Ast 448

Set 1: Acoustic Basics
 Wayne Hu

Planck Power Spectrum

B-modes: Auto \& Cross

Scalar Primary Power Spectrum

Tensor Power Spectrum

Schematic Outline

- Take apart features in the power spectrum

Schematic Outline

- Take apart features in the power spectrum

Last Scattering

- Angular distribution of radiation is the 3 D temperature field projected onto a shell
- surface of last scattering
- Shell radius
is distance from the observer to recombination: called the last scattering surface

- Take the radiation distribution at last scattering to also be described by an isotropic temperature fluctuation field $\Theta(\mathbf{x})$

Angular Power Spectrum

- Take recombination to be instantaneous

$$
\Theta(\hat{\mathbf{n}})=\int d D \Theta(\mathbf{x}) \delta\left(D-D_{*}\right)
$$

where D is the comoving distance and D_{*} denotes recombination.

- Describe the temperature field by its Fourier moments

$$
\Theta(\mathbf{x})=\int \frac{d^{3} k}{(2 \pi)^{3}} \Theta(\mathbf{k}) e^{i \mathbf{k} \cdot \mathbf{x}}
$$

- Power spectrum

$$
\begin{aligned}
\left\langle\Theta(\mathbf{k})^{*} \Theta\left(\mathbf{k}^{\prime}\right)\right\rangle & =(2 \pi)^{3} \delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right) P_{T}(k) \\
\Delta_{T}^{2} & =k^{3} P_{T} / 2 \pi^{2}
\end{aligned}
$$

Angular Power Spectrum

- Temperature field

$$
\Theta(\hat{\mathbf{n}})=\int \frac{d^{3} k}{(2 \pi)^{3}} \Theta(\mathbf{k}) e^{i \mathbf{k} \cdot D_{*} \hat{\mathbf{n}}}
$$

- Multipole moments $\Theta(\hat{\mathbf{n}})=\sum_{\ell m} \Theta_{\ell m} Y_{\ell m}$
- Expand out plane wave in spherical coordinates

$$
e^{i \mathbf{k} D_{*} \cdot \hat{\mathbf{n}}}=4 \pi \sum_{\ell m} i^{\ell} j_{\ell}\left(k D_{*}\right) Y_{\ell m}^{*}(\hat{\mathbf{k}}) Y_{\ell m}(\hat{\mathbf{n}})
$$

- Aside: as in the figure, it will often be convenient when considering a single \mathbf{k} mode to orient the north pole to $\hat{\mathbf{k}}$. This simplifies the decomposition since

$$
Y_{\ell m}^{*}(\hat{\mathbf{k}}) \rightarrow Y_{\ell m}^{*}(0)=\delta_{m 0} \sqrt{\frac{2 \ell+1}{4 \pi}}
$$

Angular Power Spectrum

- Power spectrum

$$
\begin{aligned}
& \Theta_{\ell m}=\int \frac{d^{3} k}{(2 \pi)^{3}} \Theta(\mathbf{k}) 4 \pi i^{\ell} j_{\ell}\left(k D_{*}\right) Y_{\ell m}^{*}(\mathbf{k}) \\
&\left\langle\Theta_{\ell m}^{*} \Theta_{\ell^{\prime} m^{\prime}}\right\rangle=\int \frac{d^{3} k}{(2 \pi)^{3}}(4 \pi)^{2} i^{\ell-\ell^{\prime}} j_{\ell}\left(k D_{*}\right) j_{\ell^{\prime}}\left(k D_{*}\right) Y_{\ell m}(\mathbf{k}) Y_{\ell^{\prime} m^{\prime}}^{*}(\mathbf{k}) P_{T}(k) \\
&=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} 4 \pi \int d \ln k j_{\ell}^{2}\left(k D_{*}\right) \Delta_{T}^{2}(k)
\end{aligned}
$$

with $\int_{0}^{\infty} j_{\ell}^{2}(x) d \ln x=1 /(2 \ell(\ell+1))$, slowly varying Δ_{T}^{2}

- Angular power spectrum:

$$
C_{\ell}=\frac{4 \pi \Delta_{T}^{2}\left(\ell / D_{*}\right)}{2 \ell(\ell+1)}=\frac{2 \pi}{\ell(\ell+1)} \Delta_{T}^{2}\left(\ell / D_{*}\right)
$$

