
Set 3:
Thermal Physics



Equilibrium
• Thermal physics describes the equilibrium distribution of particles

for a medium at temperature T

• Expect that the typical energy of a particle by equipartition is
E ∼ kT , so that f(E/kT, ?) in equilibrium

• Must be a second variable of import. Number density

n = g

∫
d3q

(2πh̄)3
f(E/kT ) =? n(T )

• If particles are conserved then n cannot simply be a function of
temperature.

• The integration constant that concerns particle conservation is
called the chemical potential. Relevant for photons when creation
and annihilation processes are ineffective



Temperature and Chemical Potential
• Fundamental assumption of statistical mechanics is that all

accessible states have an equal probability of being populated. The
number of states G defines the entropy S(U,N, V ) = k lnG where
U is the energy, N is the number of particles and V is the volume

• When two systems are placed in thermal contact they may
exchange energy, leading to a wider range of accessible states

G(U,N, V ) =
∑
U1

G1(U1, N1, V1)G2(U − U1, N −N1, V − V1)

• The most likely distribution of U1 and U2 is given for the
maximum dG/dU1 = 0(

∂G1

∂U1

)
N1,V1

G2dU1 +G1

(
∂G2

∂U2

)
N2,V2

dU2 = 0 dU1 + dU2 = 0



Temperature and Chemical Potential
• Or equilibrium requires(

∂ lnG1

∂U1

)
N1,V1

=

(
∂ lnG2

∂U2

)
N2,V2

≡ 1

kT

which is the definition of the temperature (equal for systems in
thermal contact)

• Likewise define a chemical potential µ for a system in diffusive
equilibrium(

∂ lnG1

∂N1

)
U1,V1

=

(
∂ lnG2

∂N2

)
U2,V2

≡ − µ

kT

defines the most likely distribution of particle numbers as a system
with equal chemical potentials: generalize to multiple types of
particles undergoing “chemical” reaction→ law of mass action∑

i µidNi = 0



Temperature and Chemical Potential
• Equivalent definition: the chemical potential is the free energy cost

associated with adding a particle at fixed temperature and volume

µ =
∂F

∂N

∣∣∣
T,V

, F = U − TS

free energy: balance between minimizing energy and maximizing
entropy S

• Temperature and chemical potential determine the probability of a
state being occupied if the system is in thermal and diffusive
contact with a large reservoir at temperature T



Gibbs or Boltzmann Factor
• Suppose the system has two states unoccupied N1 = 0, U1 = 0 and

occupied N1 = 1, U1 = E then the ratio of probabilities in the
occupied to unoccupied states is given by

P =
exp[lnGres(U − E,N − 1, V )]

exp[lnGres(U,N, V )]

• Taylor expand

lnGres(U − E,N − 1, V ) ≈ lnGres(U,N, V )− E 1

kT
+

µ

kT

P ≈ exp[−(E − µ)/kT ]

• This is the Gibbs factor.



Gibbs or Boltzmann Factor
• More generally the probability of a system being in a state of

energy Ei and particle number Ni is given by the Gibbs factor

P (Ei, Ni) ∝ exp[−(Ei − µNi)/kT ]

• Unlikely to be in an energy state Ei � kT mitigated by the
number of particles

• Dropping the diffusive contact, this is the Boltzmann factor



Mean Occupation
• Mean occupation in thermal equilibrium

f = 〈N〉 =

∑
iNiP (Ei, Ni)∑
P (Ei, Ni)

• Take Ei = NiE where E is the particle energy (zero point drops
out)

• For fermions: occupancy Ni = 0, 1

f =
P (E, 1)

P (0, 0) + P (E, 1)
=

exp[−(E − µ)/kT ]

1 + exp[−(E − µ)/kT ]

=
1

exp[(E − µ)/kT ] + 1
Fermi-Dirac Distribution

• T → 0, f → [e±∞ + 1]−1 (E > µ, f = 0); (E < µ, f = 1),
occupied out to a sharp energy or Fermi surface with δE = kT



Bose-Einstein Distribution
• For bosons:∑

i

P [Ei, Ni] =
∞∑

Ni=0

exp[−Ni(E − µ)/kT ] =
∞∑

Ni=0

[e−(E−µ)/kT ]Ni

=
1

1− e−(E−µ)/kT

∑
i

NiP [Ei, Ni] =
∞∑

Ni=0

Ni exp[−Ni(E − µ)/kT ]

=
∂

∂µ/kT

∞∑
Ni=0

[e−(E−µ)/kT ]Ni

=
∂

∂µ/kT

(
1

1− e−(E−µ)/kT

)
=

e−(E−µ)/kT

(1− e−(E−µ)/kT )2



Bose-Einstein Distribution
• Bose Einstein distribution:

f =

∑
iNiP [Ei, Ni]∑
i P [Ei, Ni]

=
1

e(E−µ)/kT − 1

For E − µ� kT , f → 0. For E − µ < kT ln 2, f > 1, high
occupation (Bose-Einstein condensate).

