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Planck Power Spectrum



B-modes: Auto & Cross



Scalar Primary Power Spectrum
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Tensor Power Spectrum
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Schematic Outline
• Take apart features in the power spectrum

Δ
 (
μ
K
)

10

100

1

10 100 1000

l

leq lA ld

ΘΘ

EE

damping

damping

tight
coupling

driving
ISW

ISW



Schematic Outline
• Take apart features in the power spectrum
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• Angular distribution
of radiation is the 3D
temperature field
projected onto a shell
- surface of last scattering

• Shell radius
is distance from the observer
to recombination: called
the last scattering surface

• Take the radiation
distribution at last scattering to also be described by an isotropic
temperature fluctuation field Θ(x)



Angular Power Spectrum
• Take recombination to be instantaneous

Θ(n̂) =

∫
dDΘ(x)δ(D −D∗)

where D is the comoving distance and D∗ denotes recombination.

• Describe the temperature field by its Fourier moments

Θ(x) =

∫
d3k

(2π)3
Θ(k)eik·x

• Power spectrum

〈Θ(k)∗Θ(k′)〉 = (2π)3δ(k− k′)PT (k)

∆2
T = k3PT/2π

2



Angular Power Spectrum
• Temperature field

Θ(n̂) =

∫
d3k

(2π)3
Θ(k)eik·D∗n̂

• Multipole moments Θ(n̂) =
∑

`m Θ`mY`m

• Expand out plane wave in spherical coordinates

eikD∗·n̂ = 4π
∑
`m

i`j`(kD∗)Y
∗
`m(k̂)Y`m(n̂)

• Aside: as in the figure, it will often be convenient when
considering a single k mode to orient the north pole to k̂. This
simplifies the decomposition since

Y ∗`m(k̂)→ Y ∗`m(0) = δm0

√
2`+ 1

4π



Angular Power Spectrum
• Power spectrum

Θ`m =

∫
d3k

(2π)3
Θ(k)4πi`j`(kD∗)Y

∗
`m(k)

〈Θ∗`mΘ`′m′〉 =

∫
d3k

(2π)3
(4π)2i`−`

′
j`(kD∗)j`′(kD∗)Y`m(k)Y ∗`′m′(k)PT (k)

= δ``′δmm′4π

∫
d ln k j2

` (kD∗)∆
2
T (k)

with
∫∞

0
j2
` (x)d lnx = 1/(2`(`+ 1)), slowly varying ∆2

T

• Angular power spectrum:

C` =
4π∆2

T (`/D∗)

2`(`+ 1)
=

2π

`(`+ 1)
∆2
T (`/D∗)



Thomson Scattering
• Thomson scattering of photons off of free electrons is the most

important CMB process with a cross section (averaged over
polarization states) of

σT =
8πα2

3m2
e

= 6.65× 10−25cm2

• Density of free electrons in a fully ionized xe = 1 universe

ne = (1− Yp/2)xenb ≈ 10−5Ωbh
2(1 + z)3cm−3 ,

where Yp ≈ 0.24 is the Helium mass fraction, creates a high
(comoving) Thomson opacity

τ̇ ≡ neσTa

where dots are conformal time η ≡
∫
dt/a derivatives and τ is the

optical depth.



Tight Coupling Approximation
• Near recombination z ≈ 103 and Ωbh

2 ≈ 0.02, the (comoving)
mean free path of a photon

λC ≡
1

τ̇
∼ 2.5Mpc

small by cosmological standards!

