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Set 1:
Radiative Transfer



Radiation Observables
• From an empiricist’s point of view there are 4 observables for

radiation

• Energy Flux

• Direction

• Frequency

• Polarization



Observables: Flux
.

detector
dA flux=energy/time/area

• Energy Flux

F =
dE

dtdA

• Units: erg s−1 cm−2

• Radiation can
hit detector from all angles



Observables: Surface Brightness
.

detector
dA

dΩ

surface brightness=
energy/time/area/solid-angle
(normal to detector)

• Direction: columate (e.g.
pinhole) in an acceptance
angle dΩ normal to
dA→ surface brightness

S(Ω) =
dE

dtdAdΩ

• Units: erg s−1 cm−2 sr−1



Observables: Specific intensity
.

detector

filter
bandwidth dν

dA

dΩ

specific intensity=
energy/time/area/solid-angle/
frequency
(normal to detector) 

• Frequency: filter
in a band of frequency
dν → specific intensity

Iν =
dE

dtdAdΩdν

which
is the fundamental quantity
for radiative processes

• Units:
erg s−1 cm−2 sr−1 Hz−1

• Astro-lingo: color is the difference between frequency bands



Observables: Polarization
.

detector

filter
bandwidth dν
polarizer

dA

dΩ

Stokes parameter=
energy/time/area/solid-angle/
frequency [sum+difference
in polarization states]

x2

x1

• Polarization:
filter in linear (1,2) [or 45
degrees rotated (1’,2’) or
circular (+,-) polarization
states] – Stokes parameters

Iν = Iν1 + Iν2

Qν = Iν1 − Iν2
Uν = Iν1′ − Iν2′
Vν = Iν+ − Iν−

• Units:
erg s−1 cm−2 sr−1 Hz−1



Radiative Transfer
.

r1
r2

∆Ω

• Radiative Transfer = change
in Iν as radiation propagates

• Simple example: how does
the specific intensity of sunlight
change as it propagates to the earth

• Energy conservation says

.

F (r1)4πr
2
1 = F (r2)4πr

2
2

F ∝ r−2



Radiative Transfer
• But the angular size subtended by the sun

∆Ω ∝ r−2

S =
F

∆Ω
= const

• And frequency doesn’t change so that

Iν = const



Radiative Transfer
• More generally: Iν changes due to
• Scattering (directional change)
• Doppler or Red-shift (frequency change)
• Absorption
• Emission

• If frequency changes due to redshift ν ∝ (1 + z)−1, photon
conservation implies

Iν/ν
3 = const

and so surface brightness S =
∫
Iνdν scales as the redshift of

(1 + z)−4 (cosmological surface brightness dimming, conversely
relativistic Doppler boost)

• Liouville’s theorem (conservation of Iν/ν3) in absence of
interactions; Boltzmann equation (radiative transfer equation)



Auxiliary Quantities
.

detector
dA

cos
θ dA

Iν

θ

• Specific intensity
is defined as energy flux per unit
area, per unit solid angle (normal
to the area), per unit frequency

• So specific flux
through a detector not oriented
normal to source has a lowered
cross section due to projection

.

Fν =

∫
Iν cos θdΩ, F =

∫
dνFν

if Iν is constant in angle, no net energy flux Fν = 0 = F



Auxiliary Quantities
.

dV=cdtdA
dA

dΩ

dE = Iν dt dA dΩ dν

• Angle averaged intensity

Jν =

∫
dΩ

4π
Iν

• Specific energy density:
start with energy detected

dE = IνdtdAdΩdν



Auxiliary Quantities
• Light travels at c,
dE is the energy in the volume

dV = cdtdA

dE =
Iν
c
dV dΩdν

• Specific energy density uν(Ω) ≡ Iν/c

• Energy density:

u =

∫
dν

∫
dΩIν/c =

∫
dν4πJν/c



Auxiliary Quantities
.

dA

cos
θ dA

Iν

θ

er
e3

• Momentum q = E/c êr

• Change in momentum per area:

dq

dtdA
=

1

c
Iν cos θdΩdνêr

• Pressure: the component
normal to surface ê3 · êr = cos θ

• If surface absorbs radiation

pν,abs =
1

c

∫
Fν cos θdΩ =

1

c

∫
Iν cos2 θdΩ



Auxiliary Quantities
• If surface reflects radiation

pν = 2pν,abs

=
2

c

∫
Iν cos2 θdΩ

• Equation of state of isotropic radiation Iν = Jν

pν =
2

c
Jν

∫
cos2 θdΩ =

4π

3c
Jν

p =
4π

3c

∫
dνJν =

1

3
u



Radiative Processes
• Spontaneous Emission: matter spontaneously emits a

photon/radiation

• Absorption: radiation absorbed by matter

• Stimulated Emission: passing radiation stimulates matter to emit
in the same frequency and direction. Stimulated emission is
mathematically the same as negative absorption - both proportional
to the incoming radiation