Thomson Scattering

- Thomson scattering of photons off of free electrons is the most important CMB process with a cross section (averaged over polarization states) of

$$
\sigma_{T}=\frac{8 \pi \alpha^{2}}{3 m_{e}^{2}}=6.65 \times 10^{-25} \mathrm{~cm}^{2}
$$

- Density of free electrons in a fully ionized $x_{e}=1$ universe

$$
n_{e}=\left(1-Y_{p} / 2\right) x_{e} n_{b} \approx 10^{-5} \Omega_{b} h^{2}(1+z)^{3} \mathrm{~cm}^{-3}
$$

where $Y_{p} \approx 0.24$ is the Helium mass fraction, creates a high (comoving) Thomson opacity

$$
\dot{\tau} \equiv n_{e} \sigma_{T} a
$$

where dots are conformal time $\eta \equiv \int d t / a$ derivatives and τ is the optical depth.

Tight Coupling Approximation

- Near recombination $z \approx 10^{3}$ and $\Omega_{b} h^{2} \approx 0.02$, the (comoving) mean free path of a photon

$$
\lambda_{C} \equiv \frac{1}{\dot{\tau}} \sim 2.5 \mathrm{Mpc}
$$

small by cosmological standards!

- On scales $\lambda \gg \lambda_{C}$ photons are tightly coupled to the electrons by Thomson scattering which in turn are tightly coupled to the baryons by Coulomb interactions
- Specifically, their bulk velocities are defined by a single fluid velocity $v_{\gamma}=v_{b}$ and the photons carry no anisotropy in the rest frame of the baryons
- \rightarrow No heat conduction or viscosity (anisotropic stress) in fluid

Equations of Motion

- Continuity

$$
\dot{\Theta}=-\frac{k}{3} v_{\gamma}-\dot{\Phi}, \quad \dot{\delta}_{b}=-k v_{b}-3 \dot{\Phi}
$$

where the photon equation remains unchanged and the baryons follow number conservation with $\rho_{b}=m_{b} n_{b}$

- Navier-Stokes (Euler + heat conduction, viscosity)

$$
\begin{aligned}
& \dot{v}_{\gamma}=k(\Theta+\Psi)-\frac{k}{6} \pi_{\gamma}-\dot{\tau}\left(v_{\gamma}-v_{b}\right) \\
& \dot{v}_{b}=-\frac{\dot{a}}{a} v_{b}+k \Psi+\dot{\tau}\left(v_{\gamma}-v_{b}\right) / R
\end{aligned}
$$

where the photons gain an anisotropic stress term π_{γ} from radiation viscosity and a momentum exchange term with the baryons and are compensated by the opposite term in the baryon Euler equation

Zeroth Order Approximation

- Momentum density of a fluid is $(\rho+p) v$, where p is the pressure
- Neglect the momentum density of the baryons

$$
\begin{aligned}
R & \equiv \frac{\left(\rho_{b}+p_{b}\right) v_{b}}{\left(\rho_{\gamma}+p_{\gamma}\right) v_{\gamma}}=\frac{\rho_{b}+p_{b}}{\rho_{\gamma}+p_{\gamma}}=\frac{3 \rho_{b}}{4 \rho_{\gamma}} \\
& \approx 0.6\left(\frac{\Omega_{b} h^{2}}{0.02}\right)\left(\frac{a}{10^{-3}}\right)
\end{aligned}
$$

since $\rho_{\gamma} \propto T^{4}$ is fixed by the CMB temperature $T=2.73(1+z) \mathrm{K}$

- OK substantially before recombination
- Neglect radiation in the expansion

$$
\frac{\rho_{m}}{\rho_{r}}=3.6\left(\frac{\Omega_{m} h^{2}}{0.15}\right)\left(\frac{a}{10^{-3}}\right)
$$

- Neglect gravity

Fluid Equations

- Density $\rho_{\gamma} \propto T^{4}$ so define temperature fluctuation Θ

$$
\delta_{\gamma}=4 \frac{\delta T}{T} \equiv 4 \Theta
$$

- Real space continuity equation

$$
\begin{aligned}
\dot{\delta}_{\gamma} & =-\left(1+w_{\gamma}\right) k v_{\gamma} \\
\dot{\Theta} & =-\frac{1}{3} k v_{\gamma}
\end{aligned}
$$