• On scales λ� λC photons are tightly coupled to the electrons by
Thomson scattering which in turn are tightly coupled to the
baryons by Coulomb interactions

• Specifically, their bulk velocities are defined by a single fluid
velocity vγ = vb and the photons carry no anisotropy in the rest
frame of the baryons

• → No heat conduction or viscosity (anisotropic stress) in fluid



Equations of Motion
• Continuity

Θ̇ = −k
3
vγ − Φ̇ , δ̇b = −kvb − 3Φ̇

where the photon equation remains unchanged and the baryons
follow number conservation with ρb = mbnb

• Navier-Stokes (Euler + heat conduction, viscosity)

v̇γ = k(Θ + Ψ)− k

6
πγ − τ̇(vγ − vb)

v̇b = − ȧ
a
vb + kΨ + τ̇(vγ − vb)/R

where the photons gain an anisotropic stress term πγ from radiation
viscosity and a momentum exchange term with the baryons and
are compensated by the opposite term in the baryon Euler equation



Zeroth Order Approximation
• Momentum density of a fluid is (ρ+ p)v, where p is the pressure

• Neglect the momentum density of the baryons

R ≡ (ρb + pb)vb
(ργ + pγ)vγ

=
ρb + pb
ργ + pγ

=
3ρb
4ργ

≈ 0.6

(
Ωbh

2

0.02

)( a

10−3

)
since ργ ∝ T 4 is fixed by the CMB temperature T = 2.73(1 + z)K
– OK substantially before recombination

• Neglect radiation in the expansion

ρm
ρr

= 3.6

(
Ωmh

2

0.15

)( a

10−3

)
• Neglect gravity



Fluid Equations
• Density ργ ∝ T 4 so define temperature fluctuation Θ

δγ = 4
δT

T
≡ 4Θ

• Real space continuity equation

δ̇γ = −(1 + wγ)kvγ

Θ̇ = −1

3
kvγ

• Euler equation (neglecting gravity)

v̇γ = −(1− 3wγ)
ȧ

a
vγ +

kc2
s

1 + wγ
δγ

v̇γ = kc2
s

3

4
δγ = 3c2

skΘ



Oscillator: Take One
• Combine these to form the simple harmonic oscillator equation

Θ̈ + c2
sk

2Θ = 0

where the sound speed is adiabatic

c2
s =

δpγ
δργ

=
ṗγ
ρ̇γ

here c2
s = 1/3 since we are photon-dominated

• General solution:

Θ(η) = Θ(0) cos(ks) +
Θ̇(0)

kcs
sin(ks)

where the sound horizon is defined as s ≡
∫
csdη



Harmonic Extrema
.
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(a) Peak Scales (b) Baryons• All modes are frozen in
at recombination (denoted
with a subscript ∗)

• Temperature perturbations
of different amplitude
for different modes.

• For the adiabatic
(curvature mode) initial conditions

Θ̇(0) = 0

• So solution

Θ(η∗) = Θ(0) cos(ks∗)



Harmonic Extrema
• Modes caught in the extrema of their oscillation will have

enhanced fluctuations

kns∗ = nπ

yielding a fundamental scale or frequency, related to the inverse
sound horizon

kA = π/s∗

and a harmonic relationship to the other extrema as 1 : 2 : 3...



Peak Location
• The fundmental physical scale is translated into a fundamental

angular scale by simple projection according to the angular
diameter distance DA

θA = λA/DA

`A = kADA

• In a flat universe, the distance is simply DA = D ≡ η0 − η∗ ≈ η0,
the horizon distance, and kA = π/s∗ =

√
3π/η∗ so

θA ≈
η∗
η0

• In a matter-dominated universe η ∝ a1/2 so θA ≈ 1/30 ≈ 2◦ or

`A ≈ 200



Curvature
.

λ

α
• In a curved

universe, the apparent
or angular diameter
distance is no longer
the conformal distance
DA = R sin(D/R) 6= D

• Objects in a closed
universe are further than
they appear! gravitational lensing of the background...

• Curvature scale of the universe must be substantially larger than
current horizon



Curvature
.
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• Flat universe indicates critical
density and implies missing
energy given local measures of
the matter density “dark energy”

• D also depends
on dark energy density ΩDE and
equation of state w = pDE/ρDE.

• Expansion rate at recombination
or matter-radiation ratio enters into calculation of kA.



