Set 2:
 Statistical Mechanics

How Many Particles Fit in a Box?

- Counting momentum states due to the wave nature of particles with momentum q and de Broglie wavelength

$$
\lambda=\frac{h}{q}=\frac{2 \pi \hbar}{q}
$$

- In a discrete volume L^{3} there is a discrete set of states that satisfy periodic boundary conditions

How Many Particles Fit in a Box?

- As in Fourier analysis: $e^{2 \pi i x / \lambda}=e^{i(q / \hbar) x}=e^{i(q / \hbar)(x+L)}$ yields a discrete set of allowed states

$$
\begin{aligned}
\frac{L q}{\hbar} & =2 \pi m_{i}, \quad m_{i}=1,2,3 \ldots \\
q_{i} & =m_{i} \frac{2 \pi \hbar}{L}
\end{aligned}
$$

- In each of 3 directions: $\sum_{m_{x i} m_{y j} m_{z k}} \rightarrow \int d^{3} m$
- The differential number of allowed momenta in the volume

$$
d^{3} m=\left(\frac{L}{2 \pi \hbar}\right)^{3} d^{3} q
$$

Density of States

- The total number of states allows for a number of internal degrees of freedom, e.g. spin, quantified by the degeneracy factor g : total density of states:

$$
\frac{d N_{s}}{V}=\frac{g}{V} d^{3} m=\frac{g}{(2 \pi \hbar)^{3}} d^{3} q
$$

- If all states were occupied by a single particle, then the particle density

$$
n_{s}=\frac{N_{s}}{V}=\frac{1}{V} \int d N_{s}=\int \frac{g}{(2 \pi \hbar)^{3}} d^{3} q
$$

Distribution Function

- The distribution function f quantifies the occupation of the allowed momentum states

$$
n=\frac{N}{V}=\frac{1}{V} \int f d N_{s}=\int \frac{g}{(2 \pi \hbar)^{3}} f d^{3} q
$$

- f, aka phase space occupation number, also quantifies the density of particles per unit phase space $d N /(\Delta x)^{3}(\Delta q)^{3}$
- For photons, the spin degeneracy $g=2$ accounting for the 2 polarization states
- Energy $E(q)=\left(q^{2} c^{2}+m^{2} c^{4}\right)^{1 / 2}$
- Momentum \rightarrow frequency $q=h / \lambda=h \nu / c=E / c$ (where $m=0$ and $\lambda \nu=c$)

Number Density

- Momentum state defines the direction of the radiation

$$
\begin{aligned}
n & =g \int \frac{d^{3} q}{(2 \pi \hbar)^{3}} f \\
& =2 \int \frac{d \Omega q^{2} d q}{(2 \pi \hbar)^{3}} f \\
& =2 \int d \Omega\left(\frac{h}{c}\right)^{3} \frac{1}{h^{3}} \int \nu^{2} d \nu f \\
& =2 \int d \Omega \frac{1}{c^{3}} \int \nu^{2} d \nu f
\end{aligned}
$$

- Gives number density in a given direction and frequency band

Energy Density

- In general the energy density is

$$
u=g \int \frac{d^{3} q}{(2 \pi \hbar)^{3}} E(q) f
$$

- For radiation

$$
u=g \int \frac{d^{3} q}{(2 \pi \hbar)^{3}} E(q) f=2 \int d \Omega \frac{1}{c^{3}} \int \nu^{2} d \nu h \nu f
$$

- So specific energy density

$$
u_{\nu}(\Omega)=\frac{d^{2} u}{d \Omega d \nu}=\frac{2 \nu^{3} h}{c^{3}} f
$$

- And specific intensity

$$
I_{\nu}(\Omega)=u_{\nu}(\Omega) c=\frac{2 \nu^{3} h}{c^{2}} f
$$

Pressure

- Pressure: particles bouncing off a surface of area A in a volume spanned by $V=A L_{x}$: per momentum state

$$
\begin{aligned}
p_{q}= & \frac{F}{A}=\frac{N_{\text {part }}}{A} \frac{\Delta q_{x}}{\Delta t} \\
& \left(\Delta q_{x}=2\left|q_{x}\right|, \quad \Delta t=2 L_{x} / v_{x}, \quad q / E=v / c^{2}\right) \\
= & \frac{N_{\text {part }}}{V}\left|q_{x}\right|\left|v_{x}\right|=\frac{N_{\text {part }}}{V} \frac{|q \||v|}{3}=\frac{N_{\text {part }}}{V} \frac{q^{2} c^{2}}{3 E} \\
& \left(\cos ^{2} \text { term in radiative pressure calc. }\right)
\end{aligned}
$$

