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CMBology

Universe is currently bathed in725K blackbody radiation which
composes the majority of the radiation density of the universe

mm-cm wavelength, 100 GHz photons near peak
400 photon cm?®

Radiation is extremely isotropic: aside from thE® temperature
variations due to the Doppler shift of our own motion, fluctuations
in the temperature are at thé— level.

Fluctuations are the imprint of the origin of structure

Fluctuations are polarized at the 10% level reflecting scattering
processes by which they last interacted with matter

Place CMB in cosmological context
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FRW Cosmology

e FRW cosmology = homogeneous and isotropic on large scales

e Universe observed to be nearly isotropic (e.g. CMB, radio point
sources, galaxy surveys)

e Copernican principle: must be isotropic to all observers (all
locations)

e Implies homogeneity; also galaxy redshift surveys (LCRS, 2dF,
SDSS) have seen the “end of greatness”, large scale homogeneit
directly

e FRW cosmology (homogeneity, isotropy & Einstein equations)
generically implies the expansion of the universe, except for
special unstable cases



FRW Geometry

e Spatial geometry is that of a constant curvature (positive, negative
zero) surface

e Metric tells us how to measure distances on this surface

e Consider the closed geometry of a sphere of radiand suppress
one dimension




Angular Diameter Distance

e Spatial distance: restore 3rd dimension with the usual spherical
polar angles

d¥? = dD? + D% da?
= dD? + D?%(d6? + sin® 0d¢?)
e D, Is called the angular diameter distance singgio
corresponds to the transverse separation or size as opposed to tf

EuclideanDda;, I.e. Is the apparent distance to an object through
the gravitational lens of the background geometry

e |In a positively curved geometr®p , < D and objects are further
than they appear

e In a negatively curved univerde is imaginary and
Rsin(D/R) = i|R|sin(D/i|R|) = |R|sinh(D/|R|) — and
D4 > D objects are closer than they appear



Volume Element

e Metric also defines the volume element

dV = (dD)(DAdQ)(DA sin qub)
= D%dDdS)

e Most of classical cosmology boils down to these three quantities,
(comoving) distance, (comoving) angular diameter distance, and

volume element

e For example, distance to a high redshift supernova, angular size c
the horizon at last scattering, number density of clusters...



Comoving Coordinates

e Remaining degree of freedom (preserving homogeneity and
Isotropy) is an overall scale factor that relates the geometry (fixed
by the radius of curvatur®) to physical coordinates — a function
of time only

do® = a*(t)dX%?
our conventions are that the scale factor todéy) = 1

e Similarly physical distances are given t) = a(t)D,
dA(t) = a(t)DA.
e Distances in capital case atemoving.e. they comove with the

expansion and do not change with time — simplest coordinates to
work out geometrical effects



Redshift

e Wavelength of light “stretches” with the scale factor, so that it is
convenient to define a shift-to-the-red or redshift as the scale fact:
INncreases

Aa) = a(t)A
) 1
@ a0t
oA oV
v -

e Given known frequency of emissiaria), redshift can be precisely
measured (modulo Doppler shifts from peculiar velocities) —
Interpreting the redshift as a Doppler shift, objects receed in an
expanding universes = zc



Time and Conformal Time

e As In special relativity, time comes in with the opposite signature
IN measuring space-time separation

e Proper time
dr? = dt* — do*

dt* — a*(t)d>”
a*(t) (dn* — dx?)

e Special relativity: physics invariant under the set of linear
coordinate transformations (Lorentz transformation) that preserve
lengths {2)

e General relativity: physics invariant under a general coordinate
transformation that preserves lengths



A GR Aside

e We will generally skirt around General Relativity but knowledge
of the language will be useful

o Proper time defines the metyg,

dr? = g dxtdx”

e Usually we will use comoving coordinates and conformal time as
the “2” ’s unless otherwise specified — metric for other choices are
related byu(t) — e.g. in spherical coordinatese n, 0, ¢, D

(1 0 0 0

0 —D2 0 0
0 0 —D%sin?6 0

\ 0 0 0 -1




Photon Cartography

e Classical cosmology is photon cartography — mapping out the
expansion by tracking the distance a photon travels as a function
scale factor or redshift

e Taking out the scale factor in the time coordindte= dt/a
definesconformal time- useful in that photons travelling radially
from observer then obey

dt
AD=An= | —

a

so that time and distance may be interchanged



Horizon

e Distance travelled by a photon in the whole lifetime of the universe
defines thénorizon

e Sincedr = 0, the horizon is simply the conformal time elapsed

t dt/
Dhorizon(t) — - = U(t)
0 a

e Since the horizon always grows with time, there is always a point
In time before which two observers separated by a distdhce
could not have been in causal contact

e Horizon problem: why is the universe homogeneous and isotropic
on large scales, near the current horizon — problem deepens for
objects seen at early times, e.g. CMB



Hubble Parameter

e Useful to define the expansion rate or Hubble parameter

1 da
H(t) = ——
() a dt

since dynamics (Einstein equations) will give this directly as
H(a) = H(t(a))

e TiIme becomes

t= | dt =

e Conformal time becomes

o= an
= a’H(a




Distance-Redshift Relation

e All distance redshift relations based on comoving distaice)

/dD /H

—(1+2)?dz = —anz)

0 dz “dY
D —— p—
D==) 5w~ ) "5

e Note limiting case is the Hubble law

lim D(z) = z/H(2 =0) = z/H,

z—0

redshift (recession velocity) increases linearly with distance

o Hubble constant usually quoted Hg = 100h km s™! Mpc,
observationally, ~ 0.7; in natural unitsi, = (2997.9)"'h Mpc™!
defines an inverse length scale



Distance-Redshift Relation

e Example: object of known physical si2ze= a(t)A (“standard
ruler”) subtending an (observed) angle on the sky

. A A
- Dyu(2) aRsin(D(z)/R)
= A (14 2) = A
Rsin(D(z)/R) da(z)

e Example: object of known luminosity (“standard candle”) with a
measured flux. Comoving surface arear D%, frequency/energy
(1 4 z), time-dilation or arrival rate of photons (crest3$)+ z):

L 1
~ 4rD? (14 2)?

L
47Td2 (dL = (1 -+ Z)DA = (1 -+ Z)2dA)
L

S




Relative Measures

e If absolute calibration of standards unknown, then absolute
distance (or Hubble constant) unknown

da(2) = Ma(z) — /L /47S(2)

e Ratio at two different redshifts drops out the unknown standards
A, L and measures evolution of the distance-redshift relation
H()D(Z):

d H
A’L(ZQ) ~ —OdA L(ZQ) [21 < 1]

dA,L(Z1) <1

o Alternately, distances & curvature are measured in unifs of
Mpc.



Fundamental Observable

e Fundamental dependence (aside frildm- z) factors)

HoyD4(z) = HyRsin(D(z)/R)

— ESIH(HoD(Z)/R), R = H()R

%Mﬂz/géa

e Maps out the kinematics of the expansion

e Current best standard ruler: acoustic oscillations: current best
standard candle supernovae type la

e Adding in the dynamics of the expansion, measuremeni3(of
Indicate a flat universe whose expansion Is accelerating



Evolution of Scale Factor
e FRW cosmology is fully specified if the functiarit) is given

e General relativity relates the scale factor with the matter content c
universe.

e Build the Einstein tenso&*, out of the metric and use Einstein
equation




Einstein Equations
e |sotropy demands that the stress-energy tensor take the form
T%h=p
Tij = _p(Sij
wherep is the energy density andis the pressure

e SO Einstein equations become

Q 2+1 A C
— - - a
a R? 3 P

. . 2
a a 1
i <_) TR —8nGa’p

. . 2
4
or L (E> = — 7TGCL2(,0+3p)

a a 3




Friedman Equations

e More usual to see Einstein equations expressed in time not
conformal time

dal da
—_— = — = H
dna  dt aH{a)

Q_(a\"_d (a)_ d(da\_ d%
a a) dn\a) dt\dt) ~dt?

e Friedmann equations:

a
a

1 87i¢
H> ==
(@) + 5 = —5—p
1 d%a A
aaz ~ 3 V)

e Convenient fiction to describe curvature as an energy density

componenpy = —3/(87Ga’R?) o< a~* that does not accelerate
the expansionyx = —pk /3



Critical Density

e Friedmann equation fal then reads

817G 81G
H*(a) = T(P‘FPK) =5 Pe

defining a critical density today, in terms of the expansion rate

e |n particular, its value today is given by the Hubble constant as

pe(z =0) = 3H3 /817G = 1.8788 x 10~ *h*gcm

e Energy density today is given as a fraction of critical
() = p/p.|.—o. Radius of curvature then given by
R =H;Q—1)

o If Q= 1, p=~p.,thenpx < p.0or HyR < 1, universe is flat
across the Hubble distance.< 1 negatively curveds) > 1
positively curved



Newtonian Interpretation

e Consider a test particle of massin expanding spherical region of
radiusr and total masd/. Energy conservation

1 5 GMm

E = §mv — — const
r
1 (dr)z GM .
— | — ] — —— = cons
2 \ dit r
1 /1dr\® GM _ const
2 \rdt r3 2
2 _ 8rGp  const
3 a?

e Constant determines whether the system is bound and in the
Friedmann equation is associated with curvature — not general
since neglects pressure



Conservation Law

e Second Friedmann equation, or acceleration equation, simply
expresses energy conservation (why: stress energy Is automatica
conserved in GR via Bianchi identity)

dpV + pdV =0
dpa® + pda® = 0

pa’ + 3g,0a3 + BEpa?’ =0
a a

p, a
- =—-3(1 — =
p (+w)a w=p/p

e If w = const. then the energy density depends on the scale factor

asp oc g 30+w),



Multicomponent Universe

e The total energy density can be composed of a sum of componen
with differing equations of state

p(CL) — Z IOZ(CL) — ZIOZ(a — 1)a_3(1+wi)7 Qz = pi/pc’azl

e Important cases: nonrelativistic matief = mn,,, o< a™?,
w,, = 0; relativistic radiatiorp, = En, o« vn, oc a™*, w, = 1/3;
“curvature” px < a?, wg = —1/3; constant energy density or
cosmological constanty, o a’, wy = —1

e Or generally withw. = p./p. = (0 + px)/(p + pK)
pe(a) = pula = 1) S Amassueio)
H2(CL) _ ng—fdlna?)(l—i—wc(a))



Acceleration Equation

e Time derivative of (first) Friedman equation

- 0] = s+ wond
%% — —?[(1 + 3we)pel
_ _g(p + pr + 3p + 3pK)
— _g(l + 3w)p

e Acceleration equation says that universe deceleratesif—1/3



Expansion Required

e Friedmann equations “predict” the expansion of the universe.
Non-expanding conditionga/dt = 0 andd?a/dt* = 0 require

p=—px  p=—3
l.e. a positive curvature and a total equation of state
w=p/p=-1/3
e Since matter is known to exist, one can in principle achieve this
with

P =Pm T+ Pr = —pPx = —3p = 3pa
1 2

PA = _ng Pm = —§,0K

Einstein introduce@, for exactly this reason — “biggest blunder”;
but note that this balance is unstabbe; can be perturbed but,, a
true constant cannot



Dark Energy
e Distance redshift relation depends on energy density components
da HO
HoD(z) = / a’ H(a)
. /@efdlnag(l—i—wc(a))

a2

e Distant supernova la as standard candles implydhat —1/3 so
that the expansion is accelerating

e Consistent with a cosmological constant that is
Qa = pa/peis= 2/3 0Of the total energy density

e Coincidence problem: different components of matter scale
differently with a. Why are (at least) two components comparable
today? — Anthropic?



