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CMBology
• Universe is currently bathed in2.725K blackbody radiation which

composes the majority of the radiation density of the universe

mm-cm wavelength, 100 GHz photons near peak

400 photon cm−3

• Radiation is extremely isotropic: aside from the10−3 temperature
variations due to the Doppler shift of our own motion, fluctuations
in the temperature are at the10−5 level.

• Fluctuations are the imprint of the origin of structure

• Fluctuations are polarized at the 10% level reflecting scattering
processes by which they last interacted with matter

• Place CMB in cosmological context
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FRW Cosmology



FRW Cosmology
• FRW cosmology = homogeneous and isotropic on large scales

• Universe observed to be nearly isotropic (e.g. CMB, radio point
sources, galaxy surveys)

• Copernican principle: must be isotropic to all observers (all
locations)

• Implies homogeneity; also galaxy redshift surveys (LCRS, 2dF,
SDSS) have seen the “end of greatness”, large scale homogeneity
directly

• FRW cosmology (homogeneity, isotropy & Einstein equations)
generically implies the expansion of the universe, except for
special unstable cases



FRW Geometry
• Spatial geometry is that of a constant curvature (positive, negative,

zero) surface

• Metric tells us how to measure distances on this surface

• Consider the closed geometry of a sphere of radiusR and suppress
one dimension

dD

D

dα

DAdα

D A
=

Rsin
(D

/R)

dΣ



Angular Diameter Distance
• Spatial distance: restore 3rd dimension with the usual spherical

polar angles

dΣ2 = dD2 +D2
Adα

2

= dD2 +D2
A(dθ2 + sin2 θdφ2)

• DA is called the angular diameter distance sinceDAdα

corresponds to the transverse separation or size as opposed to the
EuclideanDdα, i.e. is the apparent distance to an object through
the gravitational lens of the background geometry

• In a positively curved geometryDA < D and objects are further
than they appear

• In a negatively curved universeR is imaginary and
R sin(D/R) = i|R| sin(D/i|R|) = |R| sinh(D/|R|) – and
DA > D objects are closer than they appear



Volume Element
• Metric also defines the volume element

dV = (dD)(DAdθ)(DA sin θdφ)

= D2
AdDdΩ

• Most of classical cosmology boils down to these three quantities,
(comoving) distance, (comoving) angular diameter distance, and
volume element

• For example, distance to a high redshift supernova, angular size of
the horizon at last scattering, number density of clusters...



Comoving Coordinates
• Remaining degree of freedom (preserving homogeneity and

isotropy) is an overall scale factor that relates the geometry (fixed
by the radius of curvatureR) to physical coordinates – a function
of time only

dσ2 = a2(t)dΣ2

our conventions are that the scale factor todaya(t0) ≡ 1

• Similarly physical distances are given byd(t) = a(t)D,
dA(t) = a(t)DA.

• Distances in capital case arecomovingi.e. they comove with the
expansion and do not change with time – simplest coordinates to
work out geometrical effects



Redshift
• Wavelength of light “stretches” with the scale factor, so that it is

convenient to define a shift-to-the-red or redshift as the scale factor
increases

λ(a) = a(t)Λ

λ(1)

λ(a)
=

1

a
≡ (1 + z)

δλ

λ
= −δν

ν
= z

• Given known frequency of emissionν(a), redshift can be precisely
measured (modulo Doppler shifts from peculiar velocities) –
interpreting the redshift as a Doppler shift, objects receed in an
expanding universe -v = zc



Time and Conformal Time
• As in special relativity, time comes in with the opposite signature

in measuring space-time separation

• Proper time

dτ 2 = dt2 − dσ2

= dt2 − a2(t)dΣ2

≡ a2(t) (dη2 − dΣ2)

• Special relativity: physics invariant under the set of linear
coordinate transformations (Lorentz transformation) that preserve
lengths (dτ 2)

• General relativity: physics invariant under a general coordinate
transformation that preserves lengths



A GR Aside
• We will generally skirt around General Relativity but knowledge

of the language will be useful

• Proper time defines the metricgµν

dτ 2 ≡ gµνdx
µdxν

• Usually we will use comoving coordinates and conformal time as
the “x” ’s unless otherwise specified – metric for other choices are
related bya(t) – e.g. in spherical coordinatesµ ∈ η, θ, φ,D

gµν = a2


1 0 0 0

0 −D2
A 0 0

0 0 −D2
A sin2 θ 0

0 0 0 −1





Photon Cartography
• Classical cosmology is photon cartography – mapping out the

expansion by tracking the distance a photon travels as a function of
scale factor or redshift

• Taking out the scale factor in the time coordinatedη = dt/a

definesconformal time– useful in that photons travelling radially
from observer then obey

∆D = ∆η =

∫
dt

a

so that time and distance may be interchanged



Horizon
• Distance travelled by a photon in the whole lifetime of the universe

defines thehorizon

• Sincedτ = 0, the horizon is simply the conformal time elapsed

Dhorizon(t) =

∫ t

0

dt′

a
= η(t)

• Since the horizon always grows with time, there is always a point
in time before which two observers separated by a distanceD

could not have been in causal contact

• Horizon problem: why is the universe homogeneous and isotropic
on large scales, near the current horizon – problem deepens for
objects seen at early times, e.g. CMB



Hubble Parameter
• Useful to define the expansion rate or Hubble parameter

H(t) ≡ 1

a

da

dt

since dynamics (Einstein equations) will give this directly as
H(a) ≡ H(t(a))

• Time becomes

t =

∫
dt =

∫
da

aH(a)

• Conformal time becomes

η =

∫
dt

a
=

∫
da

a2H(a)



Distance-Redshift Relation
• All distance redshift relations based on comoving distanceD(z)

D(a) =

∫
dD =

∫ 1

a

da′

a2H(a)

(da = −(1 + z)−2dz = −a2dz)

D(z) = −
∫ 0

z

dz′

H(z′)
=

∫ z

0

dz′

H(z′)

• Note limiting case is the Hubble law

lim
z→0

D(z) = z/H(z = 0) ≡ z/H0

redshift (recession velocity) increases linearly with distance

• Hubble constant usually quoted asH0 = 100h km s−1 Mpc−1,
observationallyh ∼ 0.7; in natural unitsH0 = (2997.9)−1h Mpc−1

defines an inverse length scale



Distance-Redshift Relation
• Example: object of known physical sizeλ = a(t)Λ (“standard

ruler”) subtending an (observed) angle on the skyα

α =
Λ

DA(z)
=

λ

aR sin(D(z)/R)

=
λ

R sin(D(z)/R)
(1 + z) ≡ λ

dA(z)

• Example: object of known luminosityL (“standard candle”) with a
measured fluxS. Comoving surface area4πD2

A, frequency/energy
(1 + z), time-dilation or arrival rate of photons (crests)(1 + z):

S =
L

4πD2
A

1

(1 + z)2

≡ L

4πd2
L

(dL = (1 + z)DA = (1 + z)2dA)



Relative Measures
• If absolute calibration of standards unknown, then absolute

distance (or Hubble constant) unknown

dA(z) = λ/α(z); dL(z) =
√
L/4πS(z)

• Ratio at two different redshifts drops out the unknown standards
λ, L and measures evolution of the distance-redshift relation
H0D(z):

dA,L(z2)

dA,L(z1)
≈ H0

z1

dA,L(z2) [z1 � 1]

• Alternately, distances & curvature are measured in units ofh−1

Mpc.



Fundamental Observable
• Fundamental dependence (aside from(1 + z) factors)

H0DA(z) = H0R sin(D(z)/R)

= R̃ sin(H0D(z)/R̃), R̃ = H0R

H0D(z) =

∫
da

a2

H0

H(a)

• Maps out the kinematics of the expansion

• Current best standard ruler: acoustic oscillations; current best
standard candle supernovae type Ia

• Adding in the dynamics of the expansion, measurements ofD(z)

indicate a flat universe whose expansion is accelerating



Evolution of Scale Factor
• FRW cosmology is fully specified if the functiona(t) is given

• General relativity relates the scale factor with the matter content of
universe.

• Build the Einstein tensorGµ
ν out of the metric and use Einstein

equation

Gµ
ν = −8πGT µν

G0
0 = − 3

a2

[(
ȧ

a

)2

+
1

R2

]

Gi
j = − 1

a2

[
2
ä

a
−
(
ȧ

a

)2

+
1

R2

]
δij



Einstein Equations
• Isotropy demands that the stress-energy tensor take the form

T 0
0 = ρ

T ij = −pδij

whereρ is the energy density andp is the pressure

• So Einstein equations become(
ȧ

a

)2

+
1

R2
=

8πG

3
a2ρ

2
ä

a
−
(
ȧ

a

)2

+
1

R2
= −8πGa2p

or
ä

a
−
(
ȧ

a

)2

= −4πG

3
a2(ρ+ 3p)



Friedman Equations
• More usual to see Einstein equations expressed in time not

conformal time

ȧ

a
=
da

dη

1

a
=
da

dt
= aH(a)

ä

a
−
(
ȧ

a

)2

=
d

dη

(
ȧ

a

)
= a

d

dt

(
da

dt

)
= a

d2a

dt2

• Friedmann equations:

H2(a) +
1

a2R2
=

8πG

3
ρ

1

a

d2a

dt2
= −4πG

3
(ρ+ 3p)

• Convenient fiction to describe curvature as an energy density
componentρK = −3/(8πGa2R2) ∝ a−2 that does not accelerate
the expansion,pK = −ρK/3



Critical Density
• Friedmann equation forH then reads

H2(a) =
8πG

3
(ρ+ ρK) ≡ 8πG

3
ρc

defining a critical density todayρc in terms of the expansion rate

• In particular, its value today is given by the Hubble constant as

ρc(z = 0) = 3H2
0/8πG = 1.8788× 10−29h2g cm−3

• Energy density today is given as a fraction of critical
Ω ≡ ρ/ρc|z=0. Radius of curvature then given by
R−2 = H2

0 (Ω− 1)

• If Ω ≈ 1, ρ ≈ ρc, thenρK � ρc orH0R� 1, universe is flat
across the Hubble distance.Ω < 1 negatively curved;Ω > 1

positively curved



Newtonian Interpretation
• Consider a test particle of massm in expanding spherical region of

radiusr and total massM . Energy conservation

E =
1

2
mv2 − GMm

r
= const

1

2

(
dr

dt

)2

− GM

r
= const

1

2

(
1

r

dr

dt

)2

− GM

r3
=

const

r2

H2 =
8πGρ

3
− const

a2

• Constant determines whether the system is bound and in the
Friedmann equation is associated with curvature – not general
since neglects pressure



Conservation Law
• Second Friedmann equation, or acceleration equation, simply

expresses energy conservation (why: stress energy is automatically
conserved in GR via Bianchi identity)

dρV + pdV = 0

dρa3 + pda3 = 0

ρ̇a3 + 3
ȧ

a
ρa3 + 3

ȧ

a
pa3 = 0

ρ̇

ρ
= −3(1 + w)

ȧ

a
w ≡ p/ρ

• If w = const. then the energy density depends on the scale factor
asρ ∝ a−3(1+w).



Multicomponent Universe
• The total energy density can be composed of a sum of components

with differing equations of state

ρ(a) =
∑
i

ρi(a) =
∑
i

ρi(a = 1)a−3(1+wi), Ωi ≡ ρi/ρc|a=1

• Important cases: nonrelativistic matterρm = mnm ∝ a−3,
wm = 0; relativistic radiationρr = Enr ∝ νnr ∝ a−4, wr = 1/3;
“curvature”ρK ∝ a−2, wK = −1/3; constant energy density or
cosmological constantρΛ ∝ a0, wΛ = −1

• Or generally withwc = pc/ρc = (p+ pK)/(ρ+ ρK)

ρc(a) = ρc(a = 1)e−
R
d ln a 3(1+wc(a))

H2(a) = H2
0e

−
R
d ln a 3(1+wc(a))



Acceleration Equation
• Time derivative of (first) Friedman equation

2
1

a

da

dt

[
1

a

d2a

dt2
−H2(a)

]
=

8πG

3

dρc
dt[

1

a

d2a

dt2
− 8πG

3
ρc

]
=

4πG

3
[−3(1 + wc)ρc]

1

a

d2a

dt2
= −4πG

3
[(1 + 3wc)ρc]

= −4πG

3
(ρ+ ρK + 3p+ 3pK)

= −4πG

3
(1 + 3w)ρ

• Acceleration equation says that universe decelerates ifw > −1/3



Expansion Required
• Friedmann equations “predict” the expansion of the universe.