Moments

- Occupation number defines the $N_{\text {part }} / V$ per momentum state so that summed over states

$$
p=g \int \frac{d^{3} q}{(2 \pi \hbar)^{3}} \frac{|q|^{2} c^{2}}{3 E(q)} f
$$

- Radiation

$$
p=g \int \frac{d^{3} q}{(2 \pi \hbar)^{3}} \frac{E(q)}{3} f=\frac{1}{3} u
$$

- Energy and pressure are part of the angular moments of the distribution function - the isotropic ones
- First order anisotropy is the bulk momentum density or dipole of the distribution:

$$
(u+p) \mathbf{v} / c=g \int \frac{d^{3} q}{(2 \pi \hbar)^{3}} \mathbf{q} c f
$$

Fluid Approximation Redux

- Continue with the second moments: radiative viscosity or anisotropic stress

$$
\pi_{i j}=g \int \frac{d^{3} q}{(2 \pi \hbar)^{3}} \frac{3 q_{i} q_{j}-q^{2} \delta_{i j}}{3 E(q)} f
$$

- Eddington approximation is that all the higher order moments from the radiative viscosity onward vanishes
- Since particle kinetics must obey energy and momentum conservation, in the fluid limit there are two equations of motion: continuity and Euler equations
- Three quantities of interest: energy density, pressure, bulk velocity means that a third relation is needed: $p(\rho)$ the equation of state

Astro-Particle Dictionary

Astrophysicists and physicist use different words to describe same thing:

- Specific intensity $I_{\nu} \leftrightarrow$ phase space distribution f
- Surface brightness conservation \leftrightarrow Liouville equation
- Absorption, emission, scattering \leftrightarrow Collision term
- Einstein relations \leftrightarrow Single matrix element
- Radiative transfer equation \leftrightarrow Boltzmann equation
- Eddington approximation \leftrightarrow Fluid approximation
- Moments of $I_{\nu} \leftrightarrow$ Radiative viscosity
- Rosseland Approximation \leftrightarrow Tight coupling approximation

Liouville Equation

- In absence of interactions, particle conservation implies that the phase space distribution is invariant
 along the trajectory of the particles
- Follow an element in Δx with spread Δq. For example for non relativistic particles a spread in velocity of $\Delta v=\Delta q / m$.
- After a time δt the low velocity tail will lag the high velocity tail by $\delta x=\Delta v \delta t=\Delta q \delta t / m$
- For ultrarelativistic particles $v=c$ and $\Delta v=0$, so obviously true

Liouville Equation

- The phase space element can shear but preserves area $\Delta x \Delta q$
- This remains true under Lorentz and even a general coordinate transform
- Therefore $d f / d t=0$ or f is conserved when evaluated along the path of the particles
- Liouville Equation: $f \propto I_{\nu} / \nu^{3}$ and $d s=c d t$

$$
\frac{d f}{d t}=0 \rightarrow \frac{d I}{d s}=0
$$

if frequency is also conserved on the path

Liouville Equation

- In general, expand out the total derivative

$$
\frac{d f}{d t}=\frac{\partial f}{\partial t}+\sum_{i}\left(\frac{d x_{i}}{d t} \frac{\partial f}{\partial x_{i}}+\frac{d q_{i}}{d t} \frac{\partial f}{\partial q_{i}}\right)=0
$$

- The spatial gradient terms are responsible for flow of particles in and out of a fixed volume
- The momentum derivative terms are responsible for redshift effects