Dark Matter

e Since Zwicky in the 1930’s non-luminous or dark matter has been
known to dominate over luminous matter in stars (and hot gas)

e Arguments are basically from a balance of gravitational force
against “pressure” from internal motions: rotation velocity In
galactic disks, velocity dispersion of galaxies in clusters, gas
pressure in clusters, radiation pressure in CMB

e Assuming that the object is somehow typical in its non-luminous
to luminous density, these measures are converted to an overall
dark matter density through a “mass-to-light ratio”

e From galaxy surveys the luminosity density in solar units Iis

pr, =2+0.7 x 108h Lo Mpc ™3

(h's: distances irh ! Mpc; luminosity inferred from flux
L o« Sd* o< h™?; inverse volumex h?)



Dark Matter

o Critical density in solar units is. = 2.7754 x 10''h? Mo Mpc ™
so that the critical mass-to-light ratio in solar units is

M
— ) ~ 1400h
(%)

e Flat rotation curvesG M /r? ~ v?/r — M =~ v*r/G, so the
observed flat rotation curve impliédd oc r out to 30~ kpc,
beyond the light. Implied//L > 30h and perhaps more — closure
If flat out to~ 1 Mpc.

e Similar argument holds in clusters of galaxies where velocity
dispersion replaces circular velocity and centripetal force is
replaced by a “pressure gradiefit/m = ¢* and
p = pT'/m = po?— generalization of hydrostatic equilibrium:
Zwicky got M /L = 300h.



Hydrostatic Equilibrium

e Evidence for dark matter iIX -ray clusters also comes from direct
hydrostatic equilibrium inference from the gas: balance radial
pressure gradient with gravitational potential gradient

e Infinitesimal volume of ared A and thicknesgr at radius- and
interior massV/ (r): pressure difference supports the gas

GmM  Gp,M
py(r) = py(r + dr))dA = == = 2P ay
dpy B d_CID
dr Pg dr

with p, = p,T,/m becomes

GM _ 1y (dlnp, N dInT,
dinr dinr

o p, from X-ray luminosity;7,, sometimes taken as isothermal

T m



Gravitational Lensing

e Mass can be directly measured in the gravitational lensing of
sources behind the cluster

e Strong lensing (giant arcs) probes central region of clusters

e Weak lensing (1-10% ) elliptical distortion to galaxy image probes
outer regions of cluster and total mass

e All technigues agree on the necessity of dark matter and are
roughly consistent with a dark matter dendity, ~ 0.2 — 0.4

o (2, + Q) ~ 1from matter density + dark energy

e CMB provides a test oD 4 # D through the standard rulers of the
acoustic peaks and shows that the universe is close tQ fatl

e Consistency has lead to the standard model for the cosmological
matter budget
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How Many Particles Fit in a Box?

e Counting momentum states due to

the wave nature of particles with momentum

¢ and de Broglie wavelength (in this /V\
supplement we retaif andc to be explicit)

N 2l

q q

e In a discrete volumé.? there is a discrete set
of states that satisfy periodic boundary conditions



How Many Particles Fit in a Box?

e As in Fourier analysisz? /A = eila/hz — ¢ila/h)(z+L) yie|ds a
discrete set of allowed states
L B 2mh

)\z' - — , m; — 1,2,3
m; q;

e Ineach of 3directionsy >, — [d’m

e The differential number of allowed momenta in the volume



Density of States

e The total number of states allows for a number of internal degrees
of freedom, e.qg. spin, quantified by the degeneracy factootal
density of states:

dNs S A g—
V V (27h)3

e If all states were occupied by a single particle, then the particle

density
N 1 g
,==—"=— [dN, = d?
Ty v/ /(27rh)3 1

d3q




Distribution Function

e The distribution functiory quantifies the occupation of the
allowed momentum states

_E_i B g 3

e f, aka phase space occupation number, also quantifies the densi
of particles per unit phase spad®’/(Az)°(Aq)?

e For photons, the spin degeneracy: 2 accounting for the 2
polarization states

e EnergyE(q) = (¢*c® + m2c*)1/?

e Momentum— frequencyg = h/\ = hv/c = E/c (wherem = 0
and\v = ¢)



Number Density

e Momentum state defines the direction of the radiation

e Gives number density in a given direction and frequency band



Energy Density

e In general the energy density Is

p= g/ (Qis)gE(Q)f

e For radiation

p:g/ (Qfg)BE(q)f — Q/dszc—lg/y?duhuf

e So specific energy density

d’p  20°h
IOV(Q) — dQCZV — 63 f
e And specific intensity
20°h
I,(Q) =p,(Q)c = f

62



Pressure

e Pressure: particles bouncing off a
surface of areal in a volume
spanned by.,. per momentum
state

L F . Npart AQ:B

Pa= A~ T4 At
(Aqy = 2|q.|, At=2L,/v,, q/FE =v/c)

_ Mot gl _ e
T V ‘QxHUa:‘_f 3 - 3E

(cos? term in radiative pressure calc.)




Moments

e So that summed over states

B d*q |q*c
p=9 (2nh)? 3E(q)”

e Radiation

d’q E(q) ,
p:g/(%m J = —p

e Energy and pressure are part of the angular moments of the
distribution function — the isotropic ones

e First order anisotropy is the bulk momentum density or dipole of
the distribution:

(U+p)V/C=9/(2dh)3qcf




Fluid Approximation Redux

e Continue with the second moments: radiative viscosity or
anisotropic stress

o g/ dgq 3qiq; — q25z’jf
* (27h)3  3E(q)

e Fluid approximation is that all the higher order moments from the
radiative viscosity onward vanishes - due isotropization from a
high collision rate

e Since particle kinetics must obey energy and momentum
conservation, in the fluid limit there are two equations of motion:
continuity and Euler equations

e Three quantities of interest. energy density, pressure, bulk velocit
means that a third relation is neededp) the equation of state



Equilibrium
e Thermal physics describes the equilibrium distribution of particles

for a medium at temperatufe

e Expect that the typical energy of a particle by equipartition is
E ~ kT, sothatf (E/kT,?) in equilibrium

e Must be a second variable of import. Number density

n=g / (Qfﬂz)g F(E/KT) =7 n(T)

e If particles are conserved thencannot simply be a function of
temperature.

e The integration constant that concerns particle conservation is
called the chemical potential. Relevant for photons when creation
and annihilation processes are ineffective



Temperature and Chemical Potential

e Fundamental assumption of statistical mechanics is that all
accessible states have an equal probability of being populated. Tl
number of state&’ defines the entropy (U, N, V) = kIn G where
U Is the energy)\V is the number of particles arid is the volume

e When two systems are placed in thermal contact they may
exchange energy, leading to a wider range of accessible states

G(U7 N7 v) — ZGI(UlaNla %)G2(U — UlaN T Nlav T ‘/1)
Ur

e The most likely distribution ot/; andU, is given for the
maximumdG/dU;, = 0

(9G1 aGQ
— GodUy + G | —= dUs = 0 dU,{ +dU, =0
(8U1>N1,V1 2T <8U2>N2,V2 ; L i



Temperature and Chemical Potential

e Or equilibrium requires

0ln G, ~ (9InG, L
oU; Ny, B oUs No.Vs kT

which is the definition of the temperature (equal for systems in
thermal contact

e Likewise define a chemical potentialfor a system in diffusive
equilibrium

O0ln G4 - (0InG, B
ON; Ul,vl_ ON, UQ,VZ_ kT

defines the most likely distribution of particle numbers as a systen
with equal chemical potentials: generalize to multiple types of
particles undergoing “chemical” reactien law of mass action

ZZ‘ /deNz =0




Temperature and Chemical Potential

e Equivalent definition: the chemical potential is the free energy cos
associated with adding a particle at fixed temperature and volume
OF

_ F=U-TS
ON |7y’

free energy: balance between minimizing energy and maximizing
entropysS

e Temperature and chemical potential determine the probability of &
state being occupied if the system is in thermal and diffusive
contact with a large reservoir at temperatilre



Gibbs or Boltzmann Factor

e Suppose the system has two states unoccupied 0, U; = 0 and
occupiedN; = 1, U; = E then the ratio of probabilities in the
occupied to unoccupied states is given by

~explnGies(U - E,N —1,V)]

P
expl|ln G, (U, N, V)]

e Taylor expand

1 7
| res _EaN_la ~ 1 res 7N7 — F
N Ghres(U V)~ InGreo(UN,V) = B + 4

P ~ exp|—(E — ) /kT]

e This is the Gibbs factor.