- Euler equation (neglecting gravity)

$$
\begin{aligned}
& \dot{v}_{\gamma}=-\left(1-3 w_{\gamma}\right) \frac{\dot{a}}{a} v_{\gamma}+\frac{k c_{s}^{2}}{1+w_{\gamma}} \delta_{\gamma} \\
& \dot{v}_{\gamma}=k c_{s}^{2} \frac{3}{4} \delta_{\gamma}=3 c_{s}^{2} k \Theta
\end{aligned}
$$

Oscillator: Take One

- Combine these to form the simple harmonic oscillator equation

$$
\ddot{\Theta}+c_{s}^{2} k^{2} \Theta=0
$$

where the sound speed is adiabatic

$$
c_{s}^{2}=\frac{\delta p_{\gamma}}{\delta \rho_{\gamma}}=\frac{\dot{p}_{\gamma}}{\dot{\rho}_{\gamma}}
$$

here $c_{s}^{2}=1 / 3$ since we are photon-dominated

- General solution:

$$
\Theta(\eta)=\Theta(0) \cos (k s)+\frac{\dot{\Theta}(0)}{k c_{s}} \sin (k s)
$$

where the sound horizon is defined as $s \equiv \int c_{s} d \eta$

Harmonic Extrema

- All modes are frozen in at recombination (denoted with a subscript *)
- Temperature perturbations of different amplitude for different modes.
- For the adiabatic
 (curvature mode) initial conditions

$$
\dot{\Theta}(0)=0
$$

- So solution

$$
\Theta\left(\eta_{*}\right)=\Theta(0) \cos \left(k s_{*}\right)
$$

Harmonic Extrema

- Modes caught in the extrema of their oscillation will have enhanced fluctuations

$$
k_{n} s_{*}=n \pi
$$

yielding a fundamental scale or frequency, related to the inverse sound horizon

$$
k_{A}=\pi / s_{*}
$$

and a harmonic relationship to the other extrema as $1: 2: 3 \ldots$

Peak Location

- The fundmental physical scale is translated into a fundamental angular scale by simple projection according to the angular diameter distance D_{A}

$$
\begin{aligned}
\theta_{A} & =\lambda_{A} / D_{A} \\
\ell_{A} & =k_{A} D_{A}
\end{aligned}
$$

- In a flat universe, the distance is simply $D_{A}=D \equiv \eta_{0}-\eta_{*} \approx \eta_{0}$, the horizon distance, and $k_{A}=\pi / s_{*}=\sqrt{3} \pi / \eta_{*}$ so

$$
\theta_{A} \approx \frac{\eta_{*}}{\eta_{0}}
$$

- In a matter-dominated universe $\eta \propto a^{1 / 2}$ so $\theta_{A} \approx 1 / 30 \approx 2^{\circ}$ or

$$
\ell_{A} \approx 200
$$

Curvature

- In a curved universe, the apparent or angular diameter distance is no longer the conformal distance $D_{A}=R \sin (D / R) \neq D$
- Objects in a closed universe are further than
 they appear! gravitational lensing of the background...
- Curvature scale of the universe must be substantially larger than current horizon

Curvature

- Flat universe indicates critical density and implies missing energy given local measures of the matter density "dark energy"
- D also depends on dark energy density Ω_{DE} and equation of state $w=p_{\mathrm{DE}} / \rho_{\mathrm{DE}}$.
- Expansion rate at recombination
 or matter-radiation ratio enters into calculation of k_{A}.