Boltzmann Equation

- Heuristically

$$
\begin{aligned}
\frac{d f}{d t} & =\text { particle sources }- \text { sinks } \\
\frac{d I_{\nu}}{d s} & =\text { emission }- \text { absorption }
\end{aligned}
$$

the r.h.s. is called the collision term and given as $C[f]$

- Collision term: integrate over the phase space of incoming particles, connect to outgoing state with the matrix element of the transition M
- Form:

$$
\begin{aligned}
C[f]= & \int d(\text { phase space })[\text { energy-momentum conservation }] \\
& \times|M|^{2}[\text { emission }- \text { absorption }]
\end{aligned}
$$

Boltzmann Equation

- (Lorentz invariant) phase space element (here $\hbar=c=1$) over the other particles $(\gamma+i \leftrightarrow \mu)$

$$
\int d(\text { phase space })=\Pi_{i} \frac{g_{i}}{(2 \pi)^{3}} \int \frac{d^{3} q_{i}}{2 E_{i}}
$$

and likewise for μ particles - note that μ can involve a photon in another momentum state, e.g. in scattering

- Energy conservation: $(2 \pi)^{4} \delta^{(4)}\left(q_{1}+q_{2}+\ldots\right)$

- [emission-absorption] $+=$ boson; $-=$ fermion

$$
\Pi_{i} \Pi_{\mu} f_{\mu}\left(1 \pm f_{i}\right)(1 \pm f)-\Pi_{i} \Pi_{\mu}\left(1 \pm f_{\mu}\right) f_{i} f
$$

Boltzmann Equation

- Photon Emission: $f_{\mu}\left(1 \pm f_{i}\right)(1+f)$
f_{μ} : proportional to number of emitters
$\left(1 \pm f_{i}\right)$: if final state is occupied and a fermion, process blocked; if boson the process enhanced
$(1+f)$: final state factor for photons: " 1 ": spontaneous emission (remains if $f=0$); " $+f$ ": stimulated and proportional to the occupation of final photon
- Photon Absorption: $-\left(1 \pm f_{\mu}\right) f_{i} f$
$\left(1 \pm f_{\mu}\right)$: if final state is occupied and fermion, process blocked; if boson the process enhanced
f_{i} : proportional to number of absorbers
f : proportional to incoming photons

Boltzmann Equation

- The matrix $|M|^{2}$ or analogously the cross section for absorption defines all processes (the physical content of the Einstein relations)
- Expect that $\sigma \propto|M|^{2}$
- Integration over momentum state converts f 's to n 's
- Example: a line transition from single lower $i=1$ state to upper $\mu=2$ state assuming that outgoing states are not occupied
- Absorption: $-\left(1 \pm f_{\mu}\right) f_{i} f \rightarrow-n_{1} f,|M|^{2} \rightarrow \sigma, 2 h \nu^{3} f / c^{2} \rightarrow I_{\nu}$ so that $\left.\alpha_{\nu}\right|_{\text {true absorption }}=n_{1} \sigma$
- Emission: $f_{\mu}\left(1 \pm f_{i}\right)(1+f) \rightarrow n_{2}(1+f)=n_{2}+n_{2} f$ so that spontaneous emission $j_{\nu} \sim n_{2} \sigma \cdot 2 \nu^{3} h / c^{2}$ and stimulated emission is negative absorption with $\left.\alpha_{\nu}\right|_{\text {stim emiss }} \sim-n_{2} \sigma$

Boltzmann Equation

- Implies a source function

$$
S_{\nu}=j_{\nu} / \alpha_{\nu} \sim \frac{1}{n_{1} / n_{2}-1} \frac{2 h \nu^{3}}{c^{2}}
$$

- We will find that the full Einstein relationship is

$$
S_{\nu}=j_{\nu} / \alpha_{\nu}=\frac{1}{\left(n_{1} g_{2} / n_{2} g_{1}-1\right)} \frac{2 h \nu^{3}}{c^{2}}
$$

where degeneracy factors appear for levels that have multiple states

- Interactions drive I_{ν} to S_{ν} which nulls the rhs radiative trans. eqn.
- Likewise collisions drive f to some equilibrium distribution and then remains constant thereafter in spite of further collisions \rightarrow black body distribution