Non-expanding conditionsda/dt = 0 andd2a/dt2 = 0 require

ρ = −ρK ρ = −3p

i.e. a positive curvature and a total equation of state
w ≡ p/ρ = −1/3

• Since matter is known to exist, one can in principle achieve this
with

ρ = ρm + ρΛ = −ρK = −3p = 3ρΛ

ρΛ = −1

3
ρK ρm = −2

3
ρK

Einstein introducedρΛ for exactly this reason – “biggest blunder”;
but note that this balance is unstable:ρm can be perturbed butρΛ, a
true constant cannot



Dark Energy
• Distance redshift relation depends on energy density components

H0D(z) =

∫
da

a2

H0

H(a)

=

∫
da

a2
e

R
d ln a 3

2
(1+wc(a))

• Distant supernova Ia as standard candles imply thatwc < −1/3 so
that the expansion is accelerating

• Consistent with a cosmological constant that is
ΩΛ = ρΛ/ρcrit= 2/3 of the total energy density

• Coincidence problem: different components of matter scale
differently witha. Why are (at least) two components comparable
today? – Anthropic?



Dark Matter
• Since Zwicky in the 1930’s non-luminous or dark matter has been

known to dominate over luminous matter in stars (and hot gas)

• Arguments are basically from a balance of gravitational force
against “pressure” from internal motions: rotation velocity in
galactic disks, velocity dispersion of galaxies in clusters, gas
pressure in clusters, radiation pressure in CMB

• Assuming that the object is somehow typical in its non-luminous
to luminous density, these measures are converted to an overall
dark matter density through a “mass-to-light ratio”

• From galaxy surveys the luminosity density in solar units is

ρL = 2± 0.7× 108hL�Mpc−3

(h’s: distances inh−1 Mpc; luminosity inferred from flux
L ∝ Sd2 ∝ h−2; inverse volume∝ h3)



Dark Matter
• Critical density in solar units isρc = 2.7754× 1011h2M�Mpc−3

so that the critical mass-to-light ratio in solar units is(
M

L

)
≈ 1400h

• Flat rotation curves:GM/r2 ≈ v2/r→M ≈ v2r/G, so the
observed flat rotation curve impliesM ∝ r out to 30h−1 kpc,
beyond the light. ImpliesM/L > 30h and perhaps more – closure
if flat out to∼ 1 Mpc.

• Similar argument holds in clusters of galaxies where velocity
dispersion replaces circular velocity and centripetal force is
replaced by a “pressure gradient”T/m = σ2 and
p = ρT/m = ρσ2– generalization of hydrostatic equilibrium:
Zwicky gotM/L ≈ 300h.



Hydrostatic Equilibrium
• Evidence for dark matter inX-ray clusters also comes from direct

hydrostatic equilibrium inference from the gas: balance radial
pressure gradient with gravitational potential gradient

• Infinitesimal volume of areadA and thicknessdr at radiusr and
interior massM(r): pressure difference supports the gas

[pg(r)− pg(r + dr)]dA =
GmM

r2
=
GρgM

r2
dV

dpg
dr

= −ρg
dΦ

dr

with pg = ρgTg/m becomes

GM

r
= −Tg

m

(
d ln ρg
d ln r

+
d lnTg
d ln r

)
• ρg from X-ray luminosity;Tg sometimes taken as isothermal



Gravitational Lensing
• Mass can be directly measured in the gravitational lensing of

sources behind the cluster

• Strong lensing (giant arcs) probes central region of clusters

• Weak lensing (1-10% ) elliptical distortion to galaxy image probes
outer regions of cluster and total mass

• All techniques agree on the necessity of dark matter and are
roughly consistent with a dark matter densityΩm ∼ 0.2− 0.4

• Ωm + ΩΛ ≈ 1 from matter density + dark energy

• CMB provides a test ofDA 6= D through the standard rulers of the
acoustic peaks and shows that the universe is close to flatΩ ≈ 1

• Consistency has lead to the standard model for the cosmological
matter budget
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Statistical Mechanics



How Many Particles Fit in a Box?
.

• Counting momentum states due to
the wave nature of particles with momentum
q and de Broglie wavelength (in this
supplement we retain̄h andc to be explicit)

λ =
h

q
=

2πh̄

q

.

• In a discrete volumeL3 there is a discrete set
of states that satisfy periodic boundary conditions



How Many Particles Fit in a Box?
• As in Fourier analysis:e2πix/λ = ei(q/h̄)x = ei(q/h̄)(x+L) yields a

discrete set of allowed states

λi =
L

mi

=
2πh̄

qi
, mi = 1, 2, 3...

qi = mi
2πh̄

L

• In each of 3 directions:
∑

mximyjmzk
→
∫
d3m

• The differential number of allowed momenta in the volume

d3m =

(
L

2πh̄

)3

d3q



Density of States
• The total number of states allows for a number of internal degrees

of freedom, e.g. spin, quantified by the degeneracy factorg: total
density of states:

dNs

V
=

g

V
d3m =

g

(2πh̄)3
d3q

• If all states were occupied by a single particle, then the particle
density

ns =
Ns

V
=

1

V

∫
dNs =

∫
g

(2πh̄)3
d3q



Distribution Function
• The distribution functionf quantifies the occupation of the

allowed momentum states

n =
N

V
=

1

V

∫
fdNs =

∫
g

(2πh̄)3
fd3q

• f , aka phase space occupation number, also quantifies the density
of particles per unit phase spacedN/(∆x)3(∆q)3

• For photons, the spin degeneracyg = 2 accounting for the 2
polarization states

• EnergyE(q) = (q2c2 +m2c4)1/2

• Momentum→ frequencyq = h/λ = hν/c = E/c (wherem = 0

andλν = c)



Number Density
• Momentum state defines the direction of the radiation

n = g

∫
d3q

(2πh̄)3
f

= 2

∫
dΩq2dq

(2πh̄)3
f

= 2

∫
dΩ

(
h

c

)3
1

h3

∫
ν2dνf

= 2

∫
dΩ

1

c3

∫
ν2dνf

• Gives number density in a given direction and frequency band



Energy Density
• In general the energy density is

ρ = g

∫
d3q

(2πh̄)3
E(q)f

• For radiation

ρ = g

∫
d3q

(2πh̄)3
E(q)f = 2

∫
dΩ

1

c3

∫
ν2dνhνf

• So specific energy density

ρν(Ω) =
d2ρ

dΩdν
=

2ν3h

c3
f

• And specific intensity

Iν(Ω) = ρν(Ω)c =
2ν3h

c2
f



Pressure
.

Lx

v
vx

• Pressure: particles bouncing off a
surface of areaA in a volume
spanned byLx: per momentum
state

..

pq =
F

A
=
Npart

A

∆qx
∆t

(∆qx = 2|qx|, ∆t = 2Lx/vx, q/E = v/c2)

=
Npart

V
|qx||vx| = f

|q||v|
3

= f
q2c2

3E

(cos2 term in radiative pressure calc.)



Moments
• So that summed over states

p = g

∫
d3q

(2πh̄)3

|q|2c2

3E(q)
f

• Radiation

p = g

∫
d3q

(2πh̄)3

E(q)

3
f =

1

3
ρ

• Energy and pressure are part of the angular moments of the
distribution function – the isotropic ones

• First order anisotropy is the bulk momentum density or dipole of
the distribution:

(u+ p)v/c = g

∫
d3q

(2πh̄)3
qcf



Fluid Approximation Redux
• Continue with the second moments: radiative viscosity or

anisotropic stress

πij = g

∫
d3q

(2πh̄)3

3qiqj − q2δij
3E(q)

f

• Fluid approximation is that all the higher order moments from the
radiative viscosity onward vanishes - due isotropization from a
high collision rate

• Since particle kinetics must obey energy and momentum
conservation, in the fluid limit there are two equations of motion:
continuity and Euler equations

• Three quantities of interest: energy density, pressure, bulk velocity
means that a third relation is needed:p(ρ) the equation of state



Equilibrium
• Thermal physics describes the equilibrium distribution of particles

for a medium at temperatureT

• Expect that the typical energy of a particle by equipartition is
E ∼ kT , so thatf(E/kT, ?) in equilibrium

• Must be a second variable of import. Number density

n = g

∫
d3q

(2πh̄)3
f(E/kT ) =? n(T )

• If particles are conserved thenn cannot simply be a function of
temperature.

• The integration constant that concerns particle conservation is
called the chemical potential. Relevant for photons when creation
and annihilation processes are ineffective



Temperature and Chemical Potential
• Fundamental assumption of statistical mechanics is that all

accessible states have an equal probability of being populated. The
number of statesG defines the entropyS(U,N, V ) = k lnG where
U is the energy,N is the number of particles andV is the volume

• When two systems are placed in thermal contact they may
exchange energy, leading to a wider range of accessible states

G(U,N, V ) =
∑
U1

G1(U1, N1, V1)G2(U − U1, N −N1, V − V1)

• The most likely distribution ofU1 andU2 is given for the
maximumdG/dU1 = 0(

∂G1

∂U1

)
N1,V1

G2dU1 +G1

(
∂G2

∂U2

)
N2,V2

dU2 = 0 dU1 + dU2 = 0



Temperature and Chemical Potential
• Or equilibrium requires(

∂ lnG1

∂U1

)
N1,V1

=

(
∂ lnG2

∂U2

)
N2,V2

≡ 1

kT

which is the definition of the temperature (equal for systems in
thermal contact

• Likewise define a chemical potentialµ for a system in diffusive
equilibrium(

∂ lnG1

∂N1

)
U1,V1

=

(
∂ lnG2

∂N2

)
U2,V2

≡ − µ

kT

defines the most likely distribution of particle numbers as a system
with equal chemical potentials: generalize to multiple types of
particles undergoing “chemical” reaction→ law of mass action∑

i µidNi = 0



Temperature and Chemical Potential
• Equivalent definition: the chemical potential is the free energy cost

associated with adding a particle at fixed temperature and volume

µ =
∂F

∂N

∣∣∣
T,V

, F = U − TS

free energy: balance between minimizing energy and maximizing
entropyS

• Temperature and chemical potential determine the probability of a
state being occupied if the system is in thermal and diffusive
contact with a large reservoir at temperatureT



Gibbs or Boltzmann Factor
• Suppose the system has two states unoccupiedN1 = 0, U1 = 0 and

occupiedN1 = 1, U1 = E then the ratio of probabilities in the
occupied to unoccupied states is given by

P =
exp[lnGres(U − E,N − 1, V )]

exp[lnGres(U,N, V )]

• Taylor expand

lnGres(U − E,N − 1, V ) ≈ lnGres(U,N, V )− E
1

kT
+

µ

kT

P ≈ exp[−(E − µ)/kT ]

• This is the Gibbs factor.



Gibbs or Boltzmann Factor
• More generally the probability of a system being in a state of

energyEi and particle numberNi is given by the Gibbs factor

P (Ei, Ni) ∝ exp[−(Ei − µNi)/kT ]

• Unlikely to be in an energy stateEi � kT mitigated by the
number of particles

• Dropping the diffusive contact, this is the Boltzmann factor



Mean Occupation
• Mean occupation in thermal equilibrium

f = 〈N〉 =

∑
iNiP (Ei, Ni)∑
P (Ei, Ni)

• TakeEi = NiE whereE is the particle energy (zero point drops
out)

• For fermions: occupancyNi = 0, 1

f =
P (E, 1)

P (0, 0) + P (E, 1)
=

exp[−(E − µ)/kT ]

1 + exp[−(E − µ)/kT ]

=
1

exp[(E − µ)/kT ] + 1
Fermi-Dirac Distribution

• T → 0, f → [e±∞ + 1]−1 (E > µ, f = 0); (E < µ, f = 1),
occupied out to a sharp energy or Fermi surface withδE = kT



Bose-Einstein Distribution
• For bosons:∑

i

P [Ei, Ni] =
∞∑

Ni=0

exp[−Ni(E − µ)/kT ] =
∞∑

Ni=0

[e−(E−µ)/kT ]Ni

=
1

1− e−(E−µ)/kT

∑
i

NiP [Ei, Ni] =
∞∑

Ni=0

Ni exp[−Ni(E − µ)/kT ]

=
∂

∂µ/kT

∞∑
Ni=0

[e−(E−µ)/kT ]Ni

=
∂

∂µ/kT

(
1

1− e−(E−µ)/kT

)
=

e−(E−µ)/kT

(1− e−(E−µ)/kT )2



Bose-Einstein Distribution
• Bose Einstein distribution:

f =

∑
iNiP [Ei, Ni]∑
i P [Ei, Ni]

=
1

e(E−µ)/kT − 1

ForE − µ� kT , f → 0. ForE − µ < kT ln 2, f > 1, high
occupation (Bose-Einstein condensate).