Gibbs or Boltzmann Factor

e More generally the probability of a system being in a state of
energyl; and particle numbew; is given by the Gibbs factor
P(E;, N;) o< exp|—(£; — uN;) /KT

e Unlikely to be in an energy stat8; > k71" mitigated by the
number of particles

e Dropping the diffusive contact, this is the Boltzmann factor



Mean Occupation

e Mean occupation in thermal equilibrium
- N;P(E;, N;
> P(Ei, N;)

e TakeFE; = N,E wherek is the particle energy (zero point drops
out)

e For fermions: occupancy; = 0, 1

(L PBD_ esl(B-pT
P(0,0)+ P(E,1) 14 exp|—(F — pu)/kT]
1

Fermi-Dirac Distribution

~ exp(E — p)/kT] + 1

o T =0, f— e+ 1" (E>u f=0)(E<pf=1),
occupied out to a sharp energy or Fermi surface wih= kT



Bose-Einstein Distribution

e For bosons:

Z P|E;, N;] = Z exp|—N;(E — ) /kT] = Z e~ (E-m/KT)N;

Z N;P[E;, Ni] = »  Niexp[—N;(E — p) /KT

— 0 Z [6—(E—M)/kT}Nz’
ou/kT =

5’ 1 6_(E_,“)/kT
- Ou/kT (1 — e—(E—u)/kT) - (1— 6—(E—,u)/kT)2



Bose-Einstein Distribution

e Bose Einstein distribution:

/- > N:PIE;,N;] 1
 STP[E;,N;] eE-m/AT

FOrE —u > KT, f — 0. FOrE — u < kT'ln2, f > 1, high
occupation (Bose-Einstein condensate).

e General equilibrium distribution

B 1
] = e(BE—p)/kT 4 1

+ = fermions,— = bosons

e 1 alters the number of particles at temperatiire



Maxwell Boltzmann Distribution

e In both cases, itE — 1) > kT (including rest mass energy), then
f=e (BE-p/kT
e For non relativistic particles

E = (* +m*cHY? = mc(1 + ¢¢/m>P)Y/?
L

(1 + q¢*/2m*c®) = mc* + oM

f — e —(mc?— )/kT —muv? /2kT



Planck (Black Body) Distribution

e When particles can be freely created and destroyed 0 and for
bosons this is the black body distribution

1
;= oE/FT _ 1

e Specific intensity

2hv3 1
2 ehv/kT _ 1

]I/ — Bl/ —
e Atlow frequenciesiv < kT (Rayleigh Jeans)
exp(hv/kT) -1~ 1+ hv/kT —1 = hv/kT

2hv3 kT 2
B, = — 92— kT
2 hv c2

Independent ok (classical, many photon limit)




Planck (Black Body) Distribution
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Cosmic Microwave Background

e FIRAS observations

B,, (x 10-9)

12

GHz

200 400 600
. I . . . I . . . I
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frequency (cm1)



Planck (Black Body) Distribution

e B, x v* would imply an ultraviolet catastrophy = [ B, dv

e At high frequencies.r > kT (Wien tail)
exp(hv/kT) — 1 ~ e"/*T

B — 2hv? o—hv /KT

(32

exhibits the Boltzmann suppression, particle nature of light

e Scaling withT

0

0B, 2w’ of 27 ( —1 —hv
(

= = >
oT ¢z OT c? ehv/kT — 1)2 | kT2
so that specific intensity at allincreases with"

e SettingdB,/dv = 0 defines the maximumu,,,, = 2.82kT



Planck (Black Body) Distribution

e Surface Brightness

o0 o0 3
S:/ Bde:% . dv
0

o2 0 ehv/kT _ 1

_ 2k (KT /OO oot 2wk, 0Tt
2 \h 0 e* —1 15¢2h3  «

whereop = 27°k*/15¢°h? is the Stephan-Boltzmann constant and
the accounts for the emergent flux at the radiusf a uniform
sphere where angles up to thg2 tangent can be viewed

2m /2
FE/SCOS@CZQ—S/ d¢/ cosfsin0df = .S
0 0



Planck (Black Body) Distribution

e Energy density

B, AropTd 4
PZ/—dudQ: no57 _ Z9Bqp
C

C 7 C

e Number density

n—Q/dQCS/ 2dueh /kT
° 22dg 167TC( ) (TN’
_c3<h)/0 et —1 ¢ (T)
2((3) (kT>3
w2c3 \ h

where((3) ~ 1.202
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Saha Equation

What is the equilibrium ionization state of a gas at a given
temperature?

Hydrogen examplez + p < H + v

Definen.,; = n, + ny and an ionization fractiomn, = n,/n

2

NpNe X

NNt 1 — Te

Number densities defined by distribution function in thermal
equilibrium. e andp are non-relativistic at the eV energy scales of
recombination

Maxwell-Boltzmann distribution

f _ e—(mCQ—,u)/kTe—q2/2ka



Saha Equation

e Number density:

d3 —(mc?—p) /KT 00
n:g/ q f: gce / q2dq6—q2/2ka
0

(2mh)3 2w’
—(mc?—p) /kT 00
(& 2
=957 (2mkT)3/? [/ rdre”™ = ?] (x = p/V2mkT
0
3/2
— ge_(m02—u)/kT (ka /
2mh’

e Hydrogen recombinatiom.; = n, + npy)
np — gpe_(mpCQ_,up)/kT (mka/Q’]Th2)3/2

ne = goe~ MBI (1 KT 27 h2) Y

ng = gHe_(mHCQ_'LLH)/kT (mHkT/27h2)3/2



Saha Equation
e Hydrogen binding energp = 13.6eV: my = m, + m, — B/c?

2 3/2
Mplte  _ _te  _9pYe —B/KT jpp+pe—pn (7n€k7ﬂ>
5
M H Ntot I — 2 GH Mot 2mh

e Spin degeneracy: spin 12 =2, g. = 2; gy = 4 product

o Equilibrium p, + pte = g

2 1 pur [ mekT 3/2
~ —e
2mh’

1 — Le Ntot
e Quadratic equation involving' and the total density - explicit
solution forz.(7T')

e Exponential dominant factor: ionization drops quicklykdsdrops
below B - exactly where the sharp transition occurs depends on th
denSityTLtOt



Saha Equation

e Photon perspective: compare photon number densitytatn,
_2€(3) (kTN
nV o 7T2h3 C
22 Ny \ g TR ( )3 mekT\
= €
1 — Le Ntot 2<(3) kT 27Th2

3/2
(o e 1/2 M2 /
Ntot 25/2C(3) ]‘CT

e Photon-baryon ratio controls when recombination occurs:
typically a very large number since baryon number is conserved
(1 # 0) -a low baryon density medium is easy to keep ionized
with the high energy photons in tail of the black body

e Cosmologically, recombination occurs at an energy scale of
KT ~ 0.3eV



Saha Equation

e Electron perspective: the relevant length scale is the (“thermal”) d
Broglie wavelength for a typical particle

mev® ~ kT,  q° ~ mZv* ~ (m.kT)

N heo (2rh?\”
g @rmkT)V2 T \m kT

which is the factor in the Saha equation

2
te _ 1 o~ B/FT
1—=x Niot Ao

& tot\Te

Nr. = n.\3, = # electrons in a de Broglie volume and<s 1 for
non-degenerate matter



Saha Equation

e Saha equation

e 1€—B/kT
1_376 NTe

e Electron chemical potential

Ny, = 2¢(mec® el /KT

Te L _iB(mec—poyyer

l—2x, 2

e Transition occurs wheB.g = B — m.c® + p. = kT - chemical
potential or number density determines correctio®te k7 rule

e However equilibrium may not be maintained - 2 body interaction
may not be rapid enough in low density environment - e.g.
freezeout cosmologically



Cosmic Recombination

e Rates insufficient to maintain equilibrium - due tod-gpacity
cosmic recombination relies on forbidden 2 photon decay and
redshift

redshift z

104 103 102
LI 1 1 IIIIIII 1 1

10-1

102

1onization fraction

2-level
10-3

A

104 10-3 102
scale factor a
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Temperature Fluctuations

e Observe blackbody radiation with a temperature that differs at
10~° coming from the surface of last scattering, with distribution
function (specific intensity, = 47v° f(v) each polarization)

f(v) = lexp(2mv/T(R)) — 1]
e Decompose the temperature perturbation in spherical harmonics

T(A) = TimYem(B)

e For Gaussian random fluctuations, the statistical properties of the
temperature field are determined by the power spectrum

<T£>Ir<mT£’m’> — 5%’5mm’ OE

where the)-function comes from statistical isotropy



Spatial vs Angular Power

e Take the radiation distribution at last scattering to also be
described by an isotropic temperature fi¢ltk) and
recombination to be instantaneous

T(h) = / dD T(x)5(D — D,)

whereD is the comoving distance and, denotes recombination.

e Describe the temperature field by its Fourier moments

d>k .
T(x) = T(k)e™ ™
) = [ e
with a power spectrum

(T(k)"T(K)) = (2m)"6(k — K') Pr(k)



Spatial vs Angular Power

e Note that the variance of the field

TOOT() = [ 5P

:/dlnkkgp(k) E/dlnkA%(k)

272
so it is more convenient to think in the log power spectidi( k)

e Temperature field

e Expand out plane wave in spherical coordinates

e “—47r2w (kD.)Y 50 (K)Yem (B)



Spatial vs Angular Power

e Multipole moments

d?)k g -
T = [ T 004 (kD) Vi (0

e Power spectrum

(TinTon) = [ 2555 420" D) (D) Y0¥ (K) P (1)

= 5gg/5mm/47'(' / dlnkgf(kD*)A%(k)
with [~ jZ(z)dInz = 1/(2¢(¢ + 1)), slowly varyingAZ

4rAL(0/D,) 2«
2000+1)  L(L+1)

so/l(¢ +1)C,/2m = A% is commonly used log power

Ce = A7(¢/D.)




Scale Invariant Fluctuations

e Scale invariant temperature fluctuations have =const

e Equal contributions to the rms temperature fluctuation per decade
In frequencyk

e Observed angular fluctuations then héye+ 1)C, /2w = const

e Weaker assumption of scale free initial temperature fluctuations
AZ o k"1, wheren is called the tilt.

e n = 11Is scale invariant for historical reasons.

e However fluctuations evolve from their initial conditions due to
gravitational and pressure forces



Thomson Scattering

e Thomson scatteringf photons off of free electrons is the most
Important CMB process with a cross section (averaged over
polarization states) of

7

o = — 6.65 x 107 *°cm?

- 3m?
e Density of free electrons in a fully ionized = 1 universe
ne = (1-Y,/2)xzeny = 107°Qh%(1 + 2)’cm ™3,

whereY, ~ 0.24 is the Helium mass fraction, creates a high
(comoving) Thomsompacity

T = N.OTa

where dots are conformal time= [ dt/a derivatives and is the
optical depth.



