
Set 4:
Thermal Equilibrium Applications



Saha Equation
• What is the equilibrium ionization state of a gas at a given

temperature?

• Hydrogen example: e+ p↔ H + γ

• Define ntot = np + nH and an ionization fraction xe ≡ np/ntot

npne
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=
x2
e
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• Number densities defined by distribution function in thermal

equilibrium. e and p are non-relativistic at the eV energy scales of
recombination

• Maxwell-Boltzmann distribution

f = e−(mc2−µ)/kT e−q
2/2mkT



Saha Equation
• Number density:

n = g
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• Hydrogen recombination (ntot = np + nH)
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Saha Equation
• Hydrogen binding energy B = 13.6eV: mH = mp +me −B/c2
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• Spin degeneracy: spin 1/2 gp = 2 , ge = 2; gH = 4 product

• Equilibrium µp + µe = µH

x2
e

1− xe
≈ 1

ntot

e−B/kT
(
mekT

2πh̄2

)3/2

• Quadratic equation involving T and the total density - explicit
solution for xe(T )

• Exponential dominant factor: ionization drops quickly as kT drops
below B - exactly where the sharp transition occurs depends on the
density ntot



Saha Equation
• Photon perspective: compare photon number density at T to ntot
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• Photon-baryon ratio controls when recombination occurs:
typically a very large number since baryon number is conserved
(µ 6= 0) -a low baryon density medium is easy to keep ionized
with the high energy photons in tail of the black body

• Cosmologically, recombination occurs at an energy scale of
kT ∼ 0.3eV



Saha Equation
• Electron perspective: the relevant length scale is the (“thermal”) de

Broglie wavelength for a typical particle

mev
2 ∼ kT, q2 ∼ m2

ev
2 ∼ (mekT )

λTe =
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which is the factor in the Saha equation

x2
e

1− xe
=

1

ntotλ3
Te

e−B/kT

NTe = neλ
3
Te = # electrons in a de Broglie volume and is� 1 for

non-degenerate matter

• Equivalently, occupation number fe � 1 at average momenta



Saha Equation
• Saha equation

xe
1− xe

=
1

NTe

e−B/kT

• Electron chemical potential

NTe = 2e−(mec2−µe)/kT

xe
1− xe

=
1

2
e−[B−(mec2−µe)]/kT

• Transition occurs when Beff = B −mec
2 + µe = kT - chemical

potential or number density determines correction to B ∼ kT rule

• However equilibrium may not be maintained - 2 body interaction
may not be rapid enough in low density environment - e.g.
freezeout cosmologically



Cosmic Recombination
• Rates insufficient to maintain equilibrium - due to Lyα opacity

cosmic recombination relies on forbidden 2 photon decay and
redshift
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Kirchhoff’s Law
.

Iν(τ=0)=Bν

Iν(τ=δτ)=Bν

T

T,δτ

• Infer a relationship
between absorption and emission
based on thermodynamic equilibrium

• Consider a source at temperature
T emitting with a source
function Sν
• The general radiative transfer

equation says the specific
intensity evolves as

.

dIν
dτ

= −Iν + Sν



Kirchhoff’s Law
• Recall that the source function is the ratio of emission and

absorption coefficients

Sν =
jν
αν

• Consider the source to be in a black body enclosure of the same
temperature. Then Iν(τ = 0) = Bν(T )

• Radiative transfer must preserve Iν(τ) = Bν(T ) so Sν = Bν or or
the emission coefficient jν = ανBν

• Since αν and jν are properties of the source and not the initial
radiation field, this relationship is general for a black body source



Einstein Relations
.