• General equilibrium distribution

f =
1

e(E−µ)/kT ± 1

+ = fermions,− = bosons

• µ alters the number of particles at temperatureT



Maxwell Boltzmann Distribution
• In both cases, if(E − µ) � kT (including rest mass energy), then

f = e−(E−µ)/kT

• For non relativistic particles

E = (q2c2 +m2c4)1/2 = mc2(1 + q2/m2c2)1/2

≈ mc2(1 + q2/2m2c2) = mc2 +
1

2
mv2

f = e−(mc2−µ)/kT e−mv
2/2kT



Planck (Black Body) Distribution
• When particles can be freely created and destroyedµ→ 0 and for

bosons this is the black body distribution

f =
1

eE/kT − 1

• Specific intensity

Iν = Bν =
2hν3

c2
1

ehν/kT − 1

• At low frequencieshν � kT (Rayleigh Jeans)

exp(hν/kT )− 1 ≈ 1 + hν/kT − 1 = hν/kT

Bν =
2hν3

c2
kT

hν
= 2

ν2

c2
kT

independent ofh (classical, many photon limit)



Planck (Black Body) Distribution
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Cosmic Microwave Background
• FIRAS observations
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Planck (Black Body) Distribution
• Bν ∝ ν2 would imply an ultraviolet catastrophyS =

∫
Bνdν

• At high frequencieshν � kT (Wien tail)

exp(hν/kT )− 1 ≈ ehν/kT

Bν =
2hν3

c2
e−hν/kT

exhibits the Boltzmann suppression, particle nature of light

• Scaling withT

∂Bν

∂T
=

2hν3

c2
∂f

∂T
=

2hν3

c2

(
−1

(ehν/kT − 1)2

)
−hν
kT 2

> 0

so that specific intensity at allν increases withT

• Setting∂Bν/∂ν = 0 defines the maximumhνmax = 2.82kT



Planck (Black Body) Distribution
• Surface Brightness

S =

∫ ∞

0

Bνdν =
2h

c2

∫ ∞

0

ν3

ehν/kT − 1
dν

=
2h

c2

(
kT

h

)4 ∫ ∞

0

dx
x3

ex − 1
=

2π4k4

15c2h3
T 4 ≡ σBT

4

π

whereσB = 2π5k4/15c2h3 is the Stephan-Boltzmann constant and
theπ accounts for the emergent flux at the radiusR of a uniform
sphere where angles up to theπ/2 tangent can be viewed

F ≡
∫
S cos θdΩ = S

∫ 2π

0

dφ

∫ π/2

0

cos θ sin θdθ = πS



Planck (Black Body) Distribution
• Energy density

ρ =

∫
Bν

c
dνdΩ =

4π

c

σBT
4

π
=

4σB
c
T 4

• Number density

n = 2

∫
dΩ

1

c3

∫
ν2dν

1

ehν/kT − 1

=
8π

c3

(
kT

h

)3 ∫ ∞

0

x2dx

ex − 1
=

16πζ(3)

c3

(
kT

h

)3

=
2ζ(3)

π2c3

(
kT

h̄

)3

whereζ(3) ≈ 1.202
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Recombination



Saha Equation
• What is the equilibrium ionization state of a gas at a given

temperature?

• Hydrogen example:e+ p↔ H + γ

• Definentot = np + nH and an ionization fractionxe ≡ np/ntot

npne
nHntot

=
x2
e

1− xe

• Number densities defined by distribution function in thermal
equilibrium.e andp are non-relativistic at the eV energy scales of
recombination

• Maxwell-Boltzmann distribution

f = e−(mc2−µ)/kT e−q
2/2mkT



Saha Equation
• Number density:

n = g

∫
d3q

(2πh̄)3
f =

ge−(mc2−µ)/kT

2π2h̄3

∫ ∞

0

q2dqe−q
2/2mkT

= g
e−(mc2−µ)/kT

2π2h̄3 (2mkT )3/2

[∫ ∞

0

x2dxe−x
2

=

√
π

4

]
(x = p/

√
2mkT )

= ge−(mc2−µ)/kT

(
mkT

2πh̄2

)3/2

• Hydrogen recombination (ntot = np + nH)

np = gpe
−(mpc2−µp)/kT

(
mpkT/2πh̄

2
)3/2

ne = gee
−(mec2−µe)/kT

(
mekT/2πh̄

2
)3/2

nH = gHe
−(mHc

2−µH)/kT
(
mHkT/2πh̄

2
)3/2



Saha Equation
• Hydrogen binding energyB = 13.6eV:mH = mp +me −B/c2

npne
nHntot

=
x2
e

1− xe
≈ gpge
gHntot

e−B/kT eµp+µe−µH

(
mekT

2πh̄2

)3/2

• Spin degeneracy: spin 1/2gp = 2 , ge = 2; gH = 4 product

• Equilibriumµp + µe = µH

x2
e

1− xe
≈ 1

ntot

e−B/kT
(
mekT

2πh̄2

)3/2

• Quadratic equation involvingT and the total density - explicit
solution forxe(T )

• Exponential dominant factor: ionization drops quickly askT drops
belowB - exactly where the sharp transition occurs depends on the
densityntot



Saha Equation
• Photon perspective: compare photon number density atT to ntot

nγ =
2ζ(3)

π2h̄3

(
kT

c

)3

x2
e

1− xe
=

(
nγ
ntot

)
e−B/kT

π2h̄3

2ζ(3)

( c

kT

)3
(
mekT

2πh̄2

)3/2

=

(
nγ
ntot

)
e−B/kT

π1/2

25/2ζ(3)

(
mec

2

kT

)3/2

• Photon-baryon ratio controls when recombination occurs:
typically a very large number since baryon number is conserved
(µ 6= 0) -a low baryon density medium is easy to keep ionized
with the high energy photons in tail of the black body

• Cosmologically, recombination occurs at an energy scale of
kT ∼ 0.3eV



Saha Equation
• Electron perspective: the relevant length scale is the (“thermal”) de

Broglie wavelength for a typical particle

mev
2 ∼ kT, q2 ∼ m2

ev
2 ∼ (mekT )

λTe =
h

q
=

h

(2πmekT )1/2
=

(
2πh̄2

mekT

)1/2

which is the factor in the Saha equation

x2
e

1− xe
=

1

ntotλ3
Te

e−B/kT

NTe = neλ
3
Te = # electrons in a de Broglie volume and is� 1 for

non-degenerate matter



Saha Equation
• Saha equation

xe
1− xe

=
1

NTe

e−B/kT

• Electron chemical potential

NTe = 2e−(mec2−µe)/kT

xe
1− xe

=
1

2
e−[B−(mec2−µe)]/kT

• Transition occurs whenBeff = B −mec
2 + µe = kT - chemical

potential or number density determines correction toB ∼ kT rule

• However equilibrium may not be maintained - 2 body interaction
may not be rapid enough in low density environment - e.g.
freezeout cosmologically



Cosmic Recombination
• Rates insufficient to maintain equilibrium - due to Lyα opacity

cosmic recombination relies on forbidden 2 photon decay and
redshift

Saha

2-levelio
ni

za
tio

n 
fr

ac
tio

n

scale factor a

redshift z

10–4

10–3

10–2

10–1

1

10–3

103104 102
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Acoustic Kinematics



Temperature Fluctuations
• Observe blackbody radiation with a temperature that differs at

10−5 coming from the surface of last scattering, with distribution
function (specific intensityIν = 4πν3f(ν) each polarization)

f(ν) = [exp(2πν/T (n̂))− 1]−1

• Decompose the temperature perturbation in spherical harmonics

T (n̂) =
∑
`m

T`mY`m(n̂)

• For Gaussian random fluctuations, the statistical properties of the
temperature field are determined by the power spectrum

〈T ∗`mT`′m′〉 = δ``′δmm′C`

where theδ-function comes from statistical isotropy



Spatial vs Angular Power
• Take the radiation distribution at last scattering to also be

described by an isotropic temperature fieldT (x) and
recombination to be instantaneous

T (n̂) =

∫
dD T (x)δ(D −D∗)

whereD is the comoving distance andD∗ denotes recombination.

• Describe the temperature field by its Fourier moments

T (x) =

∫
d3k

(2π)3
T (k)eik·x

with a power spectrum

〈T (k)∗T (k′)〉 = (2π)3δ(k− k′)PT (k)



Spatial vs Angular Power
• Note that the variance of the field

〈T (x)T (x)〉 =

∫
d3k

(2π)3
P (k)

=

∫
d ln k

k3P (k)

2π2
≡
∫
d ln k∆2

T (k)

so it is more convenient to think in the log power spectrum∆2
T (k)

• Temperature field

T (n̂) =

∫
d3k

(2π)3
T (k)eik·D∗n̂

• Expand out plane wave in spherical coordinates

eikD∗·n̂ = 4π
∑
`m

i`j`(kD∗)Y
∗
`m(k)Y`m(n̂)



Spatial vs Angular Power
• Multipole moments

T`m =

∫
d3k

(2π)3
T (k)4πi`j`(kD∗)Y`m(k)

• Power spectrum

〈T ∗`mT`′m′〉 =

∫
d3k

(2π)3
(4π)2(i)`−`

′
j`(kD∗)j`′(kD∗)Y

∗
`m(k)Y`′m′(k)PT (k)

= δ``′δmm′4π

∫
d ln k j2

` (kD∗)∆
2
T (k)

with
∫∞

0
j2
` (x)d lnx = 1/(2`(`+ 1)), slowly varying∆2

T

C` =
4π∆2

T (`/D∗)

2`(`+ 1)
=

2π

`(`+ 1)
∆2
T (`/D∗)

so`(`+ 1)C`/2π = ∆2
T is commonly used log power



Scale Invariant Fluctuations
• Scale invariant temperature fluctuations have∆2

T =const

• Equal contributions to the rms temperature fluctuation per decade
in frequencyk

• Observed angular fluctuations then have`(`+ 1)C`/2π = const

• Weaker assumption of scale free initial temperature fluctuations
∆2
T ∝ kn−1, wheren is called the tilt.

• n = 1 is scale invariant for historical reasons.

• However fluctuations evolve from their initial conditions due to
gravitational and pressure forces



Thomson Scattering
• Thomson scatteringof photons off of free electrons is the most

important CMB process with a cross section (averaged over
polarization states) of

σT =
8πα2

3m2
e

= 6.65× 10−25cm2

• Density of free electrons in a fully ionizedxe = 1 universe

ne = (1− Yp/2)xenb ≈ 10−5Ωbh
2(1 + z)3cm−3 ,

whereYp ≈ 0.24 is the Helium mass fraction, creates a high
(comoving) Thomsonopacity

τ̇ ≡ neσTa

where dots are conformal timeη ≡
∫
dt/a derivatives andτ is the

optical depth.



Tight Coupling Approximation
• Nearrecombinationz ≈ 103 andΩbh

2 ≈ 0.02, the (comoving)
mean free pathof a photon

λC ≡
1

τ̇
∼ 2.5Mpc

small by cosmological standards!

• On scalesλ� λC photons aretightly coupledto the electrons by
Thomson scattering which in turn are tightly coupled to the
baryons by Coulomb interactions

• Specifically, their bulk velocities are defined by asingle fluid
velocityvγ = vb and the photons carryno anisotropyin the rest
frame of the baryons

• → No heat conductionor viscosity(anisotropic stress) in fluid



Tight Coupling Approximation
• Nearrecombinationz ≈ 103 andΩbh

2 ≈ 0.02, the (comoving)
mean free pathof a photon

λC ≡
1

τ̇
∼ 2.5Mpc

small by cosmological standards!