Tight Coupling Approximation
e Nearrecombinatiorr ~ 10° andQ),h?* ~ 0.02, the (comoving)

mean free patiof a photon

1
Ao = — ~ 2.5Mpc
T

small by cosmological standards!

e On scales\ > )\ photons areightly coupledto the electrons by
Thomson scattering which in turn are tightly coupled to the
baryons by Coulomb interactions

e Specifically, their bulk velocities are defined bgiagle fluid
velocity v, = v, and the photons carrmyo anisotropyn the rest
frame of the baryons

e — No heat conductiomr viscosity(anisotropic stress) in fluid
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Thomson scattering which in turn are tightly coupled to the
baryons by Coulomb interactions

e Specifically, their bulk velocities are defined bgiagle fluid
velocity v, = v, and the photons carrmyo anisotropyn the rest
frame of the baryons

e — No heat conductiomr viscosity(anisotropic stress) in fluid



Zeroth Order Approximation

e Momentum densityf a fluid is(p + p)v, wherep is the pressure

e Neglectthe momentum density of tH®ryons

(Po +Pe)vs _ pot+po _ 3ps
(py +Py)vy  py by Ap,

0 2
~ 0.0 bl ( - )
0.02 103
sincep., o« T* is fixed by the CMB temperaturg = 2.73(1 4 2)K
— OK substantiallypefore recombination

R

e Neglectradiationin theexpansion

2
P _ 36 (Ll ( a )
Oy 0.15 103




Number Continuity

e Photons ar@ot createdr destroyed. Without expansion

ny,+V-(n,v,) =0

but theexpansioror Hubble flow causes., &« a~* or

a
1y + 3n75 + V.- (n,vy) =0

e Linearizeon, = n., — n,

(0n,) = —35n72 —n,V v,

((&) _ Vv,
Ty



Continuity Equation

e Number density:, «x T* so defingemperature fluctuatio®

%:36—T53@
My T

e Real spaceontinuity equation

: 1

@:—§V'V7
e Fourier space

. 1

O =—-tk-v,



Momentum Conservation

e No expansiong = F
e De Brogliewavelengtlstretches with the expansion

.G
q+-q=F
a

for photons this theedshift for non-relativistic particles
expansion dragn peculiar velocities

e Collection of particles: momentur» momentundensity
(p + p)v, and force— pressure gradient

| a
(py + )V, = _45(:07 +Dy)Vy — VD,
4 1
3PV = gvﬂv

v, =—VO



Euler Equation

Fourier space
v, = —ikO

Pressure gradients (any gradient of a scalar field) generates a
curl-freeflow

For convenience defingslocity amplitude

A

v, = —wyk
Euler Equation:
v, = kO
Continuity Equation:
: 1
© = —-kv,



Oscillator: Take One
e Combine these to form th@mple harmonic oscillatogquation
O+ 2k’0 =0

where the adiabatic sound speed is defined through

herec? = 1/3 since we are photon-dominated
e General solution:
O(0)
kc,

where thesound horizoris defined as = [ c.dn

O(n) = O(0) cos(ks) + sin(ks)



Harmonic Extrema

e All modes ardrozenin at recombination (denoted with a subscript
x) yielding temperature perturbationsdifferent amplituddor
different modes. For the adiabatic (curvature mogé)) = 0

O(n.) = O(0) cos(ks.)

e Modes caught in thextremaof their oscillation will have
enhanced fluctuations

k.S, = nmw

yielding afundamental scaler frequency, related to the inverse
sound horizon

]{A:ﬂ'/s*

and aharmonic relationshipo the other extrema ds: 2 : 3...



Peak Location

e The fundmentaphysical scales translated into a fundamental
angular scalby simple projection according to the angular
diameter distanc® 4

0a = Aa/Day
la = FkaDy

e In a flat universe, the distance is simghy = D = ng — 1, = 1),
the horizon distance, and, = /s, = v/37/n, SO

(914%&
o

o In amatter-dominatedniversen o a'/? s00,4 ~ 1/30 ~ 2° or

gA ~ 200



Curvature

e |n acurved universgthe apparent aangular diameter distance
no longer the conformal distande, = Rsin(D/R) # D

e Objects in eclosed universarefurtherthan they appear!
gravitationallensingof the background...

e Curvature scale of the universe must be substantiiter than
current horizon

e Flat universandicates critical density and implies missing energy
given local measures of the matter denstfprk energy

e D also depends onark energy densit{2pr andequation of state
W = pDE/PDE-

e EXpansion rate at recombinationmatter-radiation rati@nters
Into calculation ofk 4.



Doppler Effect

e Bulk motionof fluid changes the observed temperature via

Doppler shifts
(AT) -
— —f.-v
1 dop !

e Averaged over directions
(AT> Uy
T rms \/§

D —ﬁ@ = —3ch O(0)sin(ks)

V3 k k
= O(0)sin(ks)

e Acoustic solution



Doppler Peaks?

e Doppler effectfor the photon dominated system isaxfual
amplitudeandr /2 out of phaseextrema of temperature are
turning points of velocity

e Effects add imquadrature

T

e No peakan k spectrum! However the Doppler effect carries an
angular dependence that changegitgectionon the sky
n-v,xn-k

<£> = 07(0)[cos*(ks) + sin®(ks)] = ©%(0)

o Coordinates wherg || k

Y10Y£0 — YEilO

recouplingj;Y,o: no peaks in Doppler effect
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Restoring Gravity: Continuity

e Take a simpleohoton dominategystemwith gravity

e Continuityaltered since a gravitational potential represents a
stretchingof the spatial fabriadhat dilutes number densities —
formally a spatiaturvature perturbation

e Think of this as a perturbation to tlseale facton — a(1 + @) so
that the cosmogical redshift is generalized to
a a

(0n,) = —357%2 —3n,d —n,V-v,
a

so that thecontinuity equatiorbecomes

. 1 .
@: —gk?}v—q)



Restoring Gravity: Euler

e Gravitational forcan momentum conservatidll = —mVV
generalized to momentum density modifies Eheger equationo

0 = k(O + 0)

e General relativity says that and\W are the relativistic analogues
of the Newtonian potentiaand thatd ~ —W.

e |n our matter-dominated approximatioh represents matter
density fluctuations through the cosmologiPalisson equation

k*® = 4nGa’p,\,,

where the difference comes from the useofmoving coordinates
for k (a* factor), the removal of thbackground densitinto the
background expansidmp,,A,,) and finally acoordinate subtlety
that enters into the definition a,,



Constant Potentials

e |In the matter dominated epoglotentials are constabecause
Infall generates velocitiegsv,,, ~ kn¥

e \elocity divergence generates dengagrturbations as
A, ~ —knu,, ~ —(kn)*¥
e And density perturbations generate poterflia¢tuations as
d ~ A,,/(kn)* ~ —¥, keeping them constant. Note that because
of the expansion, density perturbations myistw to keep
potentials constant.

e Here we have used tli&iedman equatioil? = 87Gp,, /3 and
n= [dlna/(aH)~1/(aH)

e More generally, ifstress perturbatiorare negligible compared
with density perturbationGdp < dp ) then potential will remain

roughly constant — more specifically a variant calledBlaedeen
or comoving curvaturé Is constant



Oscillator: Take Two

e Combine these to form thr@mple harmonic oscillatcgquation

. L2 .
@+éﬁ@:—§m—¢

e In aCDM dominatedexpansiond = ¥ = (. Also for photon
dominationc? = 1/3 so the oscillator equation becomes

O+ U+ Ak2(O + W) =0
e Solution is just arpffset versiorof the original
O+ VUl(n) =[O + V](0) cos(ks)

e O + VU is also theobserved temperature fluctuatisimce photons
lose energy climbing out afravitational potentialat
recombination



Effective Temperature

e Photons climb out of potential wells at last scattering
e Lose energy to gravitational redshifts

e Observed oeffective temperature

O+ WV
o Effective temperature oscillates aroursrowith amplitude given
by theinitial conditions

e Note: initial conditions are set when the perturbationusside of
horizon need inflation or other modification to matter-radiation
FRW universe.

e GR says thamitial temperaturas given byinitial potential



Sachs-Wolfe Effect and the Magic 1/3

e A gravitational potentiails a perturbation to the temporal
coordinate [formally ayjauge transformatign

0t
=V
t

e Convert this to a perturbation in tlseale factar

A 3(1-+w)/2
a ap1/2

wherew = p/p so that duringnatter domination

oa 20t
a 3t
o CMB temperature isoolingas? o a™! so

5T 5 1
O+l="qv=—240=_1
A a 3



Baryon Loading

e Baryons add extrenassto the photon-baryon fluid
e Controlling parameter is th@omentum density ratio
R = Py =+ Py %SOQth( a3>
D~y + Pry 10—
of orderunity at recombination

e Momentum density of th@int systemis conserved

(py + Py) vy + (o6 + Do) vs = (Py + Dy + po + py) 0y
— (1 + R)(pv -|—p7)?f7b

where the controlling parameter is theomentum density ratio

R = pb+;0b QSOQth( a )
Py + Py 10-3

of orderunity at recombination




New Euler Equation

e Momentum density ratio enters as

| a
(1 + R)(py +py) Vsl = _45(1 + R)(py + Dy) Vo
— Vp, = (1 + R)(py + )V
same as before except for+ ) terms so
(14 R)vy| =kO+ (1 + R)EV
e Photon continuityemains the same

. 3 |
@ = —gvvb—q)

e Modification ofoscillator equation

[(1+ R)O] + %/&@ = —%/&(1 + R)U — [(14 R)D]



Oscillator: Take Three

e Combine these to form the not-quite-sople harmonic oscillator
equation

d : k? d :
ng—n(cs_Q@) -+ C?kz@ — —g\p — ng—n(cs_zq))

wherec? = p.y/p

, 101
C, = ———
* T 31+R

e In aCDM dominatedexpansiond = ¥ = 0 and theadiabatic
approximation?/R < w = ke,

O+ (1+ R)V|(n) =04+ (14 R)¥](0)cos(ks)



Baryon Peak Phenomenology

e Photon-baryon ratio enters three ways

e Overall largeramplitude

0 + (14 R)T)(0) = %(1 +3R)T(0)

e Even-odd peaknodulationof effective temperature

O + Vlpears = [£(1 +3R) — 3R] é‘If(O)