Fixed Deceleration Epoch
• CMB determination of matter density controls all determinations

in the deceleration (matter dominated) epoch

• Planck: Ωmh
2 = 0.1426± 0.0025→ 1.7%

• Distance to recombination D∗ determined to 1
4
1.7% ≈ 0.43%

(ΛCDM result 0.46%; ∆h/h ≈ −∆Ωmh
2/Ωmh

2)
[more general: −0.11∆w − 0.48∆ lnh− 0.15∆ ln Ωm − 1.4∆ ln Ωtot = 0 ]

• Expansion rate during any redshift in the deceleration epoch
determined to 1

2
1.7%

• Distance to any redshift in the deceleration epoch determined as

D(z) = D∗ −
∫ z∗

z

dz

H(z)

• Volumes determined by a combination dV = D2
AdΩdz/H(z)

• Structure also determined by growth of fluctuations from z∗



Doppler Effect
• Bulk motion of fluid changes the observed temperature via

Doppler shifts (
∆T

T

)
dop

= n̂ · vγ

• Averaged over directions(
∆T

T

)
rms

=
vγ√

3

• Acoustic solution

vγ√
3

= −
√

3

k
Θ̇ =

√
3

k
kcs Θ(0)sin(ks)

= Θ(0)sin(ks)



Doppler Peaks?
• Doppler effect for the photon dominated system is of equal

amplitude and π/2 out of phase: extrema of temperature are
turning points of velocity

• Effects add in quadrature:(
∆T

T

)2

= Θ2(0)[cos2(ks) + sin2(ks)] = Θ2(0)

• No peaks in k spectrum! However the Doppler effect carries an
angular dependence that changes its projection on the sky
n̂ · vγ ∝ n̂ · k̂



Doppler Peaks?
• Coordinates where ẑ ‖ k̂

Y10Y`0 → Y`±1 0

recoupling j′`Y`0: no peaks in Doppler effect
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Restoring Gravity
• Take a simple photon dominated system with gravity

• Continuity altered since a gravitational potential represents a
stretching of the spatial fabric that dilutes number densities –
formally a spatial curvature perturbation

• Think of this as a perturbation to the scale factor a→ a(1 + Φ) so
that the cosmogical redshift is generalized to

ȧ

a
→ ȧ

a
+ Φ̇

so that the continuity equation becomes

Θ̇ = −1

3
kvγ − Φ̇



Restoring Gravity
• Gravitational force in momentum conservation F = −m∇Ψ

generalized to momentum density modifies the Euler equation to

v̇γ = k(Θ + Ψ)

• General relativity says that Φ and Ψ are the relativistic analogues
of the Newtonian potential and that Φ ≈ −Ψ.

• In our matter-dominated approximation, Φ represents matter
density fluctuations through the cosmological Poisson equation

k2Φ = 4πGa2ρm∆m

where the difference comes from the use of comoving coordinates
for k (a2 factor), the removal of the background density into the
background expansion (ρ∆m) and finally a coordinate subtlety that
enters into the definition of ∆m



Constant Potentials
• In the matter dominated epoch potentials are constant because

infall generates velocities as vm ∼ kηΨ

• Velocity divergence generates density perturbations as
∆m ∼ −kηvm ∼ −(kη)2Ψ

• And density perturbations generate potential fluctuations

Φ =
4πGa2ρ∆

k2
≈ 3

2

H2a2

k2
∆ ∼ ∆

(kη)2
∼ −Ψ

keeping them constant. Note that because of the expansion, density
perturbations must grow to keep potentials constant.



Constant Potentials
• More generally, if stress perturbations are negligible compared

with density perturbations ( δp� δρ ) then potential will remain
roughly constant

• More specifically a variant called the Bardeen or comoving
curvature is strictly constant

R = const ≈ 5 + 3w

3 + 3w
Φ

where the approximation holds when w ≈const.