• On scalesλ� λC photons aretightly coupledto the electrons by
Thomson scattering which in turn are tightly coupled to the
baryons by Coulomb interactions

• Specifically, their bulk velocities are defined by asingle fluid
velocityvγ = vb and the photons carryno anisotropyin the rest
frame of the baryons

• → No heat conductionor viscosity(anisotropic stress) in fluid



Zeroth Order Approximation
• Momentum densityof a fluid is(ρ+ p)v, wherep is the pressure

• Neglectthe momentum density of thebaryons

R ≡ (ρb + pb)vb
(ργ + pγ)vγ

=
ρb + pb
ργ + pγ

=
3ρb
4ργ

≈ 0.6

(
Ωbh

2

0.02

)( a

10−3

)
sinceργ ∝ T 4 is fixed by the CMB temperatureT = 2.73(1 + z)K
– OK substantiallybefore recombination

• Neglectradiationin theexpansion

ρm
ρr

= 3.6

(
Ωmh

2

0.15

)( a

10−3

)



Number Continuity
• Photons arenot createdor destroyed. Without expansion

ṅγ +∇ · (nγvγ) = 0

but theexpansionor Hubble flow causesnγ ∝ a−3 or

ṅγ + 3nγ
ȧ

a
+∇ · (nγvγ) = 0

• Linearizeδnγ = nγ − n̄γ

(δnγ)
· = −3δnγ

ȧ

a
− nγ∇ · vγ(

δnγ
nγ

)·
= −∇ · vγ



Continuity Equation
• Number densitynγ ∝ T 3 so definetemperature fluctuationΘ

δnγ
nγ

= 3
δT

T
≡ 3Θ

• Real spacecontinuity equation

Θ̇ = −1

3
∇ · vγ

• Fourier space

Θ̇ = −1

3
ik · vγ



Momentum Conservation
• No expansion:̇q = F

• De Brogliewavelengthstretches with the expansion

q̇ +
ȧ

a
q = F

for photons this theredshift, for non-relativistic particles
expansion dragon peculiar velocities

• Collection of particles: momentum→ momentumdensity
(ργ + pγ)vγ and force→ pressure gradient

[(ργ + pγ)vγ]
· = −4

ȧ

a
(ργ + pγ)vγ −∇pγ

4

3
ργv̇γ =

1

3
∇ργ

v̇γ = −∇Θ



Euler Equation
• Fourier space

v̇γ = −ikΘ

• Pressure gradients (any gradient of a scalar field) generates a
curl-freeflow

• For convenience definevelocity amplitude:

vγ ≡ −ivγk̂

• EulerEquation:

v̇γ = kΘ

• ContinuityEquation:

Θ̇ = −1

3
kvγ



Oscillator: Take One
• Combine these to form thesimple harmonic oscillatorequation

Θ̈ + c2sk
2Θ = 0

where the adiabatic sound speed is defined through

c2s ≡
ṗγ
ρ̇γ

herec2s = 1/3 since we are photon-dominated

• General solution:

Θ(η) = Θ(0) cos(ks) +
Θ̇(0)

kcs
sin(ks)

where thesound horizonis defined ass ≡
∫
csdη



Harmonic Extrema
• All modes arefrozenin at recombination (denoted with a subscript
∗) yielding temperature perturbations ofdifferent amplitudefor
different modes. For the adiabatic (curvature mode)Θ̇(0) = 0

Θ(η∗) = Θ(0) cos(ks∗)

• Modes caught in theextremaof their oscillation will have
enhanced fluctuations

kns∗ = nπ

yielding afundamental scaleor frequency, related to the inverse
sound horizon

kA = π/s∗

and aharmonic relationshipto the other extrema as1 : 2 : 3...



Peak Location
• The fundmentalphysical scaleis translated into a fundamental

angular scaleby simple projection according to the angular
diameter distanceDA

θA = λA/DA

`A = kADA

• In a flat universe, the distance is simplyDA = D ≡ η0 − η∗ ≈ η0,
the horizon distance, andkA = π/s∗ =

√
3π/η∗ so

θA ≈
η∗
η0

• In amatter-dominateduniverseη ∝ a1/2 soθA ≈ 1/30 ≈ 2◦ or

`A ≈ 200



Curvature
• In acurved universe, the apparent orangular diameter distanceis

no longer the conformal distanceDA = R sin(D/R) 6= D

• Objects in aclosed universearefurtherthan they appear!
gravitationallensingof the background...

• Curvature scale of the universe must be substantiallylarger than
current horizon

• Flat universeindicates critical density and implies missing energy
given local measures of the matter density “dark energy”

• D also depends ondark energy densityΩDE andequation of state
w = pDE/ρDE.

• Expansion rate at recombination ormatter-radiation ratioenters
into calculation ofkA.



Doppler Effect
• Bulk motionof fluid changes the observed temperature via

Doppler shifts (
∆T

T

)
dop

= n̂ · vγ

• Averaged over directions(
∆T

T

)
rms

=
vγ√
3

• Acoustic solution

vγ√
3

= −
√

3

k
Θ̇ =

√
3

k
kcs Θ(0)sin(ks)

= Θ(0)sin(ks)



Doppler Peaks?
• Doppler effectfor the photon dominated system is ofequal

amplitudeandπ/2 out of phase: extrema of temperature are
turning points of velocity

• Effects add inquadrature:(
∆T

T

)2

= Θ2(0)[cos2(ks) + sin2(ks)] = Θ2(0)

• No peaksin k spectrum! However the Doppler effect carries an
angular dependence that changes itsprojectionon the sky
n̂ · vγ ∝ n̂ · k̂

• Coordinates wherêz ‖ k̂

Y10Y`0 → Y`±1 0

recouplingj′`Y`0: no peaks in Doppler effect
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Restoring Gravity: Continuity
• Take a simplephoton dominatedsystemwith gravity

• Continuityaltered since a gravitational potential represents a
stretchingof thespatial fabricthat dilutes number densities –
formally a spatialcurvature perturbation

• Think of this as a perturbation to thescale factora→ a(1 + Φ) so
that the cosmogical redshift is generalized to

ȧ

a
→ ȧ

a
+ Φ̇

(δnγ)
· = −3δnγ

ȧ

a
− 3nγΦ̇− nγ∇ · vγ

so that thecontinuity equationbecomes

Θ̇ = −1

3
kvγ − Φ̇



Restoring Gravity: Euler
• Gravitational forcein momentum conservationF = −m∇Ψ

generalized to momentum density modifies theEuler equationto

v̇γ = k(Θ + Ψ)

• General relativity says thatΦ andΨ are the relativistic analogues
of theNewtonian potentialand thatΦ ≈ −Ψ.

• In our matter-dominated approximation,Φ represents matter
density fluctuations through the cosmologicalPoisson equation

k2Φ = 4πGa2ρm∆m

where the difference comes from the use ofcomoving coordinates
for k (a2 factor), the removal of thebackground densityinto the
background expansion(ρm∆m) and finally acoordinate subtlety
that enters into the definition of∆m



Constant Potentials
• In the matter dominated epochpotentials are constantbecause

infall generates velocitiesasvm ∼ kηΨ

• Velocity divergence generates densityperturbations as
∆m ∼ −kηvm ∼ −(kη)2Ψ

• And density perturbations generate potentialfluctuations as
Φ ∼ ∆m/(kη)

2 ∼ −Ψ, keeping them constant. Note that because
of the expansion, density perturbations mustgrow to keep
potentials constant.

• Here we have used theFriedman equationH2 = 8πGρm/3 and
η =

∫
d ln a/(aH) ∼ 1/(aH)

• More generally, ifstress perturbationsare negligible compared
with density perturbations( δp� δρ ) then potential will remain
roughly constant – more specifically a variant called theBardeen
or comoving curvatureζ is constant



Oscillator: Take Two
• Combine these to form thesimple harmonic oscillatorequation

Θ̈ + c2sk
2Θ = −k

2

3
Ψ− Φ̈

• In aCDM dominatedexpansionΦ̇ = Ψ̇ = 0. Also for photon
dominationc2s = 1/3 so the oscillator equation becomes

Θ̈ + Ψ̈ + c2sk
2(Θ + Ψ) = 0

• Solution is just anoffset versionof the original

[Θ + Ψ](η) = [Θ + Ψ](0) cos(ks)

• Θ + Ψ is also theobserved temperature fluctuationsince photons
lose energy climbing out ofgravitational potentialsat
recombination



Effective Temperature
• Photons climb out of potential wells at last scattering

• Lose energy to gravitational redshifts

• Observed oreffective temperature

Θ + Ψ

• Effective temperature oscillates aroundzerowith amplitude given
by theinitial conditions

• Note: initial conditions are set when the perturbation isoutside of
horizon, need inflation or other modification to matter-radiation
FRW universe.

• GR says thatinitial temperatureis given byinitial potential



Sachs-Wolfe Effect and the Magic 1/3
• A gravitational potentialis a perturbation to the temporal

coordinate [formally agauge transformation]

δt

t
= Ψ

• Convert this to a perturbation in thescale factor,

t =

∫
da

aH
∝
∫

da

aρ1/2
∝ a3(1+w)/2

wherew ≡ p/ρ so that duringmatter domination

δa

a
=

2

3

δt

t

• CMB temperature iscoolingasT ∝ a−1 so

Θ + Ψ ≡ δT

T
+ Ψ = −δa

a
+ Ψ =

1

3
Ψ



Baryon Loading
• Baryons add extramassto the photon-baryon fluid

• Controlling parameter is themomentum density ratio:

R ≡ pb + ρb
pγ + ργ

≈ 30Ωbh
2
( a

10−3

)
of orderunity at recombination

• Momentum density of thejoint systemis conserved

(ργ + pγ)vγ + (ρb + pb)vb ≈ (pγ + pγ + ρb + ργ)vγ

= (1 +R)(ργ + pγ)vγb

where the controlling parameter is themomentum density ratio:

R ≡ pb + ρb
pγ + ργ

≈ 30Ωbh
2
( a

10−3

)
of orderunity at recombination



New Euler Equation
• Momentum density ratio enters as

[(1 +R)(ργ + pγ)vγb]
· = −4

ȧ

a
(1 +R)(ργ + pγ)vγb

−∇pγ − (1 +R)(ργ + pγ)∇Ψ

same as before except for(1 +R) terms so

[(1 +R)vγb]
· = kΘ + (1 +R)kΨ

• Photon continuityremains the same

Θ̇ = −k
3
vγb − Φ̇

• Modification ofoscillator equation

[(1 +R)Θ̇]· +
1

3
k2Θ = −1

3
k2(1 +R)Ψ− [(1 +R)Φ̇]·



Oscillator: Take Three
• Combine these to form the not-quite-sosimple harmonic oscillator

equation

c2s
d

dη
(c−2
s Θ̇) + c2sk

2Θ = −k
2

3
Ψ− c2s

d

dη
(c−2
s Φ̇)

wherec2s ≡ ṗγb/ρ̇γb

c2s =
1

3

1

1 +R

• In aCDM dominatedexpansionΦ̇ = Ψ̇ = 0 and theadiabatic
approximationṘ/R� ω = kcs

[Θ + (1 +R)Ψ](η) = [Θ + (1 +R)Ψ](0) cos(ks)



Baryon Peak Phenomenology
• Photon-baryon ratio enters inthree ways

• Overall largeramplitude:

[Θ + (1 +R)Ψ](0) =
1

3
(1 + 3R)Ψ(0)

• Even-odd peakmodulationof effective temperature

[Θ + Ψ]peaks = [±(1 + 3R)− 3R]
1

3
Ψ(0)

[Θ + Ψ]1 − [Θ + Ψ]2 = [−6R]
1

3
Ψ(0)

• Shifting of thesound horizondown or`A up

`A ∝
√

1 +R

• Actual effectssmallersinceR evolves



Photon Baryon Ratio Evolution
• Oscillator equation has timeevolving mass

c2s
d

dη
(c−2
s Θ̇) + c2sk

2Θ = 0

• Effective mass is ismeff = 3c−2
s = (1 +R)

• Adiabatic invariant

E

ω
=

1

2
meffωA

2 =
1

2
3c−2
s kcsA

2 ∝ A2(1 +R)1/2 = const.

• Amplitude of oscillationA ∝ (1 +R)−1/4 decays adiabaticallyas
the photon-baryon ratio changes



Oscillator: Take Three and a Half
• The not-quite-sosimple harmonic oscillatorequation is aforced

harmonic oscillator

c2s
d

dη
(c−2
s Θ̇) + c2sk

2Θ = −k
2

3
Ψ− c2s

d

dη
(c−2
s Φ)

changes in thegravitational potentialsalter the form of the
acoustic oscillations

• If the forcing term has atemporal structurethat is related to the
frequencyof the oscillation, this becomes adriven harmonic
oscillator

• Term involvingΨ is the ordinarygravitational force

• Term involvingΦ involves theΦ̇ term in thecontinuity equationas
a (curvature) perturbation to thescale factor



Potential Decay
• Matter-to-radiation ratio

ρm
ρr

≈ 24Ωmh
2
( a

10−3

)
of orderunity at recombination in a lowΩm universe

• Radiation is not stress free and soimpedesthe growth of structure

k2Φ = 4πGa2ρr∆r

∆r ∼ 4Θ oscillatesaround a constant value,ρr ∝ a−4 so the
Netwoniancurvature decays.