© 4+ 0]y~ [0+ W], = [-6R)3¥(0)

e Shifting of thesound horizordown or/ 4 up

lyxV1I+ R

e Actual effectssmallersince? evolves



Photon Baryon Ratio Evolution

e Oscillator equation has tim®volving mass

d
2 —2@ 2]€2@:O
2 (670) ¢

o Effective massisisi.; = 3c.? = (1+ R)

e Adiabatic invariant

E 1 1
— = §meﬁwA2 = 5308_2/@(33142 o A*(1 + R)1/2 = const.
W

o Amplitude of oscillation4 (1 + R)~'/* decays adiabaticallgs
the photon-baryon ratio changes



Osclllator: Take Three and a Half

e The not-quite-s@imple harmonic oscillatogquation is dorced
harmonic oscillator
d : k2 d
2 —2 27.2 2 _9
o © kO = —— WU — ¢ — o

CS dn (CS ) _I_ CS 3 CS dn (CS )
changes in thgravitational potentialalter the form of the
acoustic oscillations

e |f the forcing term has &mporal structuréhat is related to the
frequencyof the oscillation, this becomestaiven harmonic
oscillator

e Term involvingV is the ordinarygravitational force

e Term involving® involves thed term in thecontinuity equatioras
a (curvature) perturbation to tiseale factor



Potential Decay

e Matter-to-radiation ratio

P 24th2( a )
Pr 103

of orderunity at recombination in a low,,, universe

e Radiation is not stress free andisgpedeghe growth of structure

20 = 4nGa’p, A\,

A, ~ 40 oscillatesaround a constant valug, o« a~* so the
Netwoniancurvature decays

e General rule: potential decays if the dominant energy component
has substantial stress fluctuations, i.e. below the generalized sou
horizon or Jeans scale



Radiation Driving

e Decay is timed precisely torive the oscillator - close to fully
coherent

0+ W](n) = [© + U)(0) + AT — AD
_ %xp(@) _20(0) = gxp(())

e 5x the amplitude of the Sachs-Wolfe effect!

e Coherent approximation sxactfor a photon-baryon fluid but
reality is reduced te- 4 x because oheutrino contributiorto
radiation

e Actualinitial conditionsare® + ¥ = ¥ /2 for radiation
domination but comparison to matter dominated SW correct



External Potential Approach

e Solution tonomogeneous equation

(14 R) Ycos(ks), (1 + R)™Y4sin(ks)

e Give the general solution for an external potential by propagating
Impulsive forces

(1+ R)V*0(n) = ©(0)cos(ks) + ﬁ [@(O) + 1R(O)@(O) sin ks

k 4
4 g /077 dn'(1 + R’)3/4Sin[ks — ks'|F'(n')
where
F=—0- H%i — %Q\If

e Useful if general form of potential evolution is known



Damping
e Tight coupling equations assum@arfect fluid noviscosity, no

heat conduction

e Fluid imperfections are related to theean free path of the
photons in the baryons

' where 7 =n.ora

Ao =T
IS the conformal opacity tdhompson scattering

e Dissipation is related to thaiffusion length random walk
approximation

Ap = VNI o = 1/ e Ao = V1o

thegeometric meabetween the horizon and mean free path

e \p/n. ~ few %, so expect thpeaks > 3 to be affected by
dissipation



Equations of Motion

e Continuity

@:—§U7—®, 5[):—/62}5—3(1)

where the photon equation remains unchanged and the baryons
follow number conservation with, = myn,

e Euler
. k .
v, = k(@4 V) — 6™~ T(vy — Vp)
vy = —gvb—kk\lf#—%(vv — )/ R

where the photons gain an anisotropic stress terfnom radiation
viscosityand amomentum exchangerm with the baryons and
are compensated by tla@posite termn the baryon Euler equation



Viscosity

e Viscosityis generated from radiatisgtreamingrom hot to cold
regions

e EXxpect

k
T~ N~ U~ —
Y 77_

generated by streaming, suppresseddaiteringn a wavelength
of the fluctuation Radiative transfesays
k

whereA, = 16/15

k k
’l.}fy — k(@ —|— \If) — §AU—,U7

T



Oscillator: Penultimate Take

e Adiabatic approximatiolfw > a/a)
k

@ ~ —g’Ufy
e Oscillator equation contains@ damping term
d : ket . k* d :
(%0 SA,0 + K20 = —— U — EA— (¢ 2D
CS d,r] (CS ) _I_ 7_ —I_ CS 3 CS dT] (CS )

o Heat conductioterm similar in that it is proportional to, and is
suppressed by scattering7. Expansion otuler equation$o
leading order in: /7 gives

R2

T 1+ R

since the effects are only significant if the baryons are dynamicall’
Important

Ap



Oscillator: Final Take

e Final oscillator equation

d : k2 c? : k? d :
—(c;%0 (A, + A0 + k2O = —— T — 2—(c?D
g (€70) + AL+ A6 + KGO =~ — o ()

e Solve in theadiabatic approximation
O x exp(i/wdn)
k?c?
—w® A 2 (A, + Ap)iw + ke =0 (1)




Dispersion Relation

e Solve
U= k2 [1 + z‘f,(A,,, + Ah)}

1 W
— d+ke, |[1+=-—(A, + A
W C _ —|—27_( + h)]

= Fke, |1+ %k,CS (A, + Ah)]

+

e EXxponentiate

1 2
exp(i/wdn) = T ex Xp —kQ/dU§CT.S(Av + Ap)]

= " exp[—(k/kp)] (2)

e Damping isexponentiaunder the scalé,



Diffusion Scale

e Diffusion wavenumber

k2]/d 11 16 R
b= s T R\ T 1+ R)

e Limiting forms

116 [ 1

lim k) = = — [ di~

A N
1 [ 1

lim kp2 == [ di-

R D 60/ e

e Geometric mean between horizon and mean free path as expecte
from arandom walk

2T 2T
Ap = =5~ ()2

kp /6



Astro 282
ldealized Data Analysis



Gaussian Statistics

e Statistical isotropy says two-point correlation depends only on the
power spectrum

O1) = 3 O Vi ()
im
<@Zm@£’m’> — 5@@’5mm’ ?@

o Reality of field say®,,,, = (—1)"Oy_m)

e For a Gaussian random field, power spectrum defines all higher
order statistics, e.g.

<@£1 m1 @€2m2 @€3m3 @£4m4 >

— (—1)m1+m2561635m1(_m3)55254(5m2(_m4)02602@ + all pairs



|dealized Statistical Errors

e Take a noisy estimator of the multipoles in the map

éﬁm — @Em + Nﬁm

and take the noise to be statistically isotropic

<NékmN€’m’> — 5%’5mm’ éNN

e Construct an unbiased estimator of the power spectrum
(CF°) = oF°

l
A 1 PaN A
06 * NN
Cg E— %——I—l E @Em@em — Cg

m=—I
e Variance in estimator

A A 2
(EPOCPP) — (CFO) = == (CF° + C'™)?



Cosmic and Noise Variance

RMS in estimator is simply the total power spectrum reduced by
\/2/]\fmodeS where N, .45 IS the number ofn-mode measurements

Even a perfect experiment whef8'"¥ = 0 has statistical variance
due to the Gaussian random realizations of the field. This cosmic
variance Is the result of having only one realization to measure.

Noise variance Is often approximated as white detector noise.
Removing the beam to place the measurement on the sky

2 2

NO® _ z 6@(£+1)02 _ Z €£(£+1)FWHM2 /81n2
‘ dr dr

whered; can be thought of as a noise level per steradian of the

temperature measurementis the Gaussian beam width, FWHM

IS the full width at half maximum of the beam



|dealized Parameter Forecasts

e A crude propagation of errors is often useful for estimation
purposes.

e Suppose&’, s describes the covariance matrix of the estimators for
a given parameter set,.

o DefineF = C! [formalized as the Fisher matrix later]. Making
an infinitesimal transformation to a new set of parametgrs

Z aﬂ'a ﬁﬂ'g
Opy. fap Opy

e In our caser, are theC) the covariance Is diagonal apd are
cosmological parameters

o —

Uy

S 2] DCO© HOOO
(

— 2(CO° + CYM)2 dp,  Op,



|dealized Parameter Forecasts

e Polarization handled in same way (requires covariance)

e Fisher matrix represents a local approximation to the
transformation of the covariance and hence is only accurate for
well constrained directions in parameter space

e Derivatives evaluated by finite difference

e Fisher matrix identifies parameter degeneracies but only the local
direction — i.e. all errors are ellipses not bananas



Beyond ldealizations: Time Ordered
Data

e For the data analyst the starting point is a string of “time ordered”
data coming out of the instrument (post removal of systematic
errors!)

e Begin with a model of the time ordered data as

dy = P,;0; + ny

where: denotes pixelized positions indexedfyl; is the data in a
time ordered stream indexed hyNumber of time ordered data
will be of the orderL0'Y for a satellite! number of pixels0® — 10°.

e The noisen; Is drawn from a distribution with a known power
spectrum

<ntnt’> — Cd,tt’



Pointing Matrix

e The pointing matrixP is the mapping between pixel space and the
time ordered data

e Simplest incarnation: row with all zeros except one column which
just says what point in the sky the telescope is pointing at that tim

(0 0 1 ... 0 )
1 0 0 0
P=| 0 1 0 ... 0

\ 0 0 1 ... 0 )
e More generally encorporates differencing, beam, rotation (for
polarization)



Maximum Likelihood Mapmaking

e What is the best estimator of the underlying ntp

e Likelihood function: the probability of getting the data given the
theory L = P|dataltheory]. In this case, théheoryis the set of
parametere,.

1 1
—=(dy — P;©;) C; . (dy — Py;©,
(QW)Nt/Q\/meXp 2( 12 12 ) d,tt ( t t') J)
e Bayes theorem says th&to;|d,], the probability that the
temperatures are equal@® given the data, is proportional to the

likelihood function times grior P(©;), taken to be uniform

Lo(d) =

P|©;|d;] o< P|d;|0;] = Lo(d;)



Maximum Likelihood Mapmaking

e Maximizing the likelihood of©; is simple since the log-likelihood
IS quadratic.

e Differentiating the argument of the exponential with respeéd o
and setting to zero leads immediately to the estimator

éi = CN,z’ijth_;t/dt’ ,
whereCy = (PC;'P)~! is the covariance of the estimator

e Given the large dimension of the time ordered data, direct matrix
manipulation is unfeasible. A key simplifying assumption is the
stationarity of the noise, that,,, depends only ot — ¢’

(temporal statistical homogeneity)



Foregrounds

e Maximum likelihood mapmaking can be applied to the time
streams of multiple observations frequenciésand hence obtain
multiple maps

e A cleaned CMB map can be obtained by modeling the maps as

Of = A70; +nj + f}
whereA? = 1 If all the maps are at the same resolution (otherwise
embed the beam as in the pointing matrfix;is the noise
contributed by the foregrounds

e Again, a map making problem. Given a covariance matrix for
foregrounds noise (a prior from other data), same solution.
Alternately, can derive weights from stats of the recovered maps

e 5 foregrounds: synchrotron, free-free, radio pt sources, at low
frequencies and dust and IR pt sources at high frequencies.