Fixed Deceleration Epoch

- CMB determination of matter density controls all determinations in the deceleration (matter dominated) epoch
- Planck: $\Omega_{m} h^{2}=0.1426 \pm 0.0025 \rightarrow 1.7 \%$
- Distance to recombination D_{*} determined to $\frac{1}{4} 1.7 \% \approx 0.43 \%$ (Λ CDM result $0.46 \% ; \Delta h / h \approx-\Delta \Omega_{m} h^{2} / \Omega_{m} h^{2}$) [more general: $-0.11 \Delta w-0.48 \Delta \ln h-0.15 \Delta \ln \Omega_{m}-1.4 \Delta \ln \Omega_{\text {tot }}=0$]
- Expansion rate during any redshift in the deceleration epoch determined to $\frac{1}{2} 1.7 \%$
- Distance to any redshift in the deceleration epoch determined as

$$
D(z)=D_{*}-\int_{z}^{z_{*}} \frac{d z}{H(z)}
$$

- Volumes determined by a combination $d V=D_{A}^{2} d \Omega d z / H(z)$
- Structure also determined by growth of fluctuations from z_{*}

Doppler Effect

- Bulk motion of fluid changes the observed temperature via Doppler shifts

$$
\left(\frac{\Delta T}{T}\right)_{\mathrm{dop}}=\hat{\mathbf{n}} \cdot \mathbf{v}_{\gamma}
$$

- Averaged over directions

$$
\left(\frac{\Delta T}{T}\right)_{\mathrm{rms}}=\frac{v_{\gamma}}{\sqrt{3}}
$$

- Acoustic solution

$$
\begin{aligned}
\frac{v_{\gamma}}{\sqrt{3}} & =-\frac{\sqrt{3}}{k} \dot{\Theta}=\frac{\sqrt{3}}{k} k c_{s} \Theta(0) \sin (k s) \\
& =\Theta(0) \sin (k s)
\end{aligned}
$$

Doppler Peaks?

- Doppler effect for the photon dominated system is of equal amplitude and $\pi / 2$ out of phase: extrema of temperature are turning points of velocity
- Effects add in quadrature:

$$
\left(\frac{\Delta T}{T}\right)^{2}=\Theta^{2}(0)\left[\cos ^{2}(k s)+\sin ^{2}(k s)\right]=\Theta^{2}(0)
$$

- No peaks in k spectrum! However the Doppler effect carries an angular dependence that changes its projection on the sky $\hat{\mathbf{n}} \cdot \mathbf{v}_{\gamma} \propto \hat{\mathbf{n}} \cdot \hat{\mathbf{k}}$

Doppler Peaks?

- Coordinates where $\hat{\mathbf{z}} \| \hat{\mathbf{k}}$

$$
Y_{10} Y_{\ell 0} \rightarrow Y_{\ell \pm 10}
$$

recoupling $j_{\ell}^{\prime} Y_{\ell 0}$: no peaks in Doppler effect

Restoring Gravity

- Take a simple photon dominated system with gravity
- Continuity altered since a gravitational potential represents a stretching of the spatial fabric that dilutes number densities formally a spatial curvature perturbation
- Think of this as a perturbation to the scale factor $a \rightarrow a(1+\Phi)$ so that the cosmogical redshift is generalized to

$$
\frac{\dot{a}}{a} \rightarrow \frac{\dot{a}}{a}+\dot{\Phi}
$$

so that the continuity equation becomes

$$
\dot{\Theta}=-\frac{1}{3} k v_{\gamma}-\dot{\Phi}
$$

Restoring Gravity

- Gravitational force in momentum conservation $\mathbf{F}=-m \nabla \Psi$ generalized to momentum density modifies the Euler equation to

$$
\dot{v}_{\gamma}=k(\Theta+\Psi)
$$

- General relativity says that Φ and Ψ are the relativistic analogues of the Newtonian potential and that $\Phi \approx-\Psi$.
- In our matter-dominated approximation, Φ represents matter density fluctuations through the cosmological Poisson equation

$$
k^{2} \Phi=4 \pi G a^{2} \rho_{m} \Delta_{m}
$$

where the difference comes from the use of comoving coordinates for k (a^{2} factor), the removal of the background density into the background expansion $\left(\rho \Delta_{m}\right)$ and finally a coordinate subtlety that enters into the definition of Δ_{m}

Constant Potentials

- In the matter dominated epoch potentials are constant because infall generates velocities as $v_{m} \sim k \eta \Psi$
- Velocity divergence generates density perturbations as $\Delta_{m} \sim-k \eta v_{m} \sim-(k \eta)^{2} \Psi$
- And density perturbations generate potential fluctuations

$$
\Phi=\frac{4 \pi G a^{2} \rho \Delta}{k^{2}} \approx \frac{3}{2} \frac{H^{2} a^{2}}{k^{2}} \Delta \sim \frac{\Delta}{(k \eta)^{2}} \sim-\Psi
$$

keeping them constant. Note that because of the expansion, density perturbations must grow to keep potentials constant.