• General rule: potential decays if the dominant energy component
has substantial stress fluctuations, i.e. below the generalized sound
horizon or Jeans scale



Radiation Driving
• Decay is timed precisely todrive the oscillator - close to fully

coherent

[Θ + Ψ](η) = [Θ + Ψ](0) + ∆Ψ−∆Φ

=
1

3
Ψ(0)− 2Ψ(0) =

5

3
Ψ(0)

• 5× the amplitude of the Sachs-Wolfe effect!

• Coherent approximation isexactfor a photon-baryon fluid but
reality is reduced to∼ 4× because ofneutrino contributionto
radiation

• Actual initial conditionsareΘ + Ψ = Ψ/2 for radiation
domination but comparison to matter dominated SW correct



External Potential Approach
• Solution tohomogeneous equation

(1 +R)−1/4cos(ks) , (1 +R)−1/4sin(ks)

• Give the general solution for an external potential by propagating
impulsive forces

(1 +R)1/4Θ(η) = Θ(0)cos(ks) +

√
3

k

[
Θ̇(0) +

1

4
Ṙ(0)Θ(0)

]
sin ks

+

√
3

k

∫ η

0

dη′(1 +R′)3/4sin[ks− ks′]F (η′)

where

F = −Φ̈− Ṙ

1 +R
Φ̇− k2

3
Ψ

• Useful if general form of potential evolution is known



Damping
• Tight coupling equations assume aperfect fluid: noviscosity, no

heat conduction

• Fluid imperfections are related to themean free path of the
photons in the baryons

λC = τ̇−1 where τ̇ = neσTa

is the conformal opacity toThompson scattering

• Dissipation is related to thediffusion length: random walk
approximation

λD =
√
NλC =

√
η/λC λC =

√
ηλC

thegeometric meanbetween the horizon and mean free path

• λD/η∗ ∼ few %, so expect thepeaks:> 3 to be affected by
dissipation



Equations of Motion
• Continuity

Θ̇ = −k
3
vγ − Φ̇ , δ̇b = −kvb − 3Φ̇

where the photon equation remains unchanged and the baryons
follow number conservation withρb = mbnb

• Euler

v̇γ = k(Θ + Ψ)− k

6
πγ − τ̇(vγ − vb)

v̇b = − ȧ
a
vb + kΨ + τ̇(vγ − vb)/R

where the photons gain an anisotropic stress termπγ from radiation
viscosityand amomentum exchangeterm with the baryons and
are compensated by theopposite termin the baryon Euler equation



Viscosity
• Viscosityis generated from radiationstreamingfrom hot to cold

regions

• Expect

πγ ∼ vγ
k

τ̇

generated by streaming, suppressed byscatteringin a wavelength
of the fluctuation.Radiative transfersays

πγ ≈ 2Avvγ
k

τ̇

whereAv = 16/15

v̇γ = k(Θ + Ψ)− k

3
Av
k

τ̇
vγ



Oscillator: Penultimate Take
• Adiabatic approximation( ω � ȧ/a)

Θ̇ ≈ −k
3
vγ

• Oscillator equation contains ȧΘ damping term

c2s
d

dη
(c−2
s Θ̇) +

k2c2s
τ̇
AvΘ̇ + k2c2sΘ = −k

2

3
Ψ− c2s

d

dη
(c−2
s Φ̇)

• Heat conductionterm similar in that it is proportional tovγ and is
suppressed by scatteringk/τ̇ . Expansion ofEuler equationsto
leading order ink/τ̇ gives

Ah =
R2

1 +R

since the effects are only significant if the baryons are dynamically
important



Oscillator: Final Take
• Finaloscillator equation

c2s
d

dη
(c−2
s Θ̇) +

k2c2s
τ̇

[Av + Ah]Θ̇ + k2c2sΘ = −k
2

3
Ψ− c2s

d

dη
(c−2
s Φ̇)

• Solve in theadiabatic approximation

Θ ∝ exp(i

∫
ωdη)

−ω2 +
k2c2s
τ̇

(Av + Ah)iω + k2c2s = 0 (1)



Dispersion Relation
• Solve

ω2 = k2c2s

[
1 + i

ω

τ̇
(Av + Ah)

]
ω = ±kcs

[
1 +

i

2

ω

τ̇
(Av + Ah)

]
= ±kcs

[
1± i

2

kcs
τ̇

(Av + Ah)

]
• Exponentiate

exp(i

∫
ωdη) = e±iks exp[−k2

∫
dη

1

2

c2s
τ̇

(Av + Ah)]

= e±iks exp[−(k/kD)2] (2)

• Damping isexponentialunder the scalekD



Diffusion Scale
• Diffusion wavenumber

k−2
D =

∫
dη

1

τ̇

1

6(1 +R)

(
16

15
+

R2

(1 +R)

)
• Limiting forms

lim
R→0

k−2
D =

1

6

16

15

∫
dη

1

τ̇

lim
R→∞

k−2
D =

1

6

∫
dη

1

τ̇

• Geometric mean between horizon and mean free path as expected
from arandom walk

λD =
2π

kD
∼ 2π√

6
(ητ̇−1)1/2
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Idealized Data Analysis



Gaussian Statistics
• Statistical isotropy says two-point correlation depends only on the

power spectrum

Θ(n̂) =
∑
`m

Θ`mY`m(n̂)

〈Θ∗
`mΘ`′m′〉 = δ``′δmm′CΘΘ

`

• Reality of field saysΘ`m = (−1)mΘ`(−m)

• For a Gaussian random field, power spectrum defines all higher
order statistics, e.g.

〈Θ`1m1Θ`2m2Θ`3m3Θ`4m4〉

= (−1)m1+m2δ`1`3δm1(−m3)δ`2`4δm2(−m4)C
ΘΘ
`1
CΘΘ
`2

+ all pairs



Idealized Statistical Errors
• Take a noisy estimator of the multipoles in the map

Θ̂`m = Θ`m +N`m

and take the noise to be statistically isotropic

〈N∗
`mN`′m′〉 = δ``′δmm′CNN

`

• Construct an unbiased estimator of the power spectrum
〈ĈΘΘ

` 〉 = CΘΘ
`

ĈΘΘ
` =

1

2`+ 1

l∑
m=−l

Θ̂∗
`mΘ̂`m − CNN

`

• Variance in estimator

〈ĈΘΘ
` ĈΘΘ

` 〉 − 〈ĈΘΘ
` 〉2 =

2

2`+ 1
(CΘΘ

` + CNN
` )2



Cosmic and Noise Variance
• RMS in estimator is simply the total power spectrum reduced by√

2/Nmodes whereNmodes is the number ofm-mode measurements

• Even a perfect experiment whereCNN
` = 0 has statistical variance

due to the Gaussian random realizations of the field. This cosmic
variance is the result of having only one realization to measure.

• Noise variance is often approximated as white detector noise.
Removing the beam to place the measurement on the sky

NΘΘ
` =

(
T

dT

)2

e`(`+1)σ2

=

(
T

dT

)2

e`(`+1)FWHM2/8 ln 2

wheredT can be thought of as a noise level per steradian of the
temperature measurement,σ is the Gaussian beam width, FWHM
is the full width at half maximum of the beam



Idealized Parameter Forecasts
• A crude propagation of errors is often useful for estimation

purposes.

• SupposeCαβ describes the covariance matrix of the estimators for
a given parameter setπα.

• DefineF = C−1 [formalized as the Fisher matrix later]. Making
an infinitesimal transformation to a new set of parameterspµ

Fµν =
∑
αβ

∂πα
∂pµ

Fαβ
∂πβ
∂pν

• In our caseπα are theC` the covariance is diagonal andpµ are
cosmological parameters

Fµν =
∑
`

2`+ 1

2(CΘΘ
` + CNN

` )2

∂CΘΘ
`

∂pµ

∂CΘΘ
`

∂pν



Idealized Parameter Forecasts
• Polarization handled in same way (requires covariance)

• Fisher matrix represents a local approximation to the
transformation of the covariance and hence is only accurate for
well constrained directions in parameter space

• Derivatives evaluated by finite difference

• Fisher matrix identifies parameter degeneracies but only the local
direction – i.e. all errors are ellipses not bananas



Beyond Idealizations: Time Ordered
Data

• For the data analyst the starting point is a string of “time ordered”
data coming out of the instrument (post removal of systematic
errors!)

• Begin with a model of the time ordered data as

dt = PtiΘi + nt

wherei denotes pixelized positions indexed byi, dt is the data in a
time ordered stream indexed byt. Number of time ordered data
will be of the order1010 for a satellite! number of pixels106− 107.

• The noisent is drawn from a distribution with a known power
spectrum

〈ntnt′〉 = Cd,tt′



Pointing Matrix
• The pointing matrixP is the mapping between pixel space and the

time ordered data

• Simplest incarnation: row with all zeros except one column which
just says what point in the sky the telescope is pointing at that time

P =



0 0 1 . . . 0

1 0 0 . . . 0

0 1 0 . . . 0

. . . . . . . . . . . . . . .

0 0 1 . . . 0


• More generally encorporates differencing, beam, rotation (for

polarization)



Maximum Likelihood Mapmaking
• What is the best estimator of the underlying mapΘi

• Likelihood function: the probability of getting the data given the
theoryL ≡ P [data|theory]. In this case, thetheoryis the set of
parametersΘi.

LΘ(dt) =
1

(2π)Nt/2
√

detCd

exp

[
−1

2
(dt − PtiΘi)C

−1
d,tt′ (dt′ − Pt′jΘj)

]
.

• Bayes theorem says thatP [Θi|dt], the probability that the
temperatures are equal toΘi given the data, is proportional to the
likelihood function times aprior P (Θi), taken to be uniform

P [Θi|dt] ∝ P [dt|Θi] ≡ LΘ(dt)



Maximum Likelihood Mapmaking
• Maximizing the likelihood ofΘi is simple since the log-likelihood

is quadratic.

• Differentiating the argument of the exponential with respect toΘi

and setting to zero leads immediately to the estimator

Θ̂i = CN,ijPjtC
−1
d,tt′dt′ ,

whereCN ≡ (PtrC−1
d P)−1 is the covariance of the estimator

• Given the large dimension of the time ordered data, direct matrix
manipulation is unfeasible. A key simplifying assumption is the
stationarity of the noise, thatCd,tt′ depends only ont− t′

(temporal statistical homogeneity)



Foregrounds
• Maximum likelihood mapmaking can be applied to the time

streams of multiple observations frequenciesNν and hence obtain
multiple maps

• A cleaned CMB map can be obtained by modeling the maps as

Θ̂ν
i = AνiΘi + nνi + f νi

whereAνi = 1 if all the maps are at the same resolution (otherwise,
embed the beam as in the pointing matrix;f νi is the noise
contributed by the foregrounds

• Again, a map making problem. Given a covariance matrix for
foregrounds noise (a prior from other data), same solution.
Alternately, can derive weights from stats of the recovered maps

• 5 foregrounds: synchrotron, free-free, radio pt sources, at low
frequencies and dust and IR pt sources at high frequencies.



Power Spectrum
• The next step in the chain of inference is the power spectrum

extraction. Here the correlation between pixels is modelled
through the power spectrum

CS,ij ≡ 〈ΘiΘj〉 =
∑
`

∆2
T,`W`,ij

• HereW`, the window function, is derived by writing down the
expansion ofΘ(n̂) in harmonic space, including smoothing by the
beam and pixelization

• For example in the simple case of a gaussian beam of widthσ it is
proportional to the Legendre polynomialP`(n̂i · n̂j) for the pixel
separation multiplied byb2` ∝ e−`(`+1)σ2



Band Powers
• In principle the underlying theory to extract from maximum

likelihood is the power spectrum at every`

• However with a finite patch of sky, it is not possible to extract
multipoles separated by∆` < 2π/L whereL is the dimension of
the survey

• So consider instead a theory parameterization of∆2
T,` constant in

bands of∆` chosen to match the survey forming a set of band
powersBa

• The likelihood of the bandpowers given the pixelized data is

LB(Θi) =
1

(2π)Np/2
√

detCΘ

exp

(
−1

2
ΘiC

−1
Θ,ijΘj

)
whereCΘ = CS + CN andNp is the number of pixels in the map.