Power Spectrum

e The next step in the chain of inference is the power spectrum
extraction. Here the correlation between pixels is modelled
through the power spectrum

Csij = (0,0;) ZA Wi

e HerelV,, the window function, is derived by writing down the
expansion oB(n) in harmonic space, including smoothing by the
beam and pixelization

e For example in the simple case of a gaussian beam of widtis
proportional to the Legendre polynomiBl(n; - n;) for the pixel
separation multiplied by? oc e~ ¢+



Band Powers

e In principle the underlying theory to extract from maximum
likelihood Is the power spectrum at every

e However with a finite patch of sky, it is not possible to extract
multipoles separated b/ < 27 /L wherelL is the dimension of
the survey

e So consider instead a theory parameterizatioﬁ%q); constant in
bands ofA¢ chosen to match the survey forming a set of band
powersh,

e The likelihood of the bandpowers given the pixelized data is

1 1
L @z — ——@z-C_l-.@-
B( ) (27T)Np/2\/det C@ eXp ( 9 0,19 ])

whereCg = Cg + Cy andN,, is the number of pixels in the map.




Band Power Esitmation

e As before,Lp Is Gaussian in the anisotropi€s, but in this case
O, arenotthe parameters to be determined, the theoretical
parameters are thi,, upon which the covariance matrix depends.

e The likelihood function is not Gaussian in the parameters, and
there is no simple, analytic way to find the maximum likelihood
bandpowers

e |terative approach to maximizing the likelihood: take a trial point
BY and Improve estimate based a Newton-Rhapson approach to
finding zeros




Fisher Matrix

e The expectation value of the local curvature is the Fisher matrix

Ia _ _821H£B
Bt =\ " 0B,0B,
1 3C@Jk0 1 0Ce ;i
27 83 O,kl aB :

e This is a general statement: for a gaussian distribution the Fisher
matrix

1
F, = §Tr[c—1c,ac—1c,b]

e Kramer-Rao identity says that the best possible covariance matrix
on a set of parameters@ = F~1

e Thus, the iteration returns an estimate of the covariance matrix of
the estimator€ 5



Cosmological Parameters

e The probability distribution of the bandpowers given the
cosmological parametersis not Gaussian but it is often an
adequate approximation

Co(B,) ! LB, BICSL (B, — By

C a) ~ X A a  a o

(2m)Ne/2/detC | 2 R

e Grid based approaches evaluate the likelihood in cosmological

parameter space and maximize

e Faster approaches monte carlo the exploration of the likelihood
space intelligently (“Monte Carlo Markov Chains”)

e Since the number of cosmological parameters in the working
model isN,. ~ 10 this represents a final radical compression of
Information in the original timestream which recall has up to
N; ~ 10! data points.



MCMC

e Monte Carlo Markov Chain: a random walk in parameter space
e Start with a set of cosmological parametets compute likelihood

o Take arandom step in parameter space€’to! of size drawn from
a multivariate Gaussian (a guess at the parameter covariance
matrix) C. (e.g. from the crude Fisher approximation. Compute
likelihood.

e Draw a random number between 0,1 and if the likelihood ratio
exceeds this value take the step (add to Markov chain); if not then
do not take the step (add the original point to the Markov chain).
Goto 3.



MCMC

e With a complete chain olV,, elements, compute the mean of the
chain and its variance

]
o*(ci) = N -1 > (=)

m=1

e Trick is In assuring burn in (not sensitive to initial point), step size,
and convergence

e Usually requires running multiple chains. Typically tens of
thousands of elements per chain.



Radical Compression

e Started with time ordered data 10'° numbers for a satellite
experiment

e Compressed to a map assuming a CMB spectrum (and time
independent fluctuations) 10" numbers

e Compressed to a power spectrum (Gaussian statistics) independ
of m (statistical isotropy)} 10° numbers

e Compressed to cosmological parameters (a cosmological model)
~ 103

o A factor of 10” reduction in the representation. Nature is very
efficient.



Parameter Forecasts

e The Fisher matrix of the cosmological parameters becomes

0B 0B,
F.,.=—Cp —.
0] 8@ B.,ab acj
which is the error propagation formula discussed above
e The Fisher matrix can be more accurately defined for an
experiment by taking the pixel covariance and using the general

formula for the Fisher matrix of gaussian data

e Corrects for edge effects with the approximate effect of

Fi=Y (20+1) fay  OCP® OCP®
9T 2230090 1 ONNE B, oc,

l

where the sky fractiorfy, quantifies the loss of independent
modes due to the sky cut
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Polarization



Stokes Parameters

e Polarization state of radiation in directiandescribed by the
intensity matrix( £;(n) £ (n) ), wherekE is the electric field vector

and the brackets denote time averaging.

e As a hermitian matrix, it can be decomposed into the Pauli basis

P = C(E(n)E'(n))
=0Mn)oy+Qn)os+U(n)o, +V(n)o,,

where

1 0 0 1 0 —2 1 0
Oy) — o1 — 09 = O3 —
0 1 10 t 0 0 —1

e Stokes parameters recoveredlass; P)/2



Monochromatic Wave

e A pure monochromatic wave is fully polarized

E = E1e1 + EQGQ

where

E1,2 = Re [A1,2€i¢1,2 ei(k'x—wt)]

o Implies©? = Q* + U? + V?

e However a finite bandwidth leads to a sum of components

E=) E°



Partial Polarization

e A signal of finite bandwidth is only partially polarized since the
time averaging will destroy the correlation between the frequency
components

(EE") =) (E“E*)
e Stokes parameters then add
O=>» 0%, Q=) Q*, U=)» U* V=) Ve

e Resultis®? > Q% + U? + V2 (since@, U, V have either sign) or
partially polarized radiation - like a mixed state in qguantum
mechanics)



Linear Polarization
Counterclockwise rotation of axes By= 45°
By =(E —E)/V2, E,=(E +E,)/V2
U x (B E) — (EYES), difference of intensities alts® or Q’

More generallyP transforms as a tensor under rotations and

Q' = cos(20)Q + sin(20)U

U' = —sin(20)Q + cos(20)U
or

Q' +iU = eT[Q + iU

acquires a phase under rotation and is a splrobject



Coordinate Independent Representatio

e Two directions: orientation of polarization and change in
amplitude, i.e() andU In the basis of the Fourier wavevector

(pointing with anglep,) for small sections of sky are callegdand
B components

E(1) £iB(1) = — / di[Q' () 4 iU’ (f)]e "™

= —e T / da[Q(n) £ iU (f)]e "™

e For theB-mode to not vanish, the polarization must point in a
direction not related to the wavevector - not possible for density
fluctuations in linear theory

e Generalize to all-sky: plane waves are eigenmodes of the Laplace
operator on the tensa@?.



Spin Harmonics

e Laplace Eigenfunctions

VQiQKém[O'?, Fio = —|l(l+1) — 4] Ym|os Fioy]

e Spins spherical harmonics: orthogonal and complete

ZY}M )sYim(0') = 6(¢d — ¢')d(cosh — cosh')

where the ordinary spherical harmonics &g = Y,

e Given In terms of the rotation matrix

2€—|—1
47

snm(ﬁg) — (_1) (0460)



Statistical Representation

e All-sky decomposition

Q1) +iU(0)] = ) [Epm £ iBom)2Yim(0)

m

e Power spectra

<E2<mE€m> — 5@8’5mm’ EEE
<BZmB€m> — 5@6’5mm’ KBB
e Cross correlation
<EZmE€m> — 5%’5mm’C[@E

others vanish if parity is conserved



Thomson Scattering

e Differential cross section

do
df)
whereo, = 87a?/3m, is the Thomson cross sectid, andE

denote the incoming and outgoing directions of the electric field o
polarization vector.

3 . .
= 8—7T‘E’-E‘2(7T,

e Summed over angle and incoming polarization

Y [ =or

1=1,2



Polarization Generation

Heuristic: incoming radiation shakes an electron in direction of
electric field vectoi’

Radiates photon with polarization also in directigh

But photon cannot be longitudinally polarized so that scattering
Into 90° can only pass one polarization

Linearly polarized radiation like polarization by reflection
Unlike reflection of sunlight, incoming radiation is nearly isotropic

Missing linear polarization supplied by scattering from direction
orthogonal to original incoming direction

Only quadrupole anisotropy generates polarization by Thomson
scattering



Acoustic Polarization

e Break down of tight-coupling leads to quadrupole anisotropy of

K

Ty = Uy

e Scalingkp = (7/n.)Y? — 7 = k%,
e Know: kps, ~ kpn, =~ 10

e SO:



Acoustic Polarization

e Gradient of velocity is along direction of wavevector, so
polarization Is puréZ-mode

e Velocity is90° out of phase with temperature — turning points of
oscillator are zero points of velocity:

© + VU  cos(ks); v, o sin(ks)

e Polarization peaks are at troughs of temperature power



Cross Correlation

Cross correlation of temperature and polarization

(© 4+ ¥)(v,) x cos(ks)sin(ks) o sin(2ks)
Oscillation at twice the frequency

Correlation: radial or tangential around hot spots

Partial correlation: easier to measure if polarization data is noisy,
harder to measure if polarization data is highV or if bands do
not resolve oscillations

Good check for systematics and foregrounds

Comparison of temperature and polarization is proof against
features in initial conditions mimicking acoustic features
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Formal CMB Theory & CMBFAST



