
Set 2:
Statistical Mechanics



How Many Particles Fit in a Box?
.

• Counting momentum
states due to the wave nature of particles
with momentum q and de Broglie wavelength

λ =
h

q
=

2πh̄

q

.

• In a discrete volume L3 there is a discrete
set of states that satisfy periodic boundary
conditions



How Many Particles Fit in a Box?
• As in Fourier analysis: e2πix/λ = ei(q/h̄)x = ei(q/h̄)(x+L) yields a

discrete set of allowed states

Lq

h̄
= 2πmi, mi = 1, 2, 3...

qi = mi
2πh̄

L

• In each of 3 directions:
∑

mximyjmzk
→
∫
d3m

• The differential number of allowed momenta in the volume

d3m =

(
L

2πh̄

)3

d3q



Density of States
• The total number of states allows for a number of internal degrees

of freedom, e.g. spin, quantified by the degeneracy factor g: total
density of states:

dNs

V
=

g

V
d3m =

g

(2πh̄)3
d3q

• If all states were occupied by a single particle, then the particle
density

ns =
Ns

V
=

1

V

∫
dNs =

∫
g

(2πh̄)3
d3q



Distribution Function
• The distribution function f quantifies the occupation of the

allowed momentum states

n =
N

V
=

1

V

∫
fdNs =

∫
g

(2πh̄)3
fd3q

• f , aka phase space occupation number, also quantifies the density
of particles per unit phase space dN/(∆x)3(∆q)3

• For photons, the spin degeneracy g = 2 accounting for the 2
polarization states

• Energy E(q) = (q2c2 +m2c4)1/2

• Momentum→ frequency q = h/λ = hν/c = E/c (where m = 0

and λν = c)



Number Density
• Momentum state defines the direction of the radiation

n = g

∫
d3q

(2πh̄)3
f

= 2

∫
dΩq2dq

(2πh̄)3
f

= 2

∫
dΩ

(
h

c

)3
1

h3

∫
ν2dνf

= 2

∫
dΩ

1

c3

∫
ν2dνf

• Gives number density in a given direction and frequency band



Energy Density
• In general the energy density is

u = g

∫
d3q

(2πh̄)3
E(q)f

• For radiation

u = g

∫
d3q

(2πh̄)3
E(q)f = 2

∫
dΩ

1

c3

∫
ν2dνhνf

• So specific energy density

uν(Ω) =
d2u

dΩdν
=

2ν3h

c3
f

• And specific intensity

Iν(Ω) = uν(Ω)c =
2ν3h

c2
f



Pressure
.

Lx

v
vx

• Pressure: particles bouncing off a
surface of area A in a volume
spanned by V = ALx: per momentum
state

..

pq =
F

A
=
Npart

A

∆qx
∆t

(∆qx = 2|qx|, ∆t = 2Lx/vx, q/E = v/c2)

=
Npart

V
|qx||vx| =

Npart

V

|q||v|
3

=
Npart

V

q2c2

3E

(cos2 term in radiative pressure calc.)



Moments
• Occupation number defines the Npart/V per momentum state so

that summed over states

p = g

∫
d3q

(2πh̄)3

|q|2c2

3E(q)
f

• Radiation

p = g

∫
d3q

(2πh̄)3

E(q)

3
f =

1

3
u

• Energy and pressure are part of the angular moments of the
distribution function – the isotropic ones

• First order anisotropy is the bulk momentum density or dipole of
the distribution:

(u+ p)v/c = g

∫
d3q

(2πh̄)3
qcf



Fluid Approximation Redux
• Continue with the second moments: radiative viscosity or

anisotropic stress

πij = g

∫
d3q

(2πh̄)3

3qiqj − q2δij
3E(q)

f

• Eddington approximation is that all the higher order moments
from the radiative viscosity onward vanishes

• Since particle kinetics must obey energy and momentum
conservation, in the fluid limit there are two equations of motion:
continuity and Euler equations

• Three quantities of interest: energy density, pressure, bulk velocity
means that a third relation is needed: p(ρ) the equation of state



Astro-Particle Dictionary
Astrophysicists and physicist use different words to describe same
thing:

• Specific intensity Iν ↔ phase space distribution f

• Surface brightness conservation↔ Liouville equation

• Absorption, emission, scattering↔ Collision term

• Einstein relations↔ Single matrix element

• Radiative transfer equation↔ Boltzmann equation

• Eddington approximation↔ Fluid approximation

• Moments of Iν ↔ Radiative viscosity

• Rosseland Approximation↔ Tight coupling approximation



Liouville Equation
.

t1

∆x ∆q

∆q(t1-t2)/m

t2• In absence of
interactions, particle conservation
implies that the phase
space distribution is invariant
along the trajectory of the particles

• Follow an element in ∆x with
spread ∆q. For example for non relativistic particles a spread in
velocity of ∆v = ∆q/m.