Constant Potentials

- More generally, if stress perturbations are negligible compared with density perturbations ($\delta p \ll \delta \rho$) then potential will remain roughly constant
- More specifically a variant called the Bardeen or comoving curvature is strictly constant

$$
\mathcal{R}=\mathrm{const} \approx \frac{5+3 w}{3+3 w} \Phi
$$

where the approximation holds when $w \approx$ const.

Oscillator: Take Two

- Combine these to form the simple harmonic oscillator equation

$$
\ddot{\Theta}+c_{s}^{2} k^{2} \Theta=-\frac{k^{2}}{3} \Psi-\ddot{\Phi}
$$

- In a CDM dominated expansion $\dot{\Phi}=\dot{\Psi}=0$. Also for photon domination $c_{s}^{2}=1 / 3$ so the oscillator equation becomes

$$
\ddot{\Theta}+\ddot{\Psi}+c_{s}^{2} k^{2}(\Theta+\Psi)=0
$$

- Solution is just an offset version of the original

$$
[\Theta+\Psi](\eta)=[\Theta+\Psi](0) \cos (k s)
$$

- $\Theta+\Psi$ is also the observed temperature fluctuation since photons lose energy climbing out of gravitational potentials at recombination

Effective Temperature

- Photons climb out of potential wells at last scattering
- Lose energy to gravitational redshifts
- Observed or effective temperature

$$
\Theta+\Psi
$$

- Effective temperature oscillates around zero with amplitude given by the initial conditions
- Note: initial conditions are set when the perturbation is outside of horizon, need inflation or other modification to matter-radiation FRW universe.
- GR says that initial temperature is given by initial potential

Sachs-Wolfe Effect and the Magic 1/3

- A gravitational potential is a perturbation to the temporal coordinate [formally a gauge transformation]

$$
\frac{\delta t}{t}=\Psi
$$

- Convert this to a perturbation in the scale factor,

$$
t=\int \frac{d a}{a H} \propto \int \frac{d a}{a \rho^{1 / 2}} \propto a^{3(1+w) / 2}
$$

where $w \equiv p / \rho$ so that during matter domination

$$
\frac{\delta a}{a}=\frac{2}{3} \frac{\delta t}{t}
$$

- CMB temperature is cooling as $T \propto a^{-1}$ so

$$
\Theta+\Psi \equiv \frac{\delta T}{T}+\Psi=-\frac{\delta a}{a}+\Psi=\frac{1}{3} \Psi
$$

Sachs-Wolfe Normalization

- Use measurements of $\Delta T / T \approx 10^{-5}$ in the Sachs-Wolfe effect to infer $\Delta_{\mathcal{R}}^{2}$
- Recall in matter domination $\Psi=-3 \mathcal{R} / 5$

$$
\frac{\ell(\ell+1) C_{\ell}}{2 \pi} \approx \Delta_{T}^{2} \approx \frac{1}{25} \Delta_{R}^{2}
$$

- So that the amplitude of initial curvature fluctuations is $\Delta_{R} \approx 5 \times 10^{-5}$
- Modern usage: acoustic peak measurements plus known radiation transfer function is used to convert $\Delta T / T$ to Δ_{R}. Best measured at $k=0.08 \mathrm{Mpc}^{-1}$ by Planck

Baryon Loading

- Baryons add extra mass to the photon-baryon fluid
- Controlling parameter is the momentum density ratio:

$$
R \equiv \frac{p_{b}+\rho_{b}}{p_{\gamma}+\rho_{\gamma}} \approx 30 \Omega_{b} h^{2}\left(\frac{a}{10^{-3}}\right)
$$

of order unity at recombination

- Momentum density of the joint system is conserved

$$
\begin{aligned}
\left(\rho_{\gamma}+p_{\gamma}\right) v_{\gamma}+\left(\rho_{b}+p_{b}\right) v_{b} & \approx\left(p_{\gamma}+p_{\gamma}+\rho_{b}+\rho_{\gamma}\right) v_{\gamma} \\
& =(1+R)\left(\rho_{\gamma}+p_{\gamma}\right) v_{\gamma b}
\end{aligned}
$$