Band Power Esitmation
• As before,LB is Gaussian in the anisotropiesΘi, but in this case

Θi arenot the parameters to be determined; the theoretical
parameters are theBa, upon which the covariance matrix depends.

• The likelihood function is not Gaussian in the parameters, and
there is no simple, analytic way to find the maximum likelihood
bandpowers

• Iterative approach to maximizing the likelihood: take a trial point
B

(0)
a and improve estimate based a Newton-Rhapson approach to

finding zeros

B̂a = B̂(0)
a + F̂−1

B,ab

∂ lnLB
∂Bb

= B̂(0)
a +

1

2
F̂−1
B,ab

(
ΘiC

−1
Θ,ij

∂CΘ,jk

∂Bb

C−1
Θ,klΘl − C−1

Θ,ij

∂CΘ,ji

∂Bb

)
,



Fisher Matrix
• The expectation value of the local curvature is the Fisher matrix

FB,ab ≡
〈
−∂

2 lnLB
∂Ba∂Bb

〉
=

1

2
C−1

Θ,ij

∂CΘ,jk

∂Ba

C−1
Θ,kl

∂CΘ,li

∂Bb

.

• This is a general statement: for a gaussian distribution the Fisher
matrix

Fab =
1

2
Tr[C−1C,aC

−1C,b]

• Kramer-Rao identity says that the best possible covariance matrix
on a set of parameters isC = F−1

• Thus, the iteration returns an estimate of the covariance matrix of
the estimatorsCB



Cosmological Parameters
• The probability distribution of the bandpowers given the

cosmological parametersci is not Gaussian but it is often an
adequate approximation

Lc(B̂a) ≈
1

(2π)Nc/2
√

detCB

exp

[
−1

2
(B̂a −Ba)C

−1
B,ab(B̂b −Bb)

]
• Grid based approaches evaluate the likelihood in cosmological

parameter space and maximize

• Faster approaches monte carlo the exploration of the likelihood
space intelligently (“Monte Carlo Markov Chains”)

• Since the number of cosmological parameters in the working
model isNc ∼ 10 this represents a final radical compression of
information in the original timestream which recall has up to
Nt ∼ 1010 data points.



MCMC
• Monte Carlo Markov Chain: a random walk in parameter space

• Start with a set of cosmological parameterscm, compute likelihood

• Take a random step in parameter space tocm+1 of size drawn from
a multivariate Gaussian (a guess at the parameter covariance
matrix)Cc (e.g. from the crude Fisher approximation. Compute
likelihood.

• Draw a random number between 0,1 and if the likelihood ratio
exceeds this value take the step (add to Markov chain); if not then
do not take the step (add the original point to the Markov chain).
Goto 3.



MCMC
• With a complete chain ofNM elements, compute the mean of the

chain and its variance

c̄i =
1

NM

NM∑
m=1

cmi

σ2(ci) =
1

NM − 1

NM∑
m=1

(cmi − c̄i)
2

• Trick is in assuring burn in (not sensitive to initial point), step size,
and convergence

• Usually requires running multiple chains. Typically tens of
thousands of elements per chain.



Radical Compression
• Started with time ordered data∼ 1010 numbers for a satellite

experiment

• Compressed to a map assuming a CMB spectrum (and time
independent fluctuations)∼ 107 numbers

• Compressed to a power spectrum (Gaussian statistics) independent
of m (statistical isotropy)∼ 103 numbers

• Compressed to cosmological parameters (a cosmological model)
∼ 103

• A factor of109 reduction in the representation. Nature is very
efficient.



Parameter Forecasts
• The Fisher matrix of the cosmological parameters becomes

Fc,ij =
∂Ba

∂ci
C−1
B,ab

∂Bb

∂cj
.

which is the error propagation formula discussed above

• The Fisher matrix can be more accurately defined for an
experiment by taking the pixel covariance and using the general
formula for the Fisher matrix of gaussian data

• Corrects for edge effects with the approximate effect of

Fij =
∑
`

(2`+ 1)fsky

2(CΘΘ
` + CNN

` )2

∂CΘΘ
`

∂ci

∂CΘΘ
`

∂cj

where the sky fractionfsky quantifies the loss of independent
modes due to the sky cut
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Polarization



Stokes Parameters
• Polarization state of radiation in direction̂n described by the

intensity matrix
〈
Ei(n̂)E∗

j (n̂)
〉
, whereE is the electric field vector

and the brackets denote time averaging.

• As a hermitian matrix, it can be decomposed into the Pauli basis

P = C
〈
E(n̂)E†(n̂)

〉
= Θ(n̂)σ0 +Q(n̂) σ3 + U(n̂) σ1 + V (n̂) σ2 ,

where

σ0 =

(
1 0

0 1

)
σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0

0 −1

)

• Stokes parameters recovered asTr(σiP)/2



Monochromatic Wave
• A pure monochromatic wave is fully polarized

E = E1e1 + E2e2

where

E1,2 = Re[A1,2e
iφ1,2ei(k·x−ωt)]

• ImpliesΘ2 = Q2 + U2 + V 2

• However a finite bandwidth leads to a sum of components

E =
∑
α

Eα



Partial Polarization
• A signal of finite bandwidth is only partially polarized since the

time averaging will destroy the correlation between the frequency
components 〈

EE†〉 =
∑
α

〈
EαEα†〉

• Stokes parameters then add

Θ =
∑
α

Θα, Q =
∑
α

Qα, U =
∑
α

Uα, V =
∑
α

V α

• Result isΘ2 > Q2 + U2 + V 2 (sinceQ,U, V have either sign) or
partially polarized radiation - like a mixed state in quantum
mechanics)



Linear Polarization
• Q ∝ 〈E1E

∗
1〉 − 〈E2E

∗
2〉, U ∝ 〈E1E

∗
2〉+ 〈E2E

∗
1〉.

• Counterclockwise rotation of axes byθ = 45◦

E1 = (E ′
1 − E ′

2)/
√

2 , E2 = (E ′
1 + E ′

2)/
√

2

• U ∝ 〈E ′
1E

′∗
1 〉 − 〈E ′

2E
′∗
2 〉, difference of intensities at45◦ orQ′

• More generally,P transforms as a tensor under rotations and

Q′ = cos(2θ)Q+ sin(2θ)U

U ′ = − sin(2θ)Q+ cos(2θ)U

• or

Q′ ± iU ′ = e∓2iθ[Q± iU ]

acquires a phase under rotation and is a spin±2 object



Coordinate Independent Representation
• Two directions: orientation of polarization and change in

amplitude, i.e.Q andU in the basis of the Fourier wavevector
(pointing with angleφl) for small sections of sky are calledE and
B components

E(l)± iB(l) = −
∫
dn̂[Q′(n̂)± iU ′(n̂)]e−il·n̂

= −e∓2iφl

∫
dn̂[Q(n̂)± iU(n̂)]e−il·n̂

• For theB-mode to not vanish, the polarization must point in a
direction not related to the wavevector - not possible for density
fluctuations in linear theory

• Generalize to all-sky: plane waves are eigenmodes of the Laplace
operator on the tensorP.



Spin Harmonics
• Laplace Eigenfunctions

∇2
±2Y`m[σ3 ∓ iσ1] = −[l(l + 1)− 4]±2Y`m[σ3 ∓ iσ1]

• Spins spherical harmonics: orthogonal and complete∫
dn̂sY

∗
`m(n̂)sY`m(n̂) = δ``′δmm′∑

`m

sY
∗
`m(n̂)sY`m(n̂′) = δ(φ− φ′)δ(cos θ − cos θ′)

where the ordinary spherical harmonics areY`m = 0Y`m

• Given in terms of the rotation matrix

sY`m(βα) = (−1)m
√

2`+ 1

4π
D`
−ms(αβ0)



Statistical Representation
• All-sky decomposition

[Q(n̂)± iU(n̂)] =
∑
`m

[E`m ± iB`m]±2Y`m(n̂)

• Power spectra

〈E∗
`mE`m〉 = δ``′δmm′CEE

`

〈B∗
`mB`m〉 = δ``′δmm′CBB

`

• Cross correlation

〈E∗
`mE`m〉 = δ``′δmm′CΘE

`

others vanish if parity is conserved



Thomson Scattering
• Differential cross section

dσ

dΩ
=

3

8π
|Ê′ · Ê|2σT ,

whereσT = 8πα2/3me is the Thomson cross section,Ê′ andÊ

denote the incoming and outgoing directions of the electric field or
polarization vector.

• Summed over angle and incoming polarization∑
i=1,2

∫
dn̂′

dσ

dΩ
= σT



Polarization Generation
• Heuristic: incoming radiation shakes an electron in direction of

electric field vector̂E′

• Radiates photon with polarization also in directionÊ′

• But photon cannot be longitudinally polarized so that scattering
into 90◦ can only pass one polarization

• Linearly polarized radiation like polarization by reflection

• Unlike reflection of sunlight, incoming radiation is nearly isotropic

• Missing linear polarization supplied by scattering from direction
orthogonal to original incoming direction

• Only quadrupole anisotropy generates polarization by Thomson
scattering



Acoustic Polarization
• Break down of tight-coupling leads to quadrupole anisotropy of

πγ ≈
k

τ̇
vγ

• ScalingkD = (τ̇ /η∗)
1/2 → τ̇ = k2

Dη∗

• Know: kDs∗ ≈ kDη∗ ≈ 10

• So:

πγ ≈
k

kD

1

10
vγ

∆P ≈
`

`D

1

10
∆T



Acoustic Polarization
• Gradient of velocity is along direction of wavevector, so

polarization is pureE-mode

• Velocity is90◦ out of phase with temperature – turning points of
oscillator are zero points of velocity:

Θ + Ψ ∝ cos(ks); vγ ∝ sin(ks)

• Polarization peaks are at troughs of temperature power



Cross Correlation
• Cross correlation of temperature and polarization

(Θ + Ψ)(vγ) ∝ cos(ks) sin(ks) ∝ sin(2ks)

• Oscillation at twice the frequency

• Correlation: radial or tangential around hot spots

• Partial correlation: easier to measure if polarization data is noisy,
harder to measure if polarization data is highS/N or if bands do
not resolve oscillations

• Good check for systematics and foregrounds

• Comparison of temperature and polarization is proof against
features in initial conditions mimicking acoustic features
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Formal CMB Theory & CMBFAST



Boltzmann Equation
• CMB radiation is generally described by the phase space

distribution function for each polarization statefa(x,q, η), where
x is the comoving position andq is the photon momentum

• Boltzmann equation describes the evolution of the distribution
function under gravity and collisions

• Low order moments of the Boltzmann equation are simply the
covariant conservation equations

• Higher moments provide the closure condition to the conservation
law (specification of stress tensor) and the CMB observable – fine
scale anisotropy

• Higher moments mainly describe the simple geometry of source
projection



Liouville Equation
• In absence of scattering, the phase space distribution of photons is

conserved along the propagation path

• Rewrite variables in terms of the photon propagation direction
q = qn̂, sofa(x, n̂, q, η) and

d

dη
fa(x, n̂, q, η) = 0

=

(
∂

∂η
+
dx

dη
· ∂
∂x

+
dn̂

dη
· ∂
∂n̂

+
dq

dη
· ∂
∂q

)
fa

• For simplicity, assume spatially flat universeK = 0 then
dn̂/dη = 0 anddx = n̂dη

ḟa + n̂ · ∇fa + q̇
∂

∂q
fa = 0



Correspondence to Einstein Eqn.
• Geodesic equation gives the redshifting term

q̇

q
= − ȧ

a
− 1

2
ninjḢTij − ḢL + niḂi − n̂ · ∇A

• which is incorporated in the conservation and gauge
transformation equations

• Stress energy tensor involves integrals over the distribution
function the two polarization states

T µν =

∫
d3q

(2π)3

qµqν

E
(fa + fb)

• Components are simply the low order angular moments of the
distribution function



Angular Moments
• Define the angularly dependent temperature perturbation

Θ(x, n̂, η) =
1

4ργ

∫
q3dq

2π2
(fa + fb)− 1

and likewise for the linear polarization statesQ andU

• Decompose into normal modes: plane waves for spatial part and
spherical harmonics for angular part

Gm
` (k,x, n̂) ≡ (−i)`

√
4π

2`+ 1
Y m
` (n̂) exp(ik · x)

±2G
m
` (k,x, n̂) ≡ (−i)`

√
4π

2`+ 1
±2Y

m
` (n̂) exp(ik · x)

• In a spatially curved universe generalize the plane wave part



Normal Modes
• Temperature and polarization fields

Θ(x, n̂, η) =

∫
d3k

(2π)3

∑
`m

Θ
(m)
` Gm

`

[Q± iU ](x, n̂, η) =

∫
d3k

(2π)3

∑
`m

[E
(m)
` ± iB

(m)
` ]±2G

m
`

• For eachk mode, work in coordinates wherek ‖ z and som = 0

represents scalar modes,m = ±1 vector modes,m = ±2 tensor
modes,|m| > 2 vanishes. Since modes add incoherently and
Q± iU is invariant up to a phase, rotation back to a fixed
coordinate system is trivial.