Boltzmann Equation

e CMB radiation is generally described by the phase space
distribution function for each polarization statgx, q, ), where
x IS the comoving position anglis the photon momentum

e Boltzmann equation describes the evolution of the distribution
function under gravity and collisions

e Low order moments of the Boltzmann equation are simply the
covariant conservation equations

e Higher moments provide the closure condition to the conservatior
law (specification of stress tensor) and the CMB observable — fine
scale anisotropy

e Higher moments mainly describe the simple geometry of source
projection




Liouville Equation
e |n absence of scattering, the phase space distribution of photons

conserved along the propagation path

o Rewrite variables in terms of the photon propagation direction
9= Qfl, SOfa(X7 fl) q, 77) and

d

d_nfa(xa ﬂa q, 77) =0

0 dx o0 dn 0O dg O
— T ) =+ = T+ . fa
on dn Ox dn on dn 0Oq
e For simplicity, assume spatially flat univer&e= 0 then
dn/dn = 0 anddx = ndn

fa_l—n vfa—l_q fa—o



Correspondence to Einstein Eqn.

e Geodesic equation gives the redshifting term

' a 1 . .. . y
g = —— — —TLZTL]HTZ']' — HL + nZBi —n- VA
q a 2

e which is incorporated in the conservation and gauge

transformation equations

e Stress energy tensor involves integrals over the distribution
function the two polarization states

Y R
= [ STt 1)

e Components are simply the low order angular moments of the
distribution function




Angular Moments

e Define the angularly dependent temperature perturbation

1 3d
O(x, . 1) = 5/ 9(fut fy) -

and likewise for the linear polarization statg@gaandU

e Decompose into normal modes: plane waves for spatial part and
spherical harmonics for angular part

G (k,x,n Yg n) exp(ik - x)

2€

4
20+ 1

e |In a spatially curved universe generalize the plane wave part

1

_I_

N

:|:2G£ ( ’ 7

LY, (n) exp(ik - x)



Normal Modes

e Temperature and polarization fields

. d>k (m) ~m
@(X,ﬂ,?’]) = WZ@K GE

31
Q £:U|(x,n, _/ ok E ™ £ iB™] Gy

e For eachk mode, work in coordinates wheke|| z and som = 0
represents scalar modes,= +1 vector modes;n = +2 tensor
modes,|m| > 2 vanishes. Since modes add incoherently and
() £ U Is invariant up to a phase, rotation back to a fixed
coordinate system is trivial.



Scalar, Vector, Tensor

e Normalization of modes is chosen so that the lowest angular mod
for scalars, vectors and tensors are normalized in the same way &
the mode function

Go=Q0 GY=n'Q” GYoxnin’Q)
Gil = niQEﬂ) Gyt niang;tl)

G§t2 — n'n? QSEQ)

where recall
QY = exp(ik-x)
Qgil) = _—Z(él + zég)zexp(zk y X)

V2
3 . . . . .
ng-ﬂ) —\/g(el + 1€5);(€1 £ i€2),exp(ik - x)



Geometrical Projection

e Main content of Liouville equation is purely geometrical and
describes the projection of inhomogeneities into anisotropies

e Spatial gradient term hits plane wave:

. . 4 .
n-Ve** = in - ke™™ = i/ %leo(fl)eZk'x

e Dipole term adds to angular dependence through the addition of
angular momentum

4 K" K"
—YOYm: 14 Y’riL + (+1 Ym
V3t T Jeirnei-n Y et @iy

wherex?* = v/£? — m? is given by Clebsch-Gordon coefficients.




Temperature Hierarchy

e Absorb recoupling of angular momentum into evolution equation
for normal modes

. K/

WhereSém) are the gravitational (and later scattering sources;
added scattering suppression of anisotropy)

e An originally isotropic/ = 0 temperature perturbation will
eventually become a high order anisotropy by “free streaming” or
simple projection

e Original CMB codes solved the full hierarchy equations out to the
¢ of interest.



Integral Solution

e Hierarchy equation simply represents geometric projection,
exactly as we have seen before in the projection of temperature
perturbations on the last scattering surface

e |In general, the solution describes the decomposition of the source
Sém) with its local angular dependence as seen at a distance
x = Dn.

e Proceed by decomposing the angular dependence of the plane
wave

e * =3 (—i)'\/4m(20 + 1)j,(kD)Y, (n)

e Recouple to the local angular dependencé&/Bf

G = (—i)'\/4r (20 + 1)oyy (kD)Y{™ (1)




Integral Solution

Projection kernels:
68 = O, m = O O‘OE f— jg
68 — 1, m = O Oélﬁ — jﬁ

Integral solution:

@(m)(k7 o) 0 B .
P /0 dne™™ Y Sy (k(mo — )

Power spectrum:

2 [ dk ~ k30" el™)
Cg_%/?; (20 + 1)
Solving forC, reduces to solving for the behavior of a handful of
sources




Polarization Hiearchy

e |n the same way, the coupling of a gradient or dipole angular
momentum to the spin harmonics leads to the polarization
hiearchy:

. m 2m 2/‘€m
E(’m) — L 2k E(m) o B(m) o +1 | 'E(m) g(m)
¢ [%—J Lo+t W3] T T

: m 2m oKy,
B(m) — L 2y B(m) B(m) o 41 | -E(m) B(m)
¢ [%—J€1+€w+1)€ 2w0+3| o

wherey k' = /(2 — m?)(¢2 — 4)/¢2 is given by the
Clebsch-Gordon coefficients aég 5 are the sources (scattering
only).

e Note that for vectors and tensgrs| > 0 and B modes may be
generated fronty modes by projection. Cosmologicalﬁém) =0



Polarization Integral Solution

e Again, we can recouple the plane wave angular momentum of the
source inhomogeneity to its local angular dependence directly

E(m)(k7 770) 0 —T

By (ko) [ ) 4
st = [ dne e 8 ow )

e The only source to the polarization is from the quadrupole
anisotropy so we only nee = 2, e.g. for scalars

N0 (z) = \/§ (0 + 2)! jo(z) )
26 80 —2) a2 26—




Truncated Hierarchy

e CMBFast uses the integral solution and relies on ajflagénerator

e However sources are not external to system and are defined
through the Boltzmann hierarchy itself

e Solution: recall that we used this technique in the tight coupling
regime by applying a closure condition from tight coupling

e CMBFast extends this idea by solving a truncated hierarchy of
equations, e.g. out to= 25 with non-reflecting boundary
conditions



Thomson Collision Term

e Full Boltzmann equation

d%fa,b — C[fa, fi

e Collision term describes the scattering out of and into a phase
space element

e Thomson collision based on differential cross section
do 3 s, =
— — —|E - EI?
dS? 871" or,
whereE’ andE denote the incoming and outgoing directions of
the electric field or polarization vector.



Scattering Calculation

e Start in the electron rest frame and in a coordinate system fixed b
the scattering plane, spanned by incoming and outgoing direction
vectors—n’ - n = cos 3, whereg is the scattering angle

e Oy: In-plane polarization stat&) , : 1 -plane polarization state

e Transfer probabllity (constant set by

O o cos’ B3O, O, xO)

e and with the45° axes as

A

B, =

(EH + EJ_) EQ — %(E — EJ_)

&\H



Stokes Parameters

e Define the temperature in this basis
0, x |[E; - E,|?0) + |E; - E,|*6),

1 1
x Z(cosﬁ +1)*0) + Z(Cosﬂ —1)%0),

@2 X ’EQ . E2|2@/2 -+ ‘EQ . E1|2@/1

1 1
x Z(Cosﬁ +1)*0, + Z(Cosﬁ —1)°6}

or ©; — O x cos 5(O] — 65)

e Define®, (), U in the scattering coordinates

1 1 1
O = 5(@“ +0,.), Q= 5(@” -0,), U= 5(@1 — 0Oy)



Scattering Matrix

e Transfer of Stokes states, e.qg.

1 1 1
O = 5(@“ +0,) x Z(Coszﬁ +1)0" + Z(C0825 - 1)@

e Transfer matrix of Stokes statle = (O, Q + iU, Q — iU)

T < S(6)T
] / cos* 3 + 1 —2sin® 3 —Lsin? 3 \
S(8) = A —% sin? 15 %(Cosﬁ + 1)2 %(COSﬁ _ 1)2
\ —isin’B  L(cosB—-1)2  I(cosB+ 1) )

normalization factor of 3 is set by photon conservation in scatterin



Scattering Matrix

e Transform to a fixed basis, by a rotation of the incoming and
outgoing stated” = R(y)T where

(1

R@w)= | 0 e

\ 0

giving the scattering matrix

R(—7)S(B)R(a) =

. Y2 (3, 0) + 2v5Y5 (3, )

S\ & —V6,Y5 (3, a)e*™
—\/6—23/20(5704)6_27;’y

0 0 )
0

0 GW/

5Y, (8, @)

3,Y, 2(6,a)e™
3—2Y2_2( ,a)e ™

_\/gYQQ (ﬁa Oé)
3 2Y22 (67 a)e2i7
3 oYy (8, O‘)e_m



Addition Theorem for Spin Harmonics

e Spin harmonics are related to rotation matrices as

20 1
Y70, 6) = || =D ,0u(6,0,0)

Note: for explicit evaluation sign convention differs from usual
(e.g. Jackson) by—1)"

e Multiplication of rotations

ZD m!! @2762772) (04176173/1) :Dfnm’(&?ﬂf)/)

e Implies

m* m S1—S82 2€ T 1 —81 159
Z 31Y£ ((9/7 ¢,) SQYvﬁ ((97¢) — (_1) 47_‘_ SQYE (ﬂ7 &)e !

m




Sky Basis

e Scattering into the state (rest frame)

d’\/
C|T] =17 4n R(—7)S(#)R(a)T (1),
TC
da’ e
/ —(©',0,0) + —T/d ZPm)nn (R').
m=—2
where the quadrupole coupling termB§™ (i, i) =
YR YIR) =Y @) Y h) -8 Y () Vi (h)
—/6Y3™* () Y3 () 3,Yy"* () Y3 (1) 3 _, Yo" () Yo" () ;

—VOYS"(R) LYo () 3,Y9M () LYo (n) 3 .Y (R) L, Y3 (n)

expression uses angle addition relation above. We call this term
Co.