New Euler Equation

- Momentum density ratio enters as

$$
\left[(1+R) v_{\gamma b}\right]^{\cdot}=k \Theta+(1+R) k \Psi
$$

- Photon continuity remains the same

$$
\dot{\Theta}=-\frac{k}{3} v_{\gamma b}-\dot{\Phi}
$$

- Modification of oscillator equation

$$
[(1+R) \dot{\Theta}]^{\cdot}+\frac{1}{3} k^{2} \Theta=-\frac{1}{3} k^{2}(1+R) \Psi-[(1+R) \dot{\Phi}]
$$

Oscillator: Take Three

- Combine these to form the not-quite-so simple harmonic oscillator equation

$$
c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Theta}\right)+c_{s}^{2} k^{2} \Theta=-\frac{k^{2}}{3} \Psi-c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Phi}\right)
$$

where $c_{s}^{2} \equiv \dot{p}_{\gamma b} / \dot{\rho}_{\gamma b}$

$$
c_{s}^{2}=\frac{1}{3} \frac{1}{1+R}
$$

- In a CDM dominated expansion $\dot{\Phi}=\dot{\Psi}=0$ and the adiabatic approximation $\dot{R} / R \ll \omega=k c_{s}$

$$
[\Theta+(1+R) \Psi](\eta)=[\Theta+(1+R) \Psi](0) \cos (k s)
$$

Baryon Peak Phenomenology

- Photon-baryon ratio enters in three ways
- Overall larger amplitude:
$[\Theta+(1+R) \Psi](0)=\frac{1}{3}(1+3 R) \Psi(0)$
- Even-odd peak modulation of effective temperature

$$
\begin{aligned}
{[\Theta+\Psi]_{\text {peaks }} } & =[\pm(1+3 R)-3 R] \frac{1}{3} \Psi(0) \\
{[\Theta+\Psi]_{1}-[\Theta+\Psi]_{2} } & =[-6 R] \frac{1}{3} \Psi(0)
\end{aligned}
$$

- Shifting of the sound horizon down or ℓ_{A} up

$$
\ell_{A} \propto \sqrt{1+R}
$$

Photon Baryon Ratio Evolution

- Actual effects smaller since R evolves
- Oscillator equation has time evolving mass

$$
c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Theta}\right)+c_{s}^{2} k^{2} \Theta=0
$$

- Effective mass is is $m_{\text {eff }}=3 c_{s}^{-2}=(1+R)$
- Adiabatic invariant

$$
\frac{E}{\omega}=\frac{1}{2} m_{\mathrm{eff}} \omega A^{2}=\frac{1}{2} 3 c_{s}^{-2} k c_{s} A^{2} \propto A^{2}(1+R)^{1 / 2}=\text { const } .
$$

- Amplitude of oscillation $A \propto(1+R)^{-1 / 4}$ decays adiabatically as the photon-baryon ratio changes

Baryons in the Power Spectrum

- Relative heights of peaks

Oscillator: Take Three and a Half

- The not-quite-so simple harmonic oscillator equation is a forced harmonic oscillator

$$
c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Theta}\right)+c_{s}^{2} k^{2} \Theta=-\frac{k^{2}}{3} \Psi-c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \Phi\right)
$$

changes in the gravitational potentials alter the form of the acoustic oscillations

- If the forcing term has a temporal structure that is related to the frequency of the oscillation, this becomes a driven harmonic oscillator
- Term involving Ψ is the ordinary gravitational force
- Term involving Φ involves the $\dot{\Phi}$ term in the continuity equation as a (curvature) perturbation to the scale factor

Potential Decay

- Matter-to-radiation ratio

$$
\frac{\rho_{m}}{\rho_{r}} \approx 24 \Omega_{m} h^{2}\left(\frac{a}{10^{-3}}\right)
$$

of order unity at recombination in a low Ω_{m} universe

- Radiation is not stress free and so impedes the growth of structure

$$
k^{2} \Phi=4 \pi G a^{2} \rho_{r} \Delta_{r}
$$

$\Delta_{r} \sim 4 \Theta$ oscillates around a constant value, $\rho_{r} \propto a^{-4}$ so the Netwonian curvature decays.