Scalar, Vector, Tensor
• Normalization of modes is chosen so that the lowest angular mode

for scalars, vectors and tensors are normalized in the same way as
the mode function

G0
0 = Q(0) G0

1 = niQ
(0)
i G0

2 ∝ ninjQ
(0)
ij

G±1
1 = niQ

(±1)
i G±1

2 ∝ ninjQ
(±1)
ij

G±2
2 = ninjQ

(±2)
ij

where recall

Q(0) = exp(ik · x)

Q
(±1)
i =

−i√
2
(ê1 ± iê2)iexp(ik · x)

Q
(±2)
ij = −

√
3

8
(ê1 ± iê2)i(ê1 ± iê2)jexp(ik · x)



Geometrical Projection
• Main content of Liouville equation is purely geometrical and

describes the projection of inhomogeneities into anisotropies

• Spatial gradient term hits plane wave:

n̂ · ∇eik·x = in̂ · keik·x = i

√
4π

3
kY 0

1 (n̂)eik·x

• Dipole term adds to angular dependence through the addition of
angular momentum√

4π

3
Y 0

1 Y
m
` =

κm`√
(2`+ 1)(2`− 1)

Y m
`−1 +

κm`+1√
(2`+ 1)(2`+ 3)

Y m
`+1

whereκm` =
√
`2 −m2 is given by Clebsch-Gordon coefficients.



Temperature Hierarchy
• Absorb recoupling of angular momentum into evolution equation

for normal modes

Θ̇
(m)
` = k

[
κm`

2`+ 1
Θ

(m)
`−1 −

κm`+1

2`+ 3
Θ

(m)
`+1

]
− τ̇Θ

(m)
` + S

(m)
`

whereS(m)
` are the gravitational (and later scattering sources;

added scattering suppression of anisotropy)

• An originally isotropic` = 0 temperature perturbation will
eventually become a high order anisotropy by “free streaming” or
simple projection

• Original CMB codes solved the full hierarchy equations out to the
` of interest.



Integral Solution
• Hierarchy equation simply represents geometric projection,

exactly as we have seen before in the projection of temperature
perturbations on the last scattering surface

• In general, the solution describes the decomposition of the source
S

(m)
` with its local angular dependence as seen at a distance

x = Dn̂.

• Proceed by decomposing the angular dependence of the plane
wave

eik·x =
∑
`

(−i)`
√

4π(2`+ 1)j`(kD)Y 0
` (n̂)

• Recouple to the local angular dependence ofGm
`

Gm
`s =

∑
`

(−i)`
√

4π(2`+ 1)α
(m)
`s`

(kD)Y m
` (n̂)



Integral Solution
• Projection kernels:

`s = 0, m = 0 α
(0)
0` ≡ j`

`s = 1, m = 0 α
(0)
1` ≡ j′`

• Integral solution:

Θ
(m)
` (k, η0)

2`+ 1
=

∫ η0

0

dηe−τ
∑
`s

S
(m)
`s

α
(m)
`s`

(k(η0 − η))

• Power spectrum:

C` =
2

π

∫
dk

k

∑
m

k3〈Θ(m)∗
` Θ

(m)
` 〉

(2`+ 1)2

• Solving forC` reduces to solving for the behavior of a handful of
sources



Polarization Hiearchy
• In the same way, the coupling of a gradient or dipole angular

momentum to the spin harmonics leads to the polarization
hiearchy:

Ė
(m)
` = k

[
2κ

m
`

2`− 1
E

(m)
`−1 −

2m

`(`+ 1)
B

(m)
` − 2κ

m
`+1

2`+ 3

]
− τ̇E

(m)
` + E (m)

`

Ḃ
(m)
` = k

[
2κ

m
`

2`− 1
B

(m)
`−1 +

2m

`(`+ 1)
B

(m)
` − 2κ

m
`+1

2`+ 3

]
− τ̇E

(m)
` + B(m)

`

where2κ
m
` =

√
(`2 −m2)(`2 − 4)/`2 is given by the

Clebsch-Gordon coefficients andE , B are the sources (scattering
only).

• Note that for vectors and tensors|m| > 0 andB modes may be

generated fromE modes by projection. CosmologicallyB(m)
` = 0



Polarization Integral Solution
• Again, we can recouple the plane wave angular momentum of the

source inhomogeneity to its local angular dependence directly

E
(m)
` (k, η0)

2`+ 1
=

∫ η0

0

dηe−τE (m)
`s

ε
(m)
`s`

(k(η0 − η))

B
(m)
` (k, η0)

2`+ 1
=

∫ η0

0

dηe−τE (m)
`s

β
(m)
`s`

(k(η0 − η))

• The only source to the polarization is from the quadrupole
anisotropy so we only need̀s = 2, e.g. for scalars

ε
(0)
2` (x) =

√
3

8

(`+ 2)!

(`− 2)!

j`(x)

x2
β

(0)
2` = 0



Truncated Hierarchy
• CMBFast uses the integral solution and relies on a fastj` generator

• However sources are not external to system and are defined
through the Boltzmann hierarchy itself

• Solution: recall that we used this technique in the tight coupling
regime by applying a closure condition from tight coupling

• CMBFast extends this idea by solving a truncated hierarchy of
equations, e.g. out tò= 25 with non-reflecting boundary
conditions



Thomson Collision Term
• Full Boltzmann equation

d

dη
fa,b = C[fa, fb]

• Collision term describes the scattering out of and into a phase
space element

• Thomson collision based on differential cross section

dσ

dΩ
=

3

8π
|Ê′ · Ê|2σT ,

whereÊ′ andÊ denote the incoming and outgoing directions of
the electric field or polarization vector.



Scattering Calculation
• Start in the electron rest frame and in a coordinate system fixed by

the scattering plane, spanned by incoming and outgoing directional
vectors−n̂′ · n̂ = cos β, whereβ is the scattering angle

• Θ‖: in-plane polarization state;Θ⊥: ⊥-plane polarization state

• Transfer probability (constant set byτ̇ )

Θ‖ ∝ cos2 βΘ′
‖, Θ⊥ ∝ Θ′

⊥

• and with the45◦ axes as

Ê1 =
1√
2
(Ê‖ + Ê⊥), Ê2 =

1√
2
(Ê‖ − Ê⊥)



Stokes Parameters
• Define the temperature in this basis

Θ1 ∝ |Ê1 · Ê1|2Θ′
1 + |Ê1 · Ê2|2Θ′

2

∝ 1

4
(cos β + 1)2Θ′

1 +
1

4
(cos β − 1)2Θ′

2

Θ2 ∝ |Ê2 · Ê2|2Θ′
2 + |Ê2 · Ê1|2Θ′

1

∝ 1

4
(cos β + 1)2Θ′

2 +
1

4
(cos β − 1)2Θ′

1

or Θ1 −Θ2 ∝ cos β(Θ′
1 −Θ′

2)

• DefineΘ,Q, U in the scattering coordinates

Θ ≡ 1

2
(Θ‖ + Θ⊥), Q ≡ 1

2
(Θ‖ −Θ⊥), U ≡ 1

2
(Θ1 −Θ2)



Scattering Matrix
• Transfer of Stokes states, e.g.

Θ =
1

2
(Θ‖ + Θ⊥) ∝ 1

4
(cos2 β + 1)Θ′ +

1

4
(cos2 β − 1)Q′

• Transfer matrix of Stokes stateT ≡ (Θ,Q+ iU ,Q− iU )

T ∝ S(β)T′

S(β) =
3

4


cos2 β + 1 −1

2
sin2 β −1

2
sin2 β

−1
2
sin2 β 1

2
(cos β + 1)2 1

2
(cos β − 1)2

−1
2
sin2 β 1

2
(cos β − 1)2 1

2
(cos β + 1)2


normalization factor of 3 is set by photon conservation in scattering



Scattering Matrix
• Transform to a fixed basis, by a rotation of the incoming and

outgoing statesT = R(ψ)T where

R(ψ) =


1 0 0

0 e−2iψ 0

0 0 e2iψ


giving the scattering matrix

R(−γ)S(β)R(α) =

1

2

r
4π

5

0BB@
Y 0

2 (β, α) + 2
√

5Y 0
0 (β, α) −

q
3
2
Y −2

2 (β, α) −
q

3
2
Y 2

2 (β, α)

−
√

6 2Y
0
2 (β, α)e2iγ 3 2Y

−2
2 (β, α)e2iγ 3 2Y

2
2 (β, α)e2iγ

−
√

6−2Y
0
2 (β, α)e−2iγ 3−2Y

−2
2 (β, α)e−2iγ 3−2Y

2
2 (β, α)e−2iγ

1CCA



Addition Theorem for Spin Harmonics
• Spin harmonics are related to rotation matrices as

sY
m
` (θ, φ) =

√
2`+ 1

4π
D`
−ms(φ, θ, 0)

Note: for explicit evaluation sign convention differs from usual
(e.g. Jackson) by(−1)m

• Multiplication of rotations∑
m′′

D`
mm′′(α2, β2, γ2)D`

m′′m(α1, β1, γ1) = D`
mm′(α, β, γ)

• Implies

∑
m

s1
Y m∗
` (θ′, φ′) s2

Y m
` (θ, φ) = (−1)s1−s2

√
2`+ 1

4π s2
Y −s1
` (β, α)eis2γ



Sky Basis
• Scattering into the state (rest frame)

Cin[T] = τ̇

∫
dn̂′

4π
R(−γ)S(β)R(α)T(n̂′) ,

= τ̇

∫
dn̂′

4π
(Θ′, 0, 0) +

1

10
τ̇

∫
dn̂′

2∑
m=−2

P(m)(n̂, n̂′)T(n̂′) .

where the quadrupole coupling term isP(m)(n̂, n̂′) =

0BB@
Y m∗

2 (n̂′) Y m
2 (n̂) −

q
3
2 2Y

m∗
2 (n̂′) Y m

2 (n̂) −
q

3
2 −2Y

m∗
2 (n̂′) Y m

2 (n̂)

−
√

6Y m∗
2 (n̂′) 2Y

m
2 (n̂) 3 2Y

m∗
2 (n̂′) 2Y

m
2 (n̂) 3−2Y

m∗
2 (n̂′) 2Y

m
2 (n̂)

−
√

6Y m∗
2 (n̂′)−2Y

m
2 (n̂) 3 2Y

m∗
2 (n̂′)−2Y

m
2 (n̂) 3−2Y

m∗
2 (n̂′)−2Y

m
2 (n̂)

1CCA ,

expression uses angle addition relation above. We call this term
CQ.