Scattering Matrix

e Full scattering matrix involves difference of scattering into and out
of state

e In the electron rest frame

C[T) = T'/ i—n(@’, 0,0) — 7T + Co[T]
70

which describes isotropization in the rest frame. All moments hawv
e~ suppression except for isotropic temperatage

Transformation into the background frame simply induces a dipole
term

ATy
O[T]I%(fl°vb—|— 4—n@,,0,0>—7.'T—|—CQ[T]
m



Source Terms

, flat assumption

o Temperature source terrﬂ#m) (rows=+|m

(0 - HY #” +BO  ipO 20

0 Fos™ 4 BED 7 pED 3 D
\ 0 0 PP — g
where

1
10
e Polarization source term

P = 2(0y" = VOEy")

Sg(m) = —7V6P™ 5,
B =0
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Secondaries



Relonization

e lonization depth during reionization

T(2) = /dn’neaTa = /d]nazle(o-j; X (Qbh2)(th2)—1/2(1_|_Z)3/2
a

A2\ /0 h2\ V2 /14 2\
:<0.02><0.15) <61)

e Quasars say,; > 7sot > 0.04

e During reionization, cosmic quadrupole f30uK from the
Sachs-Wolfe effect scatters info-polarization

e Few percent optical depth leads to fraction gflasignal

e Peaks at horizon scale at recombination: quadrupole source
J2(kD,) maximal atk D, ~ kn ~ 2



Breaking degeneracies

e First objects, breaking degeneracy of initial amplitude vs optical
depth in the peak heights

Cyox e 27

only below horizon scale at reionization

e Breaks degeneracies in angular diameter distance by removing a
ambiguity for ISW-dark energy measure, help$ips — wpg
plane



Gravitational Wave

e Gravitational waves produce a quadrupolar distortion in the
temperature of the CMB like effect on a ring of test particles

e Like ISW effect, source is a metric perturbation with time
dependent amplitude

e After recombination, is a source of observable temperature
anisotropy — but is therefore confined to low order multipoles

e Generated during inflation by quandum fluctuations



Gravitational Wave Polarization

e |n the tight coupling regime, quadrupole anisotropy suppressed b
scattering

e Since gravitational waves oscillate and decay at horizon crossing,
the polarization peaks at the horizon scale at recombination not tf

damping scale

e More distinct signature in th&8-mode polarization since
symmetry of plane wave is broken by the transverse nature of
gravity wave polarization



Secondary Anisotropy

e CMB photons traverse the large-scale structure of the universe
from z = 1000 to the present.

e With the nearly scale-invariant adiabatic fluctuations observed in
the CMB, structures form from the bottom up, i.e. small scales
first, a.k.a. hierarchical structure formation.

e First objects reionize the universe betweer 7 — 30
e Main sources of secondary anisotropy

e Gravitational: Integrated Sachs-Wolfe effect (gravitational
redshift) and gravitational lensing

e Scattering. peak suppression, large-angle polarization, Doppler
effect(s), inverse Compton scattering



Transfer Function

e Transfer functiortransfers the initial Newtonian curvature to its
value today (linear response theory)

®(k,a=1) P(knorm, Ginit)

S(k, ainit) P(knorm,a = 1)

e Conservation of Bardeen curvature: Newtonian curvature is a
constantwhenstress perturbations are negligibébove the

horizon during radiation and dark energy domination, on all scale:
during matter domination

T(k) =

e When stress fluctuations dominate, perturbations are stabilized b
theJeans mechanism

e Hybrid Poisson equatiarNewtonian curvature, comoving density
perturbationA = (0p/p)com iMmplies® decays

(k* — 3K)® = 47GpA ~ n A



Transfer Function

e Matter-radiation example: Jeans scale is horizon scaledand
freezes into its value at horizon crossig; ~ ;i

e Freezingof A stops atj.,

O~ (kneq) *Ap ~ (keq) ™ Piui
e Conventionallyk,...,» IS chosen as a scale between the horizon at
matter radiation equality and dark energy domination.

e Small correction since growth with a smooth radiation component
IS logarithmic not frozen

e Run CMBfast to get transfer function or use fits



Transfer Function

o Transfer function has &2 fall-off beyondk., ~ 7

0.0001 0.001 0.01

e Additional baryon wiggles are due to acoustic oscillations at
recombination — an interesting means of measuring distances



Growth Function

e Same physics applies to the dark energy dominated universe

e Under the dark energy sound horizon, dark energy density frozen
Potential decays at the same rate for all scales

¢ (knorma a)
o (knorm s Qinit )

e Pressurgrowth suppressiand = 6p,,/pm X ag

gla) =

d’g o 3 dg 3
T+ |5~ qw(e)op(2)| o=+ o[l —w(2)|pr(2)g = 0,

wherew = pDE//ODE andQDE — PDE/(Pm —+ PDE) with initial
conditionsg = 1, dg/dIna =0

e AsQpr — 0 g =const. Is a solution. The other solution is the
decaying mode, elimated by initial conditions



ISW effect

Potential decay leads to gravitational redshifts through the
Integrated Sachs-Wolfe effect

Intrinsically a large effect sinceA® = 6V;,;; /3
But net redshift is integral along along line of sight

@E(k7770)
20+ 1

- / " dne T2k, m)]je(k(no — 1))
— 2(13(]{, nMD) /0770 d?’]e_Tg(D)]g(kD)

On small scales where>> ¢/g, can pull source out of the integral

[ ana(D)ikD) = (D = e/ 7

evaluated at peak, where we have ugettj,(z) = /m/2¢



ISW effect

o Power spectrum

o= L [ HEEUE Ok m)
) k (20 +1)2
27T 0
=5 dnDg*(n) A%/ D, mup)
e Orl*Cy/2m o< 1/ for scale invariant potential. This is the Limber
equation in spherical coordinates. Projectior3 bf power retains
only the transverse piece. For a general dark energy model, add |

the scale dependence of growth rate on large scales.

e Cancellation of redshifts and blueshifts as the photon traverses
many crests and troughs of a small scale fluctuation during decay
Enhancement of thé < 10 multipoles. Difficult to extract from
cosmic variance and galaxy. Current ideas: cross correlation with
other tracers of structure



Gravitational Lensing

e Lensing is a surface brightness conserviagnappingof source to
Image planes by the gradient of thejected potential

1o D*—D X
o) =2 [ an' Sy,

such that the fields are remapped as

r(n) — x(n+ Vo),
wherex € {0, @, U} temperature and polarization.

e Taylor expansion leads tmroductof fields and Fourier
mode-coupling



Flat-sky Treatment

e Talyor expand

~

O(n) =6(n + Vo)
= O(1) + Vio(0) V'O(R) + £ Vio() V,0(0) VWO (M) + ...

e Fourier decomposition

o) = [ Fzoet®
6 = [ GO0




Flat-sky Treatment

e Mode coupling of harmonics

where
LLL)=¢o(0-1)(1-1) L

1 d212 *
3 / 5700007 (I + 1 =1 (1 1)+ 1y = 1) -1y

e Represents a coupling of harmonics separatefl by60 peak of
deflection power




Power Spectrum

e Power spectra

(O ()O(I)) = (2m)25(1— 1) C° |
(6" Mo(1)) = (2m)*(1 - 1) G,
becomes
where
R=— ﬂ l4c¢¢ 3)

47T [



Smoothing Power Spectrum

o If CP° slowly varying then two term cancel

- d?1, -
G / (27)2cz(b¢(1 1) = PRCP®.

e SO0 lensing acts to smooth features in the power spectrum.
Smoothing kernel i4. ~ 60 the peak of deflection power spectrum

e Because acoustic feature appear on a dgate 300, smoothing is
a subtle effect in the power spectrum.

e Lensing generates power below the damping scale which directly
reflect power in deflections on the same scale



Polarization Lensing

e Polarization field harmonics lensed similarly

2l
(27)

Q@+ il)(n) = - / [E +iB](1)e*? 1l

so that
Q £iU)(h) = [Q £ iU](A+ V)
~ [Q +4U)(h) + Vip(R)VIQ + U] (1)

+ %Vﬂ(fl)vg'@b(ﬁ)vivj Q £iU](n)



Polarization Power Spectra
e Carrying through the algebra

. 1 [ d21,
CFF = (1= PR O+ 5 [ sl -1 1P,
X [(CFF + CPBY) + cos(4yy, ) (CFE — CPPY)
. 1 [ d21,

x [(CFF + ClIF) — cos(4n, )(CI” = C7P)],

- d?1
CrF = (L-FR)CP" + / e (= 1) - LGRS,

X CN'Z(?E cos(2¢y, ) ,

e Lensing generateB-modes out of the acoustic polaraization
FE-modes contaminates gravitational wave signature if
E;, < 10'°GeV.



Reconstruction from the CMB

e Correlation betweeRourier momentseflectlensing potential

(z(M)z"(I))ems = fa(,1)o(1+1),

wherex € temperaturgpolarization fieldsand f,, is a fixed weight
that reflects geometry

e Each pair forms aoisy estimat®f the potential or projected mass
- Just like a pair of galaxy shears

e Minimum variance weighall pairs to form an estimator of the
lensing mass



Scattering Secondaries

e Optical depth during reionization

Wh2\ [ Qnh2\ V(1 3/2
T~ 0.066 | Tz
0.02 0.15 10
e Anisotropy suppressed as’. Integral solution

__ d T - L] L] L]

e |sotropic (lare scale) fluctuations not supressed since suppressiol
represents isotropization by scattering

e Quadrupole from the Sachs-Wolfe effect scatters into a large ang|
polarization bump



Doppler Effects

e Velocity fields of10~2 and optical depths df0—2 would imply
large Doppler effect due to reionization

e Limber approximation says only fluctuations transverse to line of
sight survive

e In linear theory, transverse fluctuations have no line of sight
velocity and so Doppler effect is highly suppressed.

e Beyond linear theory: modulate the optical depth in the transverse
direction using density fluctuations or ionization fraction
fluctuations. Generate a modulated Doppler effect

e Linear fluctuations: Vishniac effect; Clusters: kinetic SZ effect;
lonization patches: inhomogeneous reionization effect



Thermal SZ Effect

e Thermal velocities also lead to Doppler effect but first order
contribution cancels because of random directions

e Residual effect is of order’r ~ T, /m. T and can reach a sizeable
level for clusters with/,. ~ 10keV.

e Raleigh-Jeans decrement and Wien enhancement described by
second order collision term in Boltzmann equation: Kompaneets
equation

e Clusters are rare objects so contribution to power spectrum
suppressed, but may have been detected by CBI/BIMA: extremel
sensitive to power spectrum normalization

e White noise on large-scalés< 2000), turnover as cluster profile
IS resolved