Oscillator: Take Two
• Combine these to form the simple harmonic oscillator equation

Θ̈ + c2
sk

2Θ = −k
2

3
Ψ− Φ̈

• In a CDM dominated expansion Φ̇ = Ψ̇ = 0. Also for photon
domination c2

s = 1/3 so the oscillator equation becomes

Θ̈ + Ψ̈ + c2
sk

2(Θ + Ψ) = 0

• Solution is just an offset version of the original

[Θ + Ψ](η) = [Θ + Ψ](0) cos(ks)

• Θ + Ψ is also the observed temperature fluctuation since photons
lose energy climbing out of gravitational potentials at
recombination



Effective Temperature
• Photons climb out of potential wells at last scattering

• Lose energy to gravitational redshifts

• Observed or effective temperature

Θ + Ψ

• Effective temperature oscillates around zero with amplitude given
by the initial conditions

• Note: initial conditions are set when the perturbation is outside of
horizon, need inflation or other modification to matter-radiation
FRW universe.

• GR says that initial temperature is given by initial potential



Sachs-Wolfe Effect and the Magic 1/3
• A gravitational potential is a perturbation to the temporal

coordinate [formally a gauge transformation]

δt

t
= Ψ

• Convert this to a perturbation in the scale factor,

t =

∫
da

aH
∝
∫

da

aρ1/2
∝ a3(1+w)/2

where w ≡ p/ρ so that during matter domination

δa

a
=

2

3

δt

t

• CMB temperature is cooling as T ∝ a−1 so

Θ + Ψ ≡ δT

T
+ Ψ = −δa

a
+ Ψ =

1

3
Ψ



Sachs-Wolfe Normalization
• Use measurements of ∆T/T ≈ 10−5 in the Sachs-Wolfe effect to

infer ∆2
R

• Recall in matter domination Ψ = −3R/5

`(`+ 1)C`
2π

≈ ∆2
T ≈

1

25
∆2
R

• So that the amplitude of initial curvature fluctuations is
∆R ≈ 5× 10−5

• Modern usage: acoustic peak measurements plus known radiation
transfer function is used to convert ∆T/T to ∆R. Best measured at
k = 0.08 Mpc−1 by Planck



Baryon Loading
• Baryons add extra mass to the photon-baryon fluid

• Controlling parameter is the momentum density ratio:

R ≡ pb + ρb
pγ + ργ

≈ 30Ωbh
2
( a

10−3

)
of order unity at recombination

• Momentum density of the joint system is conserved

(ργ + pγ)vγ + (ρb + pb)vb ≈ (pγ + pγ + ρb + ργ)vγ

= (1 +R)(ργ + pγ)vγb



New Euler Equation
• Momentum density ratio enters as

[(1 +R)vγb]
· = kΘ + (1 +R)kΨ

• Photon continuity remains the same

Θ̇ = −k
3
vγb − Φ̇

• Modification of oscillator equation

[(1 +R)Θ̇]· +
1

3
k2Θ = −1

3
k2(1 +R)Ψ− [(1 +R)Φ̇]·



Oscillator: Take Three
• Combine these to form the not-quite-so simple harmonic oscillator

equation

c2
s

d

dη
(c−2
s Θ̇) + c2

sk
2Θ = −k

2

3
Ψ− c2

s

d

dη
(c−2
s Φ̇)

where c2
s ≡ ṗγb/ρ̇γb

c2
s =

1

3

1

1 +R

• In a CDM dominated expansion Φ̇ = Ψ̇ = 0 and the adiabatic
approximation Ṙ/R� ω = kcs

[Θ + (1 +R)Ψ](η) = [Θ + (1 +R)Ψ](0) cos(ks)



Baryon Peak Phenomenology
.
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(a) Peak Scales (b) Baryons• Photon-baryon
ratio enters in three ways

• Overall larger amplitude:

[Θ + (1 +R)Ψ](0) =
1

3
(1 + 3R)Ψ(0)