2

1

hν

absorptionemission

• Generalize Kirchhoff’s law

• Consider a 2 level atom with
energies separated by hν: in equilibrium
the forward transition balances
the backwards transition leaving the level
distribution with a Boltzmann distribution

• Ignoring stimulated emission for
the moment, spontaneous emission
balances absorption

• Analog to jν for a single atom: A21 the emission probability per
unit time [s−1]



Einstein Relations
• Analog to αν is B12 where B12Jν is the absorption probability per

unit time in an isotropic radiation field

• Transition rate per unit volume depends on number densities in
states

1→ 2 : n1B12Jν ; 2→ 1 : n2A21

• Detailed balance requires

n1B12Jν = n2A21 →
A21

B12

=
n1

n2

Jν



Einstein Relations
• Atoms follow the non relativistic Maxwell-Boltzmann distribution

(with µ1 = µ2), radiation a Planck distribution

n1 ∝ g1 exp[−E1/kT ], n2 ∝ g2 exp[−(E1 + hν)/kT ]

Jν =
2h

c2

ν3

ehν/kT − 1

• So ignoring stimulated emission would imply

A21

B12

=
g1

g2

ehν/kT
2h

c2

ν3

ehν/kT − 1

• But the rates should not depend on temperature and so something
is missing.



Einstein Relations
• Clue: photons become Maxwell Boltzmann in the Wien tail where

there is on average < 1 photon at the line frequency

Jν ≈
2h

c2
ν3e−hν/kT

• Then

A21

B12

=
g1

g2

2h

c2
ν3

• Missing term involves a condition where there is a large number of
photons at the transition frequency: stimulated emission

• Suppose there is an additional emission term whose transition rate
per unit volume

2→ 1 : n2JνB21



Einstein Relations
• Then the balance equation becomes

n1B12Jν = n2A21 + n2JνB21

Jν =
2h

c2

ν3

ehν/kT − 1
=

A21
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=
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• Matching terms

g1B12 = g2B21,
2h

c2
ν3 =

A21

B21



Einstein Relations
• Import: given spontaneous emission rate, measured or calculated,
A21→ stimulated emission rate B21→ absorption rate, fully
defining the radiative transfer for this process independent of the
radiation state Iν

• Usage: oscillator strength defined against a classical model for
absorption, via semiclassical (quantized atomic levels, classical
radiation) calculation of absorption and stimulated emission, or
line width measurement deterimining the spontaneous emission
rate



Einstein Relations
• Relation to jν : multiply by energy hν, divide into 4π and put a

normalized line profile
∫
dνφ(ν) = 1

dEem = jνdV dΩdνdt = hνφ(ν)dνn2A21dV
dΩ

4π
dt

jν =
hν

4π
n2A21φ(ν)

• Relation to absorption αabs: similarly

dEabs = hν φ(ν)dν n1B12Jν dV
dΩ

4π
dνdt

= −[dJν = −αabsJνds]dtdνdAdΩ

αabs =
hν

4π
n1B12φ(ν)



Einstein Relations
• Add stimulated term in the emission

dEem = hνφ(ν)dνn2B21JνdV dt
dΩ

4π
, αem = −hν

4π
n2B21φ(ν)

• Absorption and emission coefficient
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Einstein Relations
• Source function

Sν = jν/αν =
1

(n1g2/n2g1 − 1)

2hν3

c2

• In thermal equilibrium n1g2/n2g1 = ehν/kT and Sν = Bν ,
Kirchoff’s law



Maser/Laser
• Net absorption coefficient becomes negative if

n1g2/g1 − n2 < 0

n1/g1 < n2/g2

• Requires a population inversion: higher energy state is more
populated than lower energy state



Rosseland Approx (Tight Coupling)
.

θ

ds=dz/cosθdz

Iν= + + ...

• Radiative transfer near
equilibrium where the source function
Sν = Bν . Recall plane parallel case

µ
dIν
dz

= −αν(Iν −Bν)

• If interaction
is strong then the difference between
Iν and Bν is small - solve iteratively

Iν −Bν = − µ

αν

dIν
dz
≈ − µ

αν

dBν

dz

Iν = Bν −
µ

αν

dBν

dT

dT

dz



Rosseland Approx (Tight Coupling)
• Specific flux follows the temperature gradient

Fν =

∫
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∫ 1
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and is inhibited by high absorption

• Net flux

F (z) =

∫ ∞
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1
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and is dominated by the frequencies that have the lowest
absorption – generally true: energy transport is dominated by the
lowest opacity channel – e.g. lines (dark) vs continuum (bright)



Rosseland Approx (Tight Coupling)
• Flux for a constant αν involves∫

dB
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• Define the Rosseland mean absorption coefficient
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• Net flux becomes
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