• General equilibrium distribution

f =
1

e(E−µ)/kT ± 1

+ = fermions, − = bosons

• µ alters the number of particles at temperature T



Maxwell Boltzmann Distribution
• In both cases, if (E − µ)� kT (including rest mass energy), then

f = e−(E−µ)/kT

• A non-degenerate gas of particles - mean occupation f � 1

• For non relativistic particles

E = (q2c2 +m2c4)1/2 = mc2(1 + q2/m2c2)1/2

≈ mc2(1 + q2/2m2c2) = mc2 +
1

2
mv2

f = e−(mc2−µ)/kT e−mv
2/2kT



• A non-relativistic, non-degenerate gas of particles
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Planck (Black Body) Distribution
• When particles can be freely created and destroyed µ→ 0 and for

bosons this is the black body distribution

f =
1

eE/kT − 1

• Specific intensity

Iν = Bν =
2hν3

c2

1

ehν/kT − 1

• At low frequencies hν � kT (Rayleigh Jeans)

exp(hν/kT )− 1 ≈ 1 + hν/kT − 1 = hν/kT

Bν =
2hν3

c2

kT

hν
= 2

ν2

c2
kT

independent of h (classical, many photon limit)



Planck (Black Body) Distribution
• Commit your favorite blackbody to memory: e.g. 3K,
ν ∼ 100GHz, λ ∼ 0.3cm, hν ∼ 0.0004eV
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Cosmic Microwave Background
• FIRAS observations
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Planck (Black Body) Distribution
• Bν ∝ ν2 would imply an ultraviolet catastrophy S =

∫
Bνdν

• At high frequencies hν � kT (Wien tail)

exp(hν/kT )− 1 ≈ ehν/kT

Bν =
2hν3

c2
e−hν/kT

exhibits the Boltzmann suppression, particle nature of light

• Scaling with T

∂Bν

∂T
=

2hν3

c2

∂f

∂T
=

2hν3

c2

(
−1

(ehν/kT − 1)2

)
−hν
kT 2

> 0

so that specific intensity at all ν increases with T

• Setting ∂Bν/∂ν = 0 defines the maximum hνmax = 2.82kT



Planck (Black Body) Distribution
• Surface Brightness

S =

∫ ∞
0

Bνdν =
2h

c2

∫ ∞
0

ν3

ehν/kT − 1
dν

=
2h

c2

(
kT

h

)4 ∫ ∞
0

dx
x3

ex − 1
=

2π4k4

15c2h3
T 4 ≡ σBT

4

π

where σB = 2π5k4/15c2h3 is the Stephan-Boltzmann constant and
the π accounts for the emergent flux at the radius R of a uniform
sphere where angles up to the π/2 tangent can be viewed

F ≡
∫
S cos θdΩ = S

∫ 2π

0

dφ

∫ π/2

0

cos θ sin θdθ = πS



Planck (Black Body) Distribution
• Energy density

u =

∫
Bν

c
dνdΩ =

4π

c

σBT
4

π
=

4σB
c
T 4

• Number density

n = 2

∫
dΩ

1

c3

∫
ν2dν

1

ehν/kT − 1

=
8π

c3

(
kT

h

)3 ∫ ∞
0

x2dx

ex − 1
=

16πζ(3)

c3

(
kT

h

)3

=
2ζ(3)

π2c3

(
kT

h̄

)3

where ζ(3) ≈ 1.202



Effective Temperature
• Common to quantify the specific intensity Iν with an equivalent

temperature T that a black body would have

• Brightness temperature: match specific intensity Iν = Bν(TB) to
define a frequency dependent brightness temperature, most
commonly matched in the Rayleigh-Jeans approximation

Iν = Bν

∣∣∣
RJ

=
2ν2

c2
kTB, TB =

c2

2ν2k
Iν

• Color temperature: match peak intensity to black body peak
kνmax = 2.82kTcolor- ambiguous since depends on measuring a
representative frequency range - useful if the source is unresolved
so that only flux and not Iν measured

• Effective temperature: match total flux to that of black body -
requires measuring all frequencies or bolometric measurement:
F = σBT

4
eff