• Scattering: absorption followed immediately by emission

Coherent or elastic: emission at the same frequency

Isotropic: radiates equally in all directions

• All can be related to the matrix element for interaction -
interrelated by Einstein relations



Spontaneous Emission

Iν

jν

ds

dA

spontaneous emission

• Given a source isotropically radiating power into a band dν at a
rate

power

volume
= dνPν

• The amount of energy radiated per unit solid angle is

dEem = PνdνdV dt
dΩ

4π



Spontaneous Emission
• Generalize to a non-isotropically emitting source

Pν
4π
→ jν(Ω)

called the monocromatic emission coefficient

• Emission coefficient is alternately given per unit mass εν = 4πjν/ρ

where ρ is the mass density

dEem =
εν
4π
dνdmdt, dm = ρdV



Spontaneous Emission
• Effect on specific intensity across a path length ds

dIνdtdAdΩdν = dEem

= jνdV dΩdνdt

dIν = jνds, dV = dsdA

• Radiative transfer equation

dIν
ds

= jν , Iν(s) = Iν(s0) +

∫ s

s0

jν(s)ds



Absorption

Iν

αν

ds

dA

absorption

• Travelling through a material a fraction αν of the radiation is
absorbed per unit length

dIν
Iν

= −ανds

where αν is called the absorption coefficient



Absorption
• If material does not emit, solution is an exponential suppression

ln Iν = −
∫
dsαν + C

Iν(s) = Iν(s0)e
−

∫
ανds

• If αν < 0 (stimulated emission) then there is an exponential growth

Iν

αν<0

ds

dA

stimulated
emission



Optical Depth
• Useful to measure length in units of the typical path length to

absorption or interaction

L =
1

αν

so that the total path length in units of L becomes∫
ανds =

∫
ds

L
≡ τν , Iν(s) = Iν(s0)e

−τν

• Radiative transfer equation

dIν
ds

= −ανIν + jν

dIν
dτν

= −Iν + Sν , Sν ≡ jν/αν

where Sν is the source function.



Cross Section

Iν

αν

ds

dAσ

absorption

• Particle description of absorbers and light

• Absorption coefficient related to cross section for interaction

• Example: if medium is full of opaque disks each of area σ

• Given number density n, the covering fraction

dAabs = σdN = σndV = σndAds



Cross Section
• Radiative transfer equation

dAabs = σdN = σndV = σndAds

dIν
Iν

= −σnds

• So for a particle description of the absorption coefficient αν = nσ.



Cross Section
• Applies to a generalized version of σ (e.g. free electrons are point

particles but Thomson cross section is finite), cross section for
interaction, can depend on frequency.

• Mean free path of a photon L = 1/αν = 1/nσ, where n is the
spatial number density of interacting particles (c.f. consider
Thomson scattering in air)

• But the total distance travelled by a photon is typically much
greater than s = τL - an individual photon propagates through the
medium via scattering as a random walk



Scattering

Iν

jν

ds

dA

scattering

• Scattering can be viewed as absorption and emission where the
emission is directly proportional to the absorption

• Isotropic scattering: fraction ανIν absorbed and reradiated into 4π

jν = αν

∫
dΩ

4π
Iν = ανJν



Scattering
• Thus the source function Sν = jν/αν = Jν and at high optical

depth, the specific intensity approaches its angle averaged value Jν

• But despite this simple interpretation, the radiative transfer
equation is an integro-differential equation

dIν
dτν

= −Iν + Jν

dIν
dτν

= −Iν +

∫
dΩ

4π
Iν

• that depends on Iν not only in the observation direction but all
directions.



Random Walk

L

R

N
interactions

• Each of N steps has length L in a random direction ri = Lr̂i

R = r1 + r2 . . .+ rN

• Total distance

〈R2〉 = 〈R ·R〉 = 〈r1 · r1〉 . . .+ 〈rN · rN〉+ 2〈r1 · r2〉 . . .