• Even-odd peak modulation of
effective temperature

[Θ + Ψ]peaks = [±(1 + 3R)− 3R]
1

3
Ψ(0)

[Θ + Ψ]1 − [Θ + Ψ]2 = [−6R]
1

3
Ψ(0)

• Shifting of the sound horizon down or `A up

`A ∝
√

1 +R



Photon Baryon Ratio Evolution
• Actual effects smaller since R evolves

• Oscillator equation has time evolving mass

c2
s

d

dη
(c−2
s Θ̇) + c2

sk
2Θ = 0

• Effective mass is is meff = 3c−2
s = (1 +R)

• Adiabatic invariant

E

ω
=

1

2
meffωA

2 =
1

2
3c−2
s kcsA

2 ∝ A2(1 +R)1/2 = const.

• Amplitude of oscillation A ∝ (1 +R)−1/4 decays adiabatically as
the photon-baryon ratio changes



Baryons in the Power Spectrum
• Relative heights of peaks
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Oscillator: Take Three and a Half
• The not-quite-so simple harmonic oscillator equation is a forced

harmonic oscillator

c2
s

d

dη
(c−2
s Θ̇) + c2

sk
2Θ = −k

2

3
Ψ− c2

s

d

dη
(c−2
s Φ)

changes in the gravitational potentials alter the form of the
acoustic oscillations

• If the forcing term has a temporal structure that is related to the
frequency of the oscillation, this becomes a driven harmonic
oscillator

• Term involving Ψ is the ordinary gravitational force

• Term involving Φ involves the Φ̇ term in the continuity equation as
a (curvature) perturbation to the scale factor



Potential Decay
• Matter-to-radiation ratio

ρm
ρr
≈ 24Ωmh

2
( a

10−3

)
of order unity at recombination in a low Ωm universe

• Radiation is not stress free and so impedes the growth of structure

k2Φ = 4πGa2ρr∆r

∆r ∼ 4Θ oscillates around a constant value, ρr ∝ a−4 so the
Netwonian curvature decays.

• General rule: potential decays if the dominant energy component
has substantial stress fluctuations, i.e. below the generalized sound
horizon or Jeans scale



Radiation Driving
• Decay is timed precisely to drive the oscillator - close to fully

coherent

|[Θ + Ψ](η)| = |[Θ + Ψ](0) + ∆Ψ−∆Φ|

= |1
3

Ψ(0)− 2Ψ(0)| = |5
3

Ψ(0)|

105 15 20

Ψi

–Ψi

Ψ

Θ+Ψ

πγ

ks/π

damping

driving

• 5× the amplitude of the Sachs-Wolfe effect!



External Potential Approach
• Solution to homogeneous equation

(1 +R)−1/4cos(ks) , (1 +R)−1/4sin(ks)

• Give the general solution for an external potential by propagating
impulsive forces

(1 +R)1/4Θ(η) = Θ(0)cos(ks) +

√
3

k

[
Θ̇(0) +

1

4
Ṙ(0)Θ(0)

]
sin ks

+

√
3

k

∫ η

0

dη′(1 +R′)3/4sin[ks− ks′]F (η′)

where

F = −Φ̈− Ṙ

1 +R
Φ̇− k2

3
Ψ

• Useful if general form of potential evolution is known



Matter-Radiation in the Power Spectrum
.
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• Coherent approximation is exact
for a photon-baryon fluid but
reality is reduced to ∼ 4×
because neutrino contribution
is free streaming not fluid like

• Neutrinos drive the oscillator
less efficiently and also slightly
change the phase of the oscillation

• Actual initial conditions are Θ + Ψ = Ψ/2 for radiation
domination but comparison to matter dominated SW correct

• With 3 peaks, it is possible to solve for both the baryons and dark
matter densities, providing a calibration for the sound horizon

• Higher peaks check consistency with assumptions: e.g. extra
relativistic d.o.f.s



