemical potential ;x = 0, ((3) = 1.202
e Number density
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e Energy density
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e Pressure ¢°/3E =FE/3 = p=p/3,w, =1/3



Boltzmann Equation

e Interactions or “collisions” between particles drive the various
distributions to equilibrium through the Boltzmann equation

e Boltzmann equation is also known as the particle transport or
radiative transfer equation

e Composed of two parts: the free propagation or Liouville equation
and the collisions



Liouville Equation

e Liouville theorem: phase space distribution function is conserved
along a trajectory in the absence of particle interactions

Df [0  dqd  dx

— =4+ X =2 r=0
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Expanding universe: de Broglie wavelength of particles “stretches”
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e Homogeneous and isotropic limit
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e Implies energy conservation: dp/dt = —3H (p + p)



Boltzmann Equation

e Boltzmann equation says that Liouville theorem must be modified
to account for collisions

Df _

o =Clf

e Heuristically

C'|f] = particle sources - sinks

e Collision term: integrate over phase space of incoming particles,
connect to outgoing state with some interaction strength



Boltzmann Equation

Clf] == / d(phase space)|energy-momentum conservation|
x | M|?[emission — absorption]

e Matrix element M, assumed T [or CP] invariant

e (Lorentz invariant) phase space element

i d*q;
/ d(phase space) = 11, (23?)3 / 5 gz

e Energy conservation: (27)*6™ (¢, + g2 + ...)




Boltzmann Equation

Emission - absorption term involves the particle occupation of the
various states

For concreteness: take f to be the photon distribution function

Interaction (y + > ¢ <> Y  u); sums are over all incoming and
outgoing other particles

absorption emission

photon photon
u i
M th tat th tat M
f other | states  other U states f
[emission-absorption] + = boson; — = fermion

HiHufu(l + fz)(l + f) — HiHu(l + fu)fzf



Boltzmann Equation
e Photon Emission: f,(1 £ f;)(1 + f)
/,.: proportional to number of emitters

(1 & f;): if final state is occupied and a fermion, process blocked;
if boson the process enhanced

(1 + f): final state factor for photons: “1”: spontaneous emission
(remains if f = 0); “+ f”’: stimulated and proportional to the
occupation of final photon

e Photon Absorption: —(1 + f,)f:f

(1 £ f,): if final state is occupied and fermion, process blocked; if
boson the process enhanced

f;: proportional to number of absorbers

f: proportional to incoming photons



Boltzmann Equation

e If interactions are rapid they will establish an equilibrium
distribution where the distribution functions no longer change

C[feq] =0
e Solve by inspection
o Try f, = (eFa/T 1) ' sothat (1 £ f,) = e Fa/T(eFa/T £ 1)1

o~ S(EAE)/T _ o~ S EJT _

and energy conservation says £ + Y E; = ) FE,, so identity is
satisfied 1f the constant 7" 1s the same for all species, 1.e. are in
thermal equilibrium



Boltzmann Equation

e If the interaction does not create or destroy particles then the
distribution

feg = (51T 1)

also solves the equilibrium equation: e.g. a scattering type reaction

Ye +1 = Ve )

where 2 and j represent the same collection of particles but with
different energies after the scattering

Y (Bi— )+ (E—p)=>» (B — )+ (E' — p)

since [; = [1; for each particle

e Not surprisingly, this is the Fermi-Dirac distribution for fermions
and the Bose-Einstein distribution for bosons



Boltzmann Equation

e More generally, equilibrium 1s satisfied if the sum of the chemical
potentials on both sides of the interaction are equal, v + 1 <> v

1.e. the law of mass action 1s satisfied

e If interactions that create or destroy particles are in equilibrium
then this law says that the chemical potential will vanish: e.g.

vy+e —2y+e”
pe + 10 = phe + 210 = pp =10

so that the chemical potential 1s driven to zero if particle number 1s
not conserved 1n interaction



Maxwell Boltzmann Distribution

e For the nonrelativistic limit £ = m + %q2 /m, nondegenerate limit
(2 — u)/T > 1 so both distributions go to the
Maxwell-Boltzmann distribution

feq = exp[—(m — p) /T exp(—q*/2mT)

e Here it 1s even clearer that the chemical potential u 1s the
normalization parameter for the number density of particles whose

number 1s conserved.

e 1, and n can be used interchangably



Poor Man’s Boltzmann Equation

e Non expanding medium

Ji
=T (f = fuo

where ' 1s some rate for collisions

e Add in expansion in a homogeneous medium

8f dq@f
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e So equilibrium will be maintained 1if collision rate exceeds
expansion rate I' > H



Non-Relativistic Bulk Properties

e Number density
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e Energy density /' =m — p = mn

= g(

e Pressure ¢°/3E = ¢*/3m — p = nT, ideal gas law



Ultra-Relativistic Bulk Properties
e Chemical potential ;x = 0, ((3) = 1.202
e Number density
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e Pressure ¢°/3E =FE/3 = p=p/3,w, =1/3



Entropy Density

e First law of thermodynamics

1

dS 7 (dp(T)V + p(T)dV)
SO that
0S 1
EAR T[P(T) + p(T)]
0S| _Vdp
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e Since S(V,T) x V is extensive

S:
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Entropy Density

e Integrability condition d.S/dV dT = dS/dT'dV relates the
evolution of entropy density

dr _1dp
dT  TdT
do 1dp 1 dlna
T T T T[—3(P+p)} g
dlna__gdlna _3
i dt o

comoving entropy density is conserved in thermal equilibrium

e For ultra relativisitic bosons Syqson = 3.602N 050 fOr fermions
factor of 7/8 from energy density.

go= Yy gﬁgzgf

bosons