• After a time δt the low velocity tail will lag the high velocity tail
by δx = ∆vδt = ∆qδt/m

• For ultrarelativistic particles v = c and ∆v = 0, so obviously true



Liouville Equation
• The phase space element can shear but preserves area ∆x∆q

• This remains true under Lorentz and even a general coordinate
transform

• Therefore df/dt = 0 or f is conserved when evaluated along the
path of the particles

• Liouville Equation: f ∝ Iν/ν
3 and ds = cdt

df

dt
= 0→ dI

ds
= 0

if frequency is also conserved on the path



Liouville Equation
• In general, expand out the total derivative

df

dt
=
∂f

∂t
+
∑
i

(
dxi
dt

∂f

∂xi
+
dqi
dt

∂f

∂qi

)
= 0

• The spatial gradient terms are responsible for flow of particles in
and out of a fixed volume

• The momentum derivative terms are responsible for redshift effects



Boltzmann Equation
• Heuristically

df

dt
= particle sources - sinks

dIν
ds

= emission - absorption

the r.h.s. is called the collision term and given as C[f ]

• Collision term: integrate over the phase space of incoming
particles, connect to outgoing state with the matrix element of the
transition M

• Form:

C[f ] =

∫
d(phase space)[ energy-momentum conservation]

× |M |2[emission− absorption]



Boltzmann Equation
• (Lorentz invariant) phase space element (here h̄ = c = 1) over the

other particles (γ + i↔ µ)∫
d(phase space) = Πi

gi
(2π)3

∫
d3qi
2Ei

and likewise for µ particles – note that µ can involve a photon in
another momentum state, e.g. in scattering

• Energy conservation: (2π)4δ(4)(q1 + q2 + ...)

photon

other i states

other µ states other µ states

f

fi

photon

other i states

f

fi

fµ fµ

γ + i        µ

M M

absorption emission

• [emission-absorption] + = boson; − = fermion

ΠiΠµfµ(1± fi)(1± f)− ΠiΠµ(1± fµ)fif



Boltzmann Equation
• Photon Emission: fµ(1± fi)(1 + f)

fµ: proportional to number of emitters

(1± fi): if final state is occupied and a fermion, process blocked;
if boson the process enhanced

(1 + f): final state factor for photons: “1”: spontaneous emission
(remains if f = 0); “+f”: stimulated and proportional to the
occupation of final photon

• Photon Absorption: −(1± fµ)fif

(1± fµ): if final state is occupied and fermion, process blocked; if
boson the process enhanced

fi: proportional to number of absorbers

f : proportional to incoming photons



Boltzmann Equation
• The matrix |M |2 or analogously the cross section for absorption

defines all processes (the physical content of the Einstein relations)

• Expect that σ ∝ |M |2

• Integration over momentum state converts f ’s to n’s

• Example: a line transition from single lower i = 1 state to upper
µ = 2 state assuming that outgoing states are not occupied

• Absorption: −(1± fµ)fif → −n1f , |M |2 → σ, 2hν3f/c2 → Iν
so that αν |true absorption = n1σ

• Emission: fµ(1± fi)(1 + f)→ n2(1 + f) = n2 + n2f so that
spontaneous emission jν ∼ n2σ · 2ν3h/c2 and stimulated emission
is negative absorption with αν |stim emiss ∼ −n2σ



Boltzmann Equation
• Implies a source function

Sν = jν/αν ∼
1

n1/n2 − 1

2hν3

c2

• We will find that the full Einstein relationship is

Sν = jν/αν =
1

(n1g2/n2g1 − 1)

2hν3

c2

where degeneracy factors appear for levels that have multiple states

• Interactions drive Iν to Sν which nulls the rhs radiative trans. eqn.

• Likewise collisions drive f to some equilibrium distribution and
then remains constant thereafter in spite of further collisions→
black body distribution