• Uncorrelated cross terms 〈ri · rj〉 = δijL
2



Random Walk
• Average distance 〈R2〉 = NL2 or Rrms =

√
NL

• How many scatterings before escaping a distance R?
N = R2/L2 = τ 2ν for optically thick

• For optically thin τν � 1, a typical photon does not scatter and so
by definition a fraction τν will interact once, the rest zero and so
the average N = τν

• Quick estimate N = max(τν , τ
2
ν )



Multiple Processes
• Combining processes: differential elements add, e.g. total opacity

is sum of individual opacities – so highest opacity process is most
important for blocking Iν

• But given multiple frequency or spatial channels, energy escapes
in the channel with the lowest opacity

Example: a transition line vs continuum scattering – photons
will wander in frequency out of line and escape through lower
opacity scattering→ lines are often dark (sun)

• Scattering (ανs) and absorption (ανa)

dIν
ds

= −ανa(Iν − Sνa)− ανs(Iν − Jν)



Multiple Processes
• Collect terms

dIν
ds

= −(ανa + ανs)Iν + (ανaSνa + ανsJν)

• Combined source function and absorption

αν = ανa + ανs, Sν =
jν
αν

=
ανaSνa + ανsJν
ανa + ανs

• Mean free path L = 1/αν = 1/(ανa + ανs), typical length before
absorption or scattering. Fraction that ends in absorption

εν =
ανa

ανa + ανs
, 1− εν =

ανs
ανa + ανs

single scattering albedo

Sν = ενSνa + (1− εν)Jν



Formal Solution to Radiative Transfer

Iν(0) Iν(τν)

0 τν' τν

Sν

• Formal solution

Iν(τν) = Iν(0)e−τν +

∫ τν

0

dτ ′νSν(τ
′
ν)e
−(τν−τ ′ν)

• Interpretation: initial specific intensity Iν attenuated by absorption
and replaced by source function, attenuated by absorption from
foreground matter



Formal Solution to Radiative Transfer
• Special case Sν independent of τν take out of integral

Iν(τν) = Iν(0)e−τν + Sν

∫ τν

0

dτ ′νe
−(τν−τ ′ν)

= Iν(0)e−τν + Sν [1− e−τν ]

at low optical depth Iν unchanged, high optical depth Iν → Sν

• Integration is along the path of the radiation (direction dependent);
source function can depend on Iν in a different direction!



Fluid or Eddington Approximation
.

θ

ds=dz/cosθdz

Iν= + + ...

• Often a good approximation that radiation
is nearly isotropic: consider the fact
that scattering, absorption and emission
randomizes the direction of radiation

• Eddington (or fluid) approximation:
radiation has a dipole structure at most

.

• Plane parallel symmetry (e.g. star, Fourier
expansion): specific intensity depends
only on polar angle from normal to plane and vertical spatial
coordinate z. Path length ds = dz/ cos θ = dz/µ.



Fluid or Eddington Approximation
• Now approximate Iν as a linear function of µ (isotropic + dipole
→ energy density + bulk momentum density: Iν = a+ bµ

• [More generally: a Legendre polynomial expansion of Iν - e.g.
CMB typically keeps 25-50 moments to solve for Sν and then
3000-6000 moments to describe Iν ]

• Angular moments of specific intensity:

Jν =
1

2

∫ +1

−1
Iνdµ (energy density)

Hν =
1

2

∫ +1

−1
µIνdµ (momentum density)

Kν =
1

2

∫ +1

−1
µ2Iνdµ =

1

3
Jν (pressure)



Fluid or Eddington Approximation
• Radiative transfer equation:

dIν
ds

= µ
dIν
dz

= −αν(Iν − Sν)

µ
dIν
dτ

= −(Iν − Sν), dτ = ανdz

• Angular moments of specific intensity: zeroth moment 1
2

∫
dµ . . .

(for simplicity assume Sν is isotropic)

dHν

dτ
= −(Jν − Sν)

In fluid mechanics this is the Euler equation: local imbalance
generates a flow



Fluid or Eddington Approximation
• First moment 1

2

∫
µdµ . . .

dKν

dτ
=

1

3

dJν
dτ

= −Hν

This is the continuity equation, a flow generates a change in energy
density

• Take derivative and combine

1

3

d2Jν
dτ 2

= −dHν

dτ
= Jν − Sν

• Explicit equation for Jν(z) if Sν considered an external source

• Consider scattering + absorption/emission

1

3

d2Jν
dτ 2

= Jν − [ενSνa + (1− εν)Jν ]

= −εν(Sνa − Jν)



Fluid or Eddington Approximation
• Explicitly solve with two boundary conditions: e.g. Jν(0) = Jν0

and Jν(∞) = Sνa. If Sνa constant

Jν = Sνa + [Jν0 − Sνa]e−τ
√
3εν

• So relaxation to source at τ ∼ 1/
√

3ε - modified since part of the
optical depth is due to scattering