- General rule: potential decays if the dominant energy component has substantial stress fluctuations, i.e. below the generalized sound horizon or Jeans scale

Radiation Driving

- Decay is timed precisely to drive the oscillator - close to fully coherent

$$
\begin{aligned}
|[\Theta+\Psi](\eta)| & =|[\Theta+\Psi](0)+\Delta \Psi-\Delta \Phi| \\
& =\left|\frac{1}{3} \Psi(0)-2 \Psi(0)\right|=\left|\frac{5}{3} \Psi(0)\right|
\end{aligned}
$$

- $5 \times$ the amplitude of the Sachs-Wolfe effect!

External Potential Approach

- Solution to homogeneous equation

$$
(1+R)^{-1 / 4} \cos (k s), \quad(1+R)^{-1 / 4} \sin (k s)
$$

- Give the general solution for an external potential by propagating impulsive forces

$$
\begin{aligned}
&(1+R)^{1 / 4} \Theta(\eta)=\Theta(0) \cos (k s)+\frac{\sqrt{3}}{k}\left[\dot{\Theta}(0)+\frac{1}{4} \dot{R}(0) \Theta(0)\right] \sin k s \\
&+\frac{\sqrt{3}}{k} \int_{0}^{\eta} d \eta^{\prime}\left(1+R^{\prime}\right)^{3 / 4} \sin \left[k s-k s^{\prime}\right] F\left(\eta^{\prime}\right)
\end{aligned}
$$

where

$$
F=-\ddot{\Phi}-\frac{\dot{R}}{1+R} \dot{\Phi}-\frac{k^{2}}{3} \Psi
$$

- Useful if general form of potential evolution is known

Matter-Radiation in the Power Spectrum

- Coherent approximation is exact for a photon-baryon fluid but reality is reduced to $\sim 4 \times$ because neutrino contribution is free streaming not fluid like
- Neutrinos drive the oscillator less efficiently and also slightly change the phase of the oscillation

- Actual initial conditions are $\Theta+\Psi=\Psi / 2$ for radiation domination but comparison to matter dominated SW correct
- With 3 peaks, it is possible to solve for both the baryons and dark matter densities, providing a calibration for the sound horizon
- Higher peaks check consistency with assumptions: e.g. extra relativistic d.o.f.s

Damping

- Tight coupling equations assume a perfect fluid: no viscosity, no heat conduction
- Fluid imperfections are related to the mean free path of the photons in the baryons

$$
\lambda_{C}=\dot{\tau}^{-1} \quad \text { where } \quad \dot{\tau}=n_{e} \sigma_{T} a
$$

is the conformal opacity to Thomson scattering

- Dissipation related to diffusion length: random walk approx

$$
\lambda_{D}=\sqrt{N} \lambda_{C}=\sqrt{\eta / \lambda_{C}} \lambda_{C}=\sqrt{\eta \lambda_{C}}
$$

the geometric mean between the horizon and mean free path

- $\lambda_{D} / \eta_{*} \sim$ few $\%$, so expect peaks >3 to be affected by dissipation
- $\sqrt{\eta}$ enters here and η in the acoustic scale \rightarrow expansion rate and extra relativistic species

Equations of Motion

- Continuity

$$
\dot{\Theta}=-\frac{k}{3} v_{\gamma}-\dot{\Phi}, \quad \dot{\delta}_{b}=-k v_{b}-3 \dot{\Phi}
$$

where the photon equation remains unchanged and the baryons follow number conservation with $\rho_{b}=m_{b} n_{b}$

- Navier-Stokes (Euler + heat conduction, viscosity)

$$
\begin{aligned}
& \dot{v}_{\gamma}=k(\Theta+\Psi)-\frac{k}{6} \pi_{\gamma}-\dot{\tau}\left(v_{\gamma}-v_{b}\right) \\
& \dot{v}_{b}=-\frac{\dot{a}}{a} v_{b}+k \Psi+\dot{\tau}\left(v_{\gamma}-v_{b}\right) / R
\end{aligned}
$$

where the photons gain an anisotropic stress term π_{γ} from radiation viscosity and a momentum exchange term with the baryons and are compensated by the opposite term in the baryon Euler equation