Scattering Matrix
• Full scattering matrix involves difference of scattering into and out

of state

C[T] = Cin[T]− Cout[T]

• In the electron rest frame

C[T] = τ̇

∫
dn̂′

4π
(Θ′, 0, 0)− τ̇T + CQ[T]

which describes isotropization in the rest frame. All moments have
e−τ suppression except for isotropic temperatureΘ0.
Transformation into the background frame simply induces a dipole
term

C[T] = τ̇

(
n̂ · vb +

∫
dn̂′

4π
Θ′, 0, 0

)
− τ̇T + CQ[T]



Source Terms
• Temperature source termsS(m)

l (rows±|m|; flat assumption
τ̇Θ

(0)
0 − Ḣ

(0)
L τ̇ v

(0)
b + Ḃ(0) τ̇P (0) − 2

3
Ḣ

(0)
T

0 τ̇ v
(±1)
b + Ḃ(±1) τ̇P (±1) −

√
3

3
Ḣ

(±1)
T

0 0 τ̇P (±2) − Ḣ
(±2)
T


where

P (m) ≡ 1

10
(Θ

(m)
2 −

√
6E

(m)
2 )

• Polarization source term

E (m)
` = −τ̇

√
6P (m)δ`,2

B(m)
` = 0
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Secondaries



Reionization
• Ionization depth during reionization

τ(z) =
∫

dηneσT a =
∫

d ln a
neσT

H(a)
∝ (Ωbh

2)(Ωmh2)−1/2(1 + z)3/2

=
(

Ωbh
2

0.02

)(
Ωmh2

0.15

)−1/2(1 + z

61

)3/2

• Quasars sayzri ≥ 7 soτ > 0.04

• During reionization, cosmic quadrupole of∼ 30µK from the
Sachs-Wolfe effect scatters intoE-polarization

• Few percent optical depth leads to fraction of aµK signal

• Peaks at horizon scale at recombination: quadrupole source
j2(kD∗) maximal atkD∗ ≈ kη ≈ 2



Breaking degeneracies
• First objects, breaking degeneracy of initial amplitude vs optical

depth in the peak heights

C` ∝ e−2τ

only below horizon scale at reionization

• Breaks degeneracies in angular diameter distance by removing an
ambiguity for ISW-dark energy measure, helps inΩDE − wDE
plane



Gravitational Wave
• Gravitational waves produce a quadrupolar distortion in the

temperature of the CMB like effect on a ring of test particles

• Like ISW effect, source is a metric perturbation with time
dependent amplitude

• After recombination, is a source of observable temperature
anisotropy – but is therefore confined to low order multipoles

• Generated during inflation by quandum fluctuations



Gravitational Wave Polarization
• In the tight coupling regime, quadrupole anisotropy suppressed by

scattering

πγ ≈
ḣ

τ̇

• Since gravitational waves oscillate and decay at horizon crossing,
the polarization peaks at the horizon scale at recombination not the
damping scale

• More distinct signature in theB-mode polarization since
symmetry of plane wave is broken by the transverse nature of
gravity wave polarization



Secondary Anisotropy
• CMB photons traverse the large-scale structure of the universe

from z = 1000 to the present.

• With the nearly scale-invariant adiabatic fluctuations observed in
the CMB, structures form from the bottom up, i.e. small scales
first, a.k.a. hierarchical structure formation.

• First objects reionize the universe betweenz ∼ 7− 30

• Main sources of secondary anisotropy

• Gravitational: Integrated Sachs-Wolfe effect (gravitational
redshift) and gravitational lensing

• Scattering: peak suppression, large-angle polarization, Doppler
effect(s), inverse Compton scattering



Transfer Function
• Transfer functiontransfers the initial Newtonian curvature to its

value today (linear response theory)

T (k) =
Φ(k, a = 1)

Φ(k, ainit)

Φ(knorm, ainit)

Φ(knorm, a = 1)

• Conservation of Bardeen curvature: Newtonian curvature is a
constantwhenstress perturbations are negligible: above the
horizon during radiation and dark energy domination, on all scales
during matter domination

• When stress fluctuations dominate, perturbations are stabilized by
theJeans mechanism

• Hybrid Poisson equation: Newtonian curvature, comoving density
perturbation∆ ≡ (δρ/ρ)com impliesΦ decays

(k2 − 3K)Φ = 4πGρ∆ ∼ η−2∆



Transfer Function
• Matter-radiation example: Jeans scale is horizon scale and∆

freezes into its value at horizon crossing∆H ≈ Φinit

• Freezingof ∆ stops atηeq

Φ ∼ (kηeq)
−2∆H ∼ (kηeq)

−2Φinit

• Conventionallyknorm is chosen as a scale between the horizon at
matter radiation equality and dark energy domination.

• Small correction since growth with a smooth radiation component
is logarithmic not frozen

• Run CMBfast to get transfer function or use fits



Transfer Function
• Transfer function has ak−2 fall-off beyondkeq ∼ η−1

eq

1

0.1

0.0001 0.001 0.01 0.1 1
0.01

T(
k)

k (h–1 Mpc)

wiggles

k–2

• Additional baryon wiggles are due to acoustic oscillations at
recombination – an interesting means of measuring distances



Growth Function
• Same physics applies to the dark energy dominated universe

• Under the dark energy sound horizon, dark energy density frozen.
Potential decays at the same rate for all scales

g(a) =
Φ(knorm, a)

Φ(knorm, ainit)

• Pressuregrowth suppression: δ ≡ δρm/ρm ∝ ag

d2g

d ln a2
+

[
5

2
− 3

2
w(z)ΩDE(z)

]
dg

d ln a
+

3

2
[1− w(z)]ΩDE(z)g = 0 ,

wherew ≡ pDE/ρDE andΩDE ≡ ρDE/(ρm + ρDE) with initial
conditionsg = 1, dg/d ln a = 0

• As ΩDE → 0 g =const. is a solution. The other solution is the
decaying mode, elimated by initial conditions



ISW effect
• Potential decay leads to gravitational redshifts through the

integrated Sachs-Wolfe effect

• Intrinsically a large effect since2∆Φ = 6Ψinit/3

• But net redshift is integral along along line of sight

Θ`(k, η0)

2`+ 1
=

∫ η0

0

dηe−τ [2Φ̇(k, η)]j`(k(η0 − η))

= 2Φ(k, ηMD)

∫ η0

0

dηe−τ ġ(D)j`(kD)

• On small scales wherek � ġ/g, can pull source out of the integral∫ η0

0

dηġ(D)j`(kD) ≈ ġ(D = `/k)
1

k

√
π

2`

evaluated at peak, where we have used
∫
dxj`(x) =

√
π/2`



ISW effect
• Power spectrum

C` =
2

π

∫
dk

k

k3〈Θ∗
`(k, η0)Θ`(k, η0)〉
(2`+ 1)2

=
2π2

l3

∫
dηDġ2(η)∆2

Φ(`/D, ηMD)

• Or l2Cl/2π ∝ 1/` for scale invariant potential. This is the Limber
equation in spherical coordinates. Projection of3D power retains
only the transverse piece. For a general dark energy model, add in
the scale dependence of growth rate on large scales.

• Cancellation of redshifts and blueshifts as the photon traverses
many crests and troughs of a small scale fluctuation during decay.
Enhancement of thè< 10 multipoles. Difficult to extract from
cosmic variance and galaxy. Current ideas: cross correlation with
other tracers of structure



Gravitational Lensing
• Lensing is a surface brightness conservingremappingof source to

image planes by the gradient of theprojected potential

φ(n̂) = 2

∫ η0

η∗

dη
(D∗ −D)

DD∗
Φ(Dn̂, η) .

such that the fields are remapped as

x(n̂) → x(n̂ +∇φ) ,

wherex ∈ {Θ,Q, U} temperature and polarization.

• Taylor expansion leads toproductof fields and Fourier
mode-coupling



Flat-sky Treatment
• Talyor expand

Θ(n̂) = Θ̃(n̂ +∇φ)

= Θ̃(n̂) +∇iφ(n̂)∇iΘ̃(n̂) +
1

2
∇iφ(n̂)∇jφ(n̂)∇i∇jΘ̃(n̂) + . . .

• Fourier decomposition

φ(n̂) =

∫
d2l

(2π)2
φ(l)eil·n̂

Θ̃(n̂) =

∫
d2l

(2π)2
Θ̃(l)eil·n̂



Flat-sky Treatment
• Mode coupling of harmonics

Θ(l) =

∫
dn̂Θ(n̂)e−il·n̂

= Θ̃(l)−
∫

d2l1
(2π)2

Θ̃(l1)L(l, l1) ,

where

L(l, l1) = φ(l− l1) (l− l1) · l1

+
1

2

∫
d2l2
(2π)2

φ(l2)φ
∗(l2 + l1 − l) (l2 · l1)(l2 + l1 − l) · l1 .

• Represents a coupling of harmonics separated byL ≈ 60 peak of
deflection power



Power Spectrum
• Power spectra

〈Θ∗(l)Θ(l′)〉 = (2π)2δ(l− l′) CΘΘ
l ,

〈φ∗(l)φ(l′)〉 = (2π)2δ(l− l′) Cφφ
l ,

becomes

CΘΘ
l =

(
1− l2R

)
C̃ΘΘ
l +

∫
d2l1
(2π)2

C̃ΘΘ
|l−l1|C

φφ
l1

[(l− l1) · l1]2 ,

where

R =
1

4π

∫
dl

l
l4Cφφ

l . (3)



Smoothing Power Spectrum
• If C̃ΘΘ

l slowly varying then two term cancel

C̃ΘΘ
l

∫
d2l1
(2π)2

Cφφ
l (l · l1)2 ≈ l2RC̃ΘΘ

l .

• So lensing acts to smooth features in the power spectrum.
Smoothing kernel isL ∼ 60 the peak of deflection power spectrum

• Because acoustic feature appear on a scalelA ∼ 300, smoothing is
a subtle effect in the power spectrum.

• Lensing generates power below the damping scale which directly
reflect power in deflections on the same scale



Polarization Lensing
• Polarization field harmonics lensed similarly

[Q± iU ](n̂) = −
∫

d2l

(2π)2
[E ± iB](l)e±2iφlel·n̂

so that

[Q± iU ](n̂) = [Q̃± iŨ ](n̂ +∇φ)

≈ [Q̃± iŨ ](n̂) +∇iφ(n̂)∇i[Q̃± iŨ ](n̂)

+
1

2
∇iφ(n̂)∇jφ(n̂)∇i∇j[Q̃± iŨ ](n̂)



Polarization Power Spectra
• Carrying through the algebra

CEE
l =

(
1− l2R

)
C̃EE
l +

1

2

∫
d2l1
(2π)2

[(l− l1) · l1]2Cφφ
|l−l1|

× [(C̃EE
l1

+ C̃BB
l1

) + cos(4ϕl1)(C̃
EE
l1

− C̃BB
l1

)] ,

CBB
l =

(
1− l2R

)
C̃BB
l +

1

2

∫
d2l1
(2π)2

[(l− l1) · l1]2Cφφ
|l−l1|

× [(C̃EE
l1

+ C̃BB
l1

)− cos(4ϕl1)(C̃
EE
l1

− C̃BB
l1

)] ,

CΘE
l =

(
1− l2R

)
C̃ΘE
l +

∫
d2l1
(2π)2

[(l− l1) · l1]2Cφφ
|l−l1|

× C̃ΘE
l1

cos(2ϕl1) ,

• Lensing generatesB-modes out of the acoustic polaraization
E-modes contaminates gravitational wave signature if
Ei < 1016GeV.



Reconstruction from the CMB
• Correlation betweenFourier momentsreflectlensing potential

〈x(l)x′(l′)〉CMB = fα(l, l
′)φ(l + l′) ,

wherex ∈ temperature, polarization fieldsandfα is a fixed weight
that reflects geometry

• Each pair forms anoisy estimateof the potential or projected mass
- just like a pair of galaxy shears

• Minimum variance weightall pairs to form an estimator of the
lensing mass



Scattering Secondaries
• Optical depth during reionization

τ ≈ 0.066

(
Ωbh

2

0.02

)(
Ωmh

2

0.15

)−1/2(
1 + z

10

)3/2

• Anisotropy suppressed ase−τ . Integral solution

Θ`(k, η0)

2`+ 1
=

∫ η0

0

dηe−τS
(0)
0 j`(k(η0 − η)) + . . .

• Isotropic (lare scale) fluctuations not supressed since suppression
represents isotropization by scattering

• Quadrupole from the Sachs-Wolfe effect scatters into a large angle
polarization bump



Doppler Effects
• Velocity fields of10−3 and optical depths of10−2 would imply

large Doppler effect due to reionization

• Limber approximation says only fluctuations transverse to line of
sight survive

• In linear theory, transverse fluctuations have no line of sight
velocity and so Doppler effect is highly suppressed.

• Beyond linear theory: modulate the optical depth in the transverse
direction using density fluctuations or ionization fraction
fluctuations. Generate a modulated Doppler effect

• Linear fluctuations: Vishniac effect; Clusters: kinetic SZ effect;
ionization patches: inhomogeneous reionization effect



Thermal SZ Effect
• Thermal velocities also lead to Doppler effect but first order

contribution cancels because of random directions

• Residual effect is of orderv2τ ≈ Te/me τ and can reach a sizeable
level for clusters withTe ≈ 10keV.

• Raleigh-Jeans decrement and Wien enhancement described by
second order collision term in Boltzmann equation: Kompaneets
equation

• Clusters are rare objects so contribution to power spectrum
suppressed, but may have been detected by CBI/BIMA: extremely
sensitive to power spectrum normalizationσ8

• White noise on large-scales(l < 2000), turnover as cluster profile
is resolved


