Set 3:
Thermal Physics



Equilibrium
e Thermal physics describes the equilibrium distribution of particles

for a medium at temperature 1’

e Expect that the typical energy of a particle by equipartition 1is
E ~ kT, sothat f(E/kT,?) in equilibrium

e Must be a second variable of import. Number density

n=g / (Qfﬂ%g F(E/KT) =7 n(T)

e If particles are conserved then n cannot simply be a function of

temperature.

e The integration constant that concerns particle conservation is
called the chemical potential. Relevant for photons when creation
and annihilation processes are ineffective



Temperature and Chemical Potential

e Fundamental assumption of statistical mechanics is that all
accessible states have an equal probability of being populated. The
number of states G defines the entropy S(U, N, V') = kIn G where
U 1s the energy, /V is the number of particles and V' 1s the volume

e When two systems are placed in thermal contact they may
exchange energy, leading to a wider range of accessible states
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e The most likely distribution of U; and U, 1s given for the
maximum dG /dU; = 0
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Temperature and Chemical Potential

e Or equilibrium requires

0ln G, ~ (9InG, L
oU; NV, B oUs No.Vs kT

which 1s the definition of the temperature (equal for systems in
thermal contact)

e Likewise define a chemical potential  for a system 1n diffusive
equilibrium

0ln G4 - (0InG, B
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defines the most likely distribution of particle numbers as a system
with equal chemical potentials: generalize to multiple types of
particles undergoing “chemical” reaction — law of mass action
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Temperature and Chemical Potential

e Equivalent definition: the chemical potential 1s the free energy cost
associated with adding a particle at fixed temperature and volume
OF
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free energy: balance between minimizing energy and maximizing
entropy S

e Temperature and chemical potential determine the probability of a
state being occupied if the system is in thermal and diffusive
contact with a large reservoir at temperature I’



G1bbs or Boltzmann Factor

e Suppose the system has two states unoccupied N; = 0, U; = 0 and
occupied N; = 1, U; = E then the ratio of probabilities 1n the
occupied to unoccupied states is given by

_explnGies(U - E,N —1,V)]

P
exp|ln G, (U, N, V)]

e Taylor expand
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e This 1s the Gibbs factor.



G1bbs or Boltzmann Factor

e More generally the probability of a system being in a state of
energy [v; and particle number V; 1s given by the Gibbs factor

P(E;, N;) o< exp|—(£; — puN;) /KT

e Unlikely to be in an energy state F; > k£'T" mitigated by the
number of particles

e Dropping the diffusive contact, this is the Boltzmann factor



Mean Occupation

e Mean occupation in thermal equilibrium

B B ZZ N;P(E;, N;)
f== > P(E;, Ny)

e Take £, = N,; L where E 1s the particle energy (zero point drops

out)

e For fermions: occupancy N; = 0, 1
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Fermi-Dirac Distribution

~ exp(E — p)/kT] + 1

o T =0, f—=[e=*+1] Y E>p f=0;E<pf=1),
occupied out to a sharp energy or Fermi surface with 0 £ = kT’



Bose-Einstein Distribution

e For bosons:
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Bose-Einstein Distribution

e Bose Einstein distribution:

/- > N:PIE,N;] 1
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For E —u>kKI,f —0.For E — pu< kT'In2, f > 1, high
occupation (Bose-Einstein condensate).

e General equilibrium distribution

1
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+ = fermions, — = bosons

e (; alters the number of particles at temperature 1°



Maxwell Boltzmann Distribution
e In both cases, if (F — p) > kT (including rest mass energy), then

f= o~ (E—p) /KT

e A non-degenerate gas of particles - mean occupation f < 1

e For non relativistic particles

E = (* +m*cHY? = mc(1 + ¢¢/m>P)Y/?
L
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e A non-relativistic, non-degenerate gas of particles
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Planck (Black Body) Distribution

e When particles can be freely created and destroyed ¢ — 0 and for
bosons this 1s the black body distribution

1
;= oE/RT _ 1

e Specific intensity
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e At low frequencies hv < kT (Rayleigh Jeans)
exp(hv/kT) -1~ 1+ hv/kT —1 = hv/kT
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independent of h (classical, many photon limit)




Planck (Black Body) Distribution

e Commit your favorite blackbody to memory: e.g. 3K,
v ~ 100GHz, A ~ 0.3cm, hv ~ 0.0004eV
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Cosmic Microwave Background
e FIRAS observations
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Planck (Black Body) Distribution

B, « v* would imply an ultraviolet catastrophy S = [ B, dv
At high frequencies hv > KT (Wien tail)

exp(hv/kT) — 1 ~ e"/*T

B — 2hv? o—hv /KT

(32

exhibits the Boltzmann suppression, particle nature of light

Scaling with T’
0B, 2w’ of 27 —1 —hv 0
or 2 or 2 \(eM/KT —1)2 ) KT?

so that specific intensity at all  increases with 1°

Setting OB, /0v = 0 defines the maximum hvy,,, = 2.82kT



Planck (Black Body) Distribution

e Surface Brightness
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where op = 27°k* /15¢*h? is the Stephan-Boltzmann constant and
the 7 accounts for the emergent flux at the radius R of a uniform
sphere where angles up to the 7/2 tangent can be viewed
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Planck (Black Body) Distribution

e Energy density

U = /&dvdﬂ = dn opT" 403 iy A
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e Number density
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where ((3) ~ 1.202




Effective Temperature

e Common to quantify the specific intensity /,, with an equivalent
temperature 7' that a black body would have

e Brightness temperature: match specific intensity [, = B,(Ig) to
define a frequency dependent brightness temperature, most
commonly matched in the Rayleigh-Jeans approximation
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e Color temperature: match peak intensity to black body peak

kVmax = 2.82kT1or- ambiguous since depends on measuring a
representative frequency range - useful if the source 1s unresolved
so that only flux and not /, measured

e Effective temperature: match total flux to that of black body -

requires measuring all frequencies or bolometric measurement:
_ 1