Damping
• Tight coupling equations assume a perfect fluid: no viscosity, no

heat conduction

• Fluid imperfections are related to the mean free path of the
photons in the baryons

λC = τ̇−1 where τ̇ = neσTa

is the conformal opacity to Thomson scattering

• Dissipation related to diffusion length: random walk approx

λD =
√
NλC =

√
η/λC λC =

√
ηλC

the geometric mean between the horizon and mean free path

• λD/η∗ ∼ few %, so expect peaks > 3 to be affected by dissipation

• √η enters here and η in the acoustic scale→ expansion rate and
extra relativistic species



Equations of Motion
• Continuity

Θ̇ = −k
3
vγ − Φ̇ , δ̇b = −kvb − 3Φ̇

where the photon equation remains unchanged and the baryons
follow number conservation with ρb = mbnb

• Navier-Stokes (Euler + heat conduction, viscosity)

v̇γ = k(Θ + Ψ)− k

6
πγ − τ̇(vγ − vb)

v̇b = − ȧ
a
vb + kΨ + τ̇(vγ − vb)/R

where the photons gain an anisotropic stress term πγ from radiation
viscosity and a momentum exchange term with the baryons and
are compensated by the opposite term in the baryon Euler equation



Viscosity
• Viscosity is generated from radiation streaming from hot to cold

regions

• Expect

πγ ∼ vγ
k

τ̇

generated by streaming, suppressed by scattering in a wavelength
of the fluctuation. Radiative transfer says

πγ ≈ 2Avvγ
k

τ̇

where Av = 16/15

v̇γ = k(Θ + Ψ)− k

3
Av
k

τ̇
vγ



Oscillator: Penultimate Take
• Adiabatic approximation ( ω � ȧ/a)

Θ̇ ≈ −k
3
vγ

• Oscillator equation contains a Θ̇ damping term

c2
s

d

dη
(c−2
s Θ̇) +

k2c2
s

τ̇
AvΘ̇ + k2c2

sΘ = −k
2

3
Ψ− c2

s

d

dη
(c−2
s Φ̇)

• Heat conduction term similar in that it is proportional to vγ and is
suppressed by scattering k/τ̇ . Expansion of Euler equations to
leading order in kτ̇ gives

Ah =
R2

1 +R

since the effects are only significant if the baryons are dynamically
important



Oscillator: Final Take
• Final oscillator equation

c2
s

d

dη
(c−2
s Θ̇) +

k2c2
s

τ̇
[Av + Ah]Θ̇ + k2c2

sΘ = −k
2

3
Ψ− c2

s

d

dη
(c−2
s Φ̇)

• Solve in the adiabatic approximation

Θ ∝ exp(i

∫
ωdη)

−ω2 +
k2c2

s

τ̇
(Av + Ah)iω + k2c2

s = 0



Dispersion Relation
• Solve

ω2 = k2c2
s

[
1 + i

ω

τ̇
(Av + Ah)

]
ω = ±kcs

[
1 +

i

2

ω

τ̇
(Av + Ah)

]
= ±kcs

[
1± i

2

kcs
τ̇

(Av + Ah)

]
• Exponentiate

exp(i

∫
ωdη) = e±iks exp[−k2

∫
dη

1

2

c2
s

τ̇
(Av + Ah)]

= e±iks exp[−(k/kD)2]

• Damping is exponential under the scale kD



Diffusion Scale
• Diffusion wavenumber

k−2
D =

∫
dη

1

τ̇

1

6(1 +R)

(
16

15
+

R2

(1 +R)

)
• Limiting forms

lim
R→0

k−2
D =

1

6

16

15

∫
dη

1

τ̇

lim
R→∞

k−2
D =

1

6

∫
dη

1

τ̇

• Geometric mean between horizon and mean free path as expected
from a random walk

λD =
2π

kD
∼ 2π√

6
(ητ̇−1)1/2


