Set 2:

Statistical Mechanics



How Many Particles Fit in a Box?

e Counting momentum

states due to the wave nature of particles

with momentum ¢ and de Broglie wavelength 4 \/\
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e In a discrete volume L° there is a discrete
set of states that satisfy periodic boundary
conditions



How Many Particles Fit in a Box?

e As in Fourier analysis: e2™#/* = ¢ila/M)z — ¢ila/M)(z+L) yie]ds a

discrete set of allowed states
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e In each of 3 directions: > — [ d*m

MMy 3 M2k

e The differential number of allowed momenta in the volume



Density of States

e The total number of states allows for a number of internal degrees
of freedom, e.g. spin, quantified by the degeneracy factor g: total
density of states:

dNs _ R

— d°
vV Vv (2rh)s " !

e If all states were occupied by a single particle, then the particle
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Distribution Function

e The distribution function f quantifies the occupation of the
allowed momentum states
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e f, aka phase space occupation number, also quantifies the density

of particles per unit phase space dN/(Ax)?(Aq)?

e For photons, the spin degeneracy g = 2 accounting for the 2
polarization states

e Energy E(q) = (¢*c® + m2c*)1/?

e Momentum — frequency ¢ = h/\ = hv/c = E/c (where m = 0
and \v = ¢)



Number Density

e Momentum state defines the direction of the radiation

e Gives number density in a given direction and frequency band



Energy Density

e In general the energy density 1s
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e For radiation
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e So specific energy density
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Pressure

e Pressure: particles bouncing off a
surface of area A in a volume
spanned by V' = AL,: per momentum
state
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(cos® term in radiative pressure calc.)




Moments

e Occupation number defines the NV,,,;/V per momentum state so
that summed over states
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e Radiation

e Energy and pressure are part of the angular moments of the
distribution function — the 1sotropic ones

e First order anisotropy is the bulk momentum density or dipole of
the distribution:

(u+p)v/e=g / (Qig)gqcf




Fluid Approximation Redux

e Continue with the second moments: radiative viscosity or
anisotropic stress
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e Eddington approximation is that all the higher order moments
from the radiative viscosity onward vanishes

e Since particle kinetics must obey energy and momentum
conservation, in the fluid limit there are two equations of motion:
continuity and Euler equations

e Three quantities of interest: energy density, pressure, bulk velocity
means that a third relation is needed: p(p) the equation of state



Astro-Particle Dictionary

Astrophysicists and physicist use different words to describe same
thing:

e Specific intensity [, <+ phase space distribution f

e Surface brightness conservation <+ Liouville equation

e Absorption, emission, scattering <+ Collision term

e Einstein relations <+ Single matrix element

e Radiative transfer equation <> Boltzmann equation

e Eddington approximation <+ Fluid approximation

e Moments of [, <> Radiative viscosity

e Rosseland Approximation <+ Tight coupling approximation



Liouville Equation

e In absence of

interactions, particle conservation < >

implies that the phase

space distribution 1s invariant —
along the trajectory of the particles

e Follow an element in Az with

spread Ag. For example for non relativistic particles a spread in
velocity of Av = Ag/m.

e After a time 0t the low velocity tail will lag the high velocity tail
by dx = Avdt = Agdt/m

e For ultrarelativistic particles v = c and Av = 0, so obviously true



Liouville Equation

e The phase space element can shear but preserves area AxAq

e This remains true under Lorentz and even a general coordinate
transform

e Therefore df /dt = 0 or f is conserved when evaluated along the
path of the particles

e Liouville Equation: f oc I,/v° and ds = cdt

if frequency 1s also conserved on the path



Liouville Equation

e In general, expand out the total derivative
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e The spatial gradient terms are responsible for flow of particles in
and out of a fixed volume

e The momentum derivative terms are responsible for redshift effects



Boltzmann Equation

e Heuristically

d . .
pri particle sources - sinks
dl,
ds
the r.h.s. is called the collision term and given as C'[ f|

= emission - absorption

e Collision term: integrate over the phase space of incoming
particles, connect to outgoing state with the matrix element of the
transition M

e Form:

C|f] = / d(phase space)| energy-momentum conservation|

x | M|?[emission — absorption]



Boltzmann Equation

e (Lorentz invariant) phase space element (here i = ¢ = 1) over the
other particles (v + 7 <> )
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and likewise for p particles — note that x can involve a photon 1n

another momentum state, e.g. in scattering

o Energy conservation: (27)*6™ (¢, + g2 + ...)

absorption emission
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e [emission-absorption] + = boson; — = fermion
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Boltzmann Equation
e Photon Emission: f,(1 £ f;)(1 + f)
/,.: proportional to number of emitters

(1 & f;): if final state is occupied and a fermion, process blocked;
if boson the process enhanced

(1 + f): final state factor for photons: “1”: spontaneous emission
(remains if f = 0); “+ f”’: stimulated and proportional to the
occupation of final photon

e Photon Absorption: —(1 + f,)f:f

(1 £ f,): if final state is occupied and fermion, process blocked; if
boson the process enhanced

f;: proportional to number of absorbers

f: proportional to incoming photons



Boltzmann Equation

e The matrix |M|? or analogously the cross section for absorption
defines all processes (the physical content of the Einstein relations)

e Expect that o o< |M|?
e Integration over momentum state converts f’s to n’s

e Example: a line transition from single lower ¢+ = 1 state to upper
1+ = 2 state assuming that outgoing states are not occupied

o Absorption: —(1 & f,)fif — —n1f, |M|* — 0,20 f/c* — 1,
so that Ay |true absorption — 1110
e Emission: f,(1+£ f;)(1 + f) = na(1 4+ f) = na + naf so that

spontaneous emission j, ~ ny0 - 2v°h/c* and stimulated emission
is negative absorption with o, |stim emiss ~ —720



Boltzmann Equation

e Implies a source function

1 2h13
ny/ne —1 ¢

Sz/ — jV / ,
e We will find that the full Einstein relationship 1is
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where degeneracy factors appear for levels that have multiple states
e Interactions drive [, to S, which nulls the rhs radiative trans. eqn.

e Likewise collisions drive f to some equilibrium distribution and
then remains constant thereafter in spite of further collisions —
black body distribution



