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Set 1:
Radiative Transfer



Radiation Observables

e From an empiricist’s point of view there are 4 observables for
radiation

e Energy Flux
e Direction
e Frequency

e Polarization



Observables: Flux

e Energy Flux

_ dE
- dtdA

e Units: erg s~ cm

F
—2

e Radiation can
hit detector from all angles

\/

/ dA / flux=energy/time/area
detector




Observables: Surface Brightness

e Direction: columate (e.g.
pinhole) in an acceptance dQ
angle df) normal to
dA — surface brightness

dE surface brightness=
/ dA / energy/time/area/solid-angle

S(Q) =
( ) dt d A d Q (normal to detector)

detector

o Units: erg s~ cm™2 sr!



Observables: Specific intensity

e Frequency: filter

in a band of frequency dQ
dv — specific intensity
/ \ / / filter
. dE bandwidth dv
Y dtd AdQ)dy \ /

1 specific intensity=
Wthh / dA / elrjlergy/tirrfe/arefa}l//solid—angle/
1s the fundamental quantity dotoctor (el teecton

for radiative processes

e Units:
erg s cm 2 sr ! Hz !

e Astro-lingo: color is the difference between frequency bands



Observables: Polarization

e Polarization:
filter in linear (1,2) [or 45
degrees rotated (1°,2) or
circular (+,-) polarization
states] — Stokes parameters

I, =11+ 1,

Q, = L1 — I

Uy, = 11 — Ly

V=1l — I,
e Units:

erg s cm 2 sr ! Hz ™!

dQ

/ \\ / / i)i:ltrzwidth dv
////Xé/é//// polarizer &Xl

Stokes parameter=

/ dA / energy/time/area/solid-angle/

frequency [sum+difference
detector in polarization states]




Radiative Transfer

e Radiative Transfer = change
in [, as radiation propagates

e Simple example: how does
the specific intensity of sunlight
change as it propagates to the earth

e Energy conservation says

F(r1)47r7“% — F(r2)47rfr§

F ocr?



Radiative Transfer

e But the angular size subtended by the sun

AQ o r?
F
S = NO const

e And frequency doesn’t change so that

I, = const



Radiative Transfer

e More generally: [, changes due to
e Scattering (directional change)
e Doppler or Red-shift (frequency change)
e Absorption
e Emission

e If frequency changes due to redshift v oc (1 + z)~!, photon
conservation implies

I,/v® = const

and so surface brightness S = [ I, dv scales as the redshift of
(14 2z)~* (cosmological surface brightness dimming, conversely
relativistic Doppler boost)

e Liouville’s theorem (conservation of I, /v?) in absence of
interactions; Boltzmann equation (radiative transfer equation)



Auxiliary Quantities

e Specific intensity
1s defined as energy flux per unit
area, per unit solid angle (normal
to the area), per unit frequency

e So specific flux

through a detector not oriented

dA
normal to source has a lowered detector

cross section due to projection

F, = /L, cos0dS), F = /dyF,,

if [, 1s constant in angle, no net energy flux F,, =0 = F



Auxiliary Quantities

e Angle averaged intensity

df)
J,= [ —I1
/ 47

e Specific energy density:
start with energy detected

dE = I,dtd AdSddv

\/

D dV_ cdrdA

........

dE = IdtdAdev



Auxiliary Quantities

e Light travels at c,
d I 1s the energy in the volume

dV = cdtdA

dE; = £alValeu
c

e Specific energy density u,(2) = I, /c
e Energy density:

u:/du/dﬂl,,/c:/dwm]y/c



Auxiliary Quantities

e Momentum q = E/cé,

e Change in momentum per area:

d 1
ﬁ — EL/ cos 0dSddvre,

e Pressure: the component

normal to surface e3 - €, = cos 0 dA

e If surface absorbs radiation

1 1
Puabs = — / F,cosfdf) = — /]y cos? 0dS)
C

C



Auxiliary Quantities

e If surface reflects radiation

Pv — 2p1/,abs

2
— —/]V cos® 0dS)