Viscosity

- Viscosity is generated from radiation streaming from hot to cold regions
- Expect

$$
\pi_{\gamma} \sim v_{\gamma} \frac{k}{\dot{\tau}}
$$

generated by streaming, suppressed by scattering in a wavelength of the fluctuation. Radiative transfer says

$$
\pi_{\gamma} \approx 2 A_{v} v_{\gamma} \frac{k}{\dot{\tau}}
$$

where $A_{v}=16 / 15$

$$
\dot{v}_{\gamma}=k(\Theta+\Psi)-\frac{k}{3} A_{v} \frac{k}{\frac{\tau}{\tau}} v_{\gamma}
$$

Oscillator: Penultimate Take

- Adiabatic approximation $(\omega \gg \dot{a} / a)$

$$
\dot{\Theta} \approx-\frac{k}{3} v_{\gamma}
$$

- Oscillator equation contains a $\dot{\Theta}$ damping term

$$
c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Theta}\right)+\frac{k^{2} c_{s}^{2}}{\dot{\tau}} A_{v} \dot{\Theta}+k^{2} c_{s}^{2} \Theta=-\frac{k^{2}}{3} \Psi-c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Phi}\right)
$$

- Heat conduction term similar in that it is proportional to v_{γ} and is suppressed by scattering $k / \dot{\tau}$. Expansion of Euler equations to leading order in $k \dot{\tau}$ gives

$$
A_{h}=\frac{R^{2}}{1+R}
$$

since the effects are only significant if the baryons are dynamically important

Oscillator: Final Take

- Final oscillator equation

$$
c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Theta}\right)+\frac{k^{2} c_{s}^{2}}{\dot{\tau}}\left[A_{v}+A_{h}\right] \dot{\Theta}+k^{2} c_{s}^{2} \Theta=-\frac{k^{2}}{3} \Psi-c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Phi}\right)
$$

- Solve in the adiabatic approximation

$$
\begin{gathered}
\Theta \propto \exp \left(i \int \omega d \eta\right) \\
-\omega^{2}+\frac{k^{2} c_{s}^{2}}{\dot{\tau}}\left(A_{v}+A_{h}\right) i \omega+k^{2} c_{s}^{2}=0
\end{gathered}
$$

Dispersion Relation

- Solve

$$
\begin{aligned}
\omega^{2} & =k^{2} c_{s}^{2}\left[1+i \frac{\omega}{\dot{\tau}}\left(A_{v}+A_{h}\right)\right] \\
\omega & = \pm k c_{s}\left[1+\frac{i}{2} \frac{\omega}{\dot{\tau}}\left(A_{v}+A_{h}\right)\right] \\
& = \pm k c_{s}\left[1 \pm \frac{i}{2} \frac{k c_{s}}{\dot{\tau}}\left(A_{v}+A_{h}\right)\right]
\end{aligned}
$$

- Exponentiate

$$
\begin{aligned}
\exp \left(i \int \omega d \eta\right) & =e^{ \pm i k s} \exp \left[-k^{2} \int d \eta \frac{1}{2} \frac{c_{s}^{2}}{\dot{\tau}}\left(A_{v}+A_{h}\right)\right] \\
& =e^{ \pm i k s} \exp \left[-\left(k / k_{D}\right)^{2}\right]
\end{aligned}
$$

- Damping is exponential under the scale k_{D}

Diffusion Scale

- Diffusion wavenumber

$$
k_{D}^{-2}=\int d \eta \frac{1}{\dot{\tau}} \frac{1}{6(1+R)}\left(\frac{16}{15}+\frac{R^{2}}{(1+R)}\right)
$$

- Limiting forms

$$
\begin{aligned}
\lim _{R \rightarrow 0} k_{D}^{-2} & =\frac{1}{6} \frac{16}{15} \int d \eta \frac{1}{\dot{\tau}} \\
\lim _{R \rightarrow \infty} k_{D}^{-2} & =\frac{1}{6} \int d \eta \frac{1}{\dot{\tau}}
\end{aligned}
$$

- Geometric mean between horizon and mean free path as expected from a random walk

$$
\lambda_{D}=\frac{2 \pi}{k_{D}} \sim \frac{2 \pi}{\sqrt{6}}\left(\eta \dot{\tau}^{-1}\right)^{1 / 2}
$$