C

e Equation of state of 1sotropic radiation /,, = J,

2 4
P, = —J,,/cos2 0dS) = —WJV
C 3¢

A 1
P=r5c | W= 34



Radiative Processes

e Spontaneous Emission: matter spontaneously emits a
photon/radiation

e Absorption: radiation absorbed by matter

e Stimulated Emission: passing radiation stimulates matter to emit
in the same frequency and direction. Stimulated emission 1s
mathematically the same as negative absorption - both proportional
to the incoming radiation

e Scattering: absorption followed immediately by emission

Coherent or elastic: emission at the same frequency
Isotropic: radiates equally 1n all directions

e All can be related to the matrix element for interaction -
interrelated by Einstein relations



Spontaneous Emission

Jv

T dA
V >
spontaneous emission
ds
e Given a source isotropically radiating power into a band dv at a
rate
ower
b = dvP,
volume

e The amount of energy radiated per unit solid angle 1s

AdE e = Pdedth@

4



Spontaneous Emission

e Generalize to a non-isotropically emitting source

P
V(0
47T—>J()

called the monocromatic emission coefficient

e Emission coefficient is alternately given per unit mass €, = 47j,/p
where p 1s the mass density

dE., = Ldvdmdt, dm = pdV
41



Spontaneous Emission

e Effect on specific intensity across a path length ds

dl,dtdAdQddv = dE,,,
= 4,dVdQdvdt
dl, = j,ds, dV = dsdA

e Radiative transfer equation

al, . 0
= L) = Llso) + [ dils)ds

S0




Absorption

Oly

dA
I, ;

“absorption

Y

Y

ds

e Travelling through a material a fraction «,, of the radiation is
absorbed per unit length

dl,
1,

where «,, 1s called the absorption coefficient

= —,ds



Absorption

e If material does not emit, solution 1s an exponential suppression

Inl, = —/dsoz,,—l—C’
I,(s) = ]y(so)e_fo‘”ds

e If o, < 0 (stimulated emission) then there 1s an exponential growth

Ol,,<0

dA

Y VY

Ly

N

stimulated
ds emission

}




Optical Depth

e Useful to measure length in units of the typical path length to
absorption or interaction

1
L =—

%%

so that the total path length in units of L becomes

L

e Radiative transfer equation

d
/oz,,ds - | 2= T, 1,(s)=1,(sg)e” ™

dl,

- — V]V '1/
ds A dv 1]
dl, .
— _[I/_|_SI/7 Sl/ E]l//ay
dT,

where S, 1s the source function.



Cross Section

OCV
Ocso dA
I V @ ) "
;absorption
ds

e Particle description of absorbers and light
e Absorption coefficient related to cross section for interaction
e Example: if medium i1s full of opaque disks each of area o

e Given number density n, the covering fraction

dA,s = 0dN = ondV = ondAds



Cross Section

e Radiative transfer equation

dA.ps = 0dN = ondV = ondAds

dl,
1,

e So for a particle description of the absorption coefficient o, = no.

= —onds




Cross Section

e Applies to a generalized version of o (e.g. free electrons are point
particles but Thomson cross section 1is finite), cross section for
interaction, can depend on frequency.

e Mean free path of a photon L = 1/a,, = 1/no, where n is the
spatial number density of interacting particles (c.f. consider
Thomson scattering in air)

e But the total distance travelled by a photon 1s typically much
greater than s = 7L - an individual photon propagates through the
medium via scattering as a random walk



Scattering

[ ]
Jv ~
[, AdA

scattering

ds

e Scattering can be viewed as absorption and emission where the
emission 1s directly proportional to the absorption

e [sotropic scattering: fraction «,, [, absorbed and reradiated into 47

/—I =, J,



Scattering

e Thus the source function S, = j,/«, = J, and at high optical
depth, the specific intensity approaches its angle averaged value .J,

e But despite this simple interpretation, the radiative transfer
equation 1s an integro-differential equation

dl,
= -1, +J,
dr, *
dl, dS?
— _L/ _]1/
dT, +/47T

e that depends on /,, not only 1n the observation direction but all
directions.



Random Walk

N

Iinteractions

R

e Each of N steps has length L in a random direction r; = Lr;

R=r;+ry...+ryN

e Total distance

(R =(R-R)=(r;-11) ...+ {ry-rn) +2(r; -13) ...

e Uncorrelated cross terms (r; - r;) = d;;L*



Random Walk
o Average distance (R?) = NL? or Ryms = VNL

e How many scatterings before escaping a distance R?
N = R?*/L? = 72 for optically thick

e For optically thin 7, < 1, a typical photon does not scatter and so
by definition a fraction 7,, will interact once, the rest zero and so
the average N = 7,

e Quick estimate N = max(7,, 7?)

v



Multiple Processes

e Combining processes: differential elements add, e.g. total opacity
1s sum of individual opacities — so highest opacity process 1s most
important for blocking /7,

e But given multiple frequency or spatial channels, energy escapes
in the channel with the lowest opacity

Example: a transition line vs continuum scattering — photons
will wander 1n frequency out of line and escape through lower
opacity scattering — lines are often dark (sun)

e Scattering () and absorption (a,,,)

dl,

E — _Oéua(lu — Sua) — &VS(]V o JV)



Multiple Processes

e Collect terms

dl,
ds

e Combined source function and absorption

— _(aua + 041/8)]1/ T (&VGSVG T OéVSJ’/)

. S . .]V L auasya _|_ @VSJV
@y—@ya_l_&usa v —
07y (pq "|_ s

e Mean free path L = 1/a, = 1/(a,, + aus), typical length before

absorption or scattering. Fraction that ends in absorption
(){I/a (XI/S

€, = , 1—¢, = single scattering albedo
Q{I/CL _I_ Ofl/s

S, =€,S,,+(1—¢€,)J,



Formal Solution to Radiative Transfer

vy v v
WO —Hg = L H )

!
0 Ty Ty

e Formal solution

I(1y) = 1,(0)e™™ Jr/0 dTLSu(TL)e—(TV—TL)

e Interpretation: initial specific intensity [, attenuated by absorption
and replaced by source function, attenuated by absorption from
foreground matter



Formal Solution to Radiative Transfer

e Special case S, independent of 7, take out of integral

I(r,) = L(0)e ™ + S, / drle )
0
=1,(0)e ™ + 5,[1 —e ™]

at low optical depth I, unchanged, high optical depth I, — S,

e Integration is along the path of the radiation (direction dependent);
source function can depend on [, 1n a different direction!



Fluid or Eddington Approximation

e Often a good approximation that radiation A /
1s nearly 1sotropic: consider the fact /
that scattering, absorption and emission j
randomizes the direction of radiation ‘z _\ds:dz/cose

e Eddington (or fluid) approximation: "
radiation has a dipole structure at most =@ - : +e

e Plane parallel symmetry (e.g. star, Fourier
expansion): specific intensity depends
only on polar angle from normal to plane and vertical spatial
coordinate z. Path length ds = dz/ cos 0 = dz/ .



Fluid or Eddington Approximation

e Now approximate [, as a linear function of 1 (1sotropic + dipole
— energy density + bulk momentum density: [, = a + bu

e [More generally: a Legendre polynomial expansion of /, - e.g.
CMB typically keeps 25-50 moments to solve for .S, and then
3000-6000 moments to describe [, |

e Angular moments of specific intensity:
1 [

J, = 5/ I,dp  (energy density)
~1

1 +1
H, = 5 / pul,dp  (momentum density)
-1

+1 1
K, = —/ w2 ,dp = §JV (pressure)



Fluid or Eddington Approximation

e Radiative transfer equation:

dl dl
— = L= — v ]1/ — Py
ds 'udz “ ( S)
dl,

[ =—(I,—S5,), dr=a,dz
dT

e Angular moments of specific intensity: zeroth moment % [du...

(for simplicity assume S, is isotropic)

dH,
dT

In fluid mechanics this 1s the Euler equation: local imbalance

— _(Jy — SV)

generates a flow



Fluid or Eddington Approximation
o First moment 3 [ pudp ...
dK, 1dJ,

dr ~ 3dr
This 1s the continuity equation, a flow generates a change in energy

—H,

density

e Take derivative and combine
1d*J dH
o - — - = J, v SI/
3 dr? dr
e Explicit equation for J,(z) if .S, considered an external source

e Consider scattering + absorption/emission

1d%J,
3 dr?

=J,—le,Spa + (1 —€,)J,]
— _EV(SI/CL — JI/)



Fluid or Eddington Approximation

e Explicitly solve with two boundary conditions: e.g. J,,(0) = J,g
and J,(c0) = S,,. If S, constant

JI/ — SI/CL + [JI/O — Sva]e_T S

e So relaxation to source at 7 ~ 1/4/3¢ - modified since part of the
optical depth is due to scattering



