Set 4:
Thermal Equilibrium Applications



Saha Equation

What is the equilibrium 10nization state of a gas at a given
temperature?

Hydrogen example: e +p <+ H + v

Define n,; = n, + ny and an ionization fraction z. = n, /N
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Number densities defined by distribution function in thermal
equilibrium. e and p are non-relativistic at the eV energy scales of
recombination

Maxwell-Boltzmann distribution
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Saha Equation

e Number density:
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e Hydrogen recombination (n¢o; = 1, + 1pr)
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Saha Equation
e Hydrogen binding energy B = 13.6eV: my = m, + m. — B/c”
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e Spin degeneracy: spin 1/2 g, = 2, g. = 2; gy = 4 product

e Equilibrium g, + pte = pp
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e Quadratic equation involving 7" and the total density - explicit
solution for x.(7")

e Exponential dominant factor: ionization drops quickly as k7" drops
below B - exactly where the sharp transition occurs depends on the
density 1ot



Saha Equation

e Photon perspective: compare photon number density at 1’ to 1o
_2(3) (kT
T
i ny \ s T (£) (et 7
= e
1 — Le Ntot 2C(3) kT 27Th2

3/2
(o e 1/ M2 /
Ntot 25/2C(3) ]‘CT

e Photon-baryon ratio controls when recombination occurs:

typically a very large number since baryon number 1s conserved
(v # 0) -a low baryon density medium is easy to keep ionized
with the high energy photons 1n tail of the black body

e Cosmologically, recombination occurs at an energy scale of
KT ~ 0.3eV



Saha Equation

e Electron perspective: the relevant length scale 1s the (“thermal”) de
Broglie wavelength for a typical particle
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which is the factor in the Saha equation
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Nr. = n.\3, = # electrons in a de Broglie volume and is < 1 for
non-degenerate matter

e Equivalently, occupation number f, < 1 at average momenta



Saha Equation

e Saha equation
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e Electron chemical potential
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e Transition occurs when Beg = B — m.c* + p. = kT - chemical
potential or number density determines correction to B ~ KT rule

e However equilibrium may not be maintained - 2 body interaction
may not be rapid enough in low density environment - e.g.
freezeout cosmologically



Cosmic Recombination

e Rates insufficient to maintain equilibrium - due to Ly« opacity

cosmic recombination relies on forbidden 2 photon decay and
redshift

redshift z
104 103

\S]

10-1

10-2

1onization fraction

2-level

104 10-3 102
scale factor a

10-3

IIIII 1 IIIIIIII 1 IIIIIIII 1 IIIIII[I_ 5




Kirchhotf’s Law

. .. T
between absorption and emission

based on thermodynamic equilibrium

e Consider a source at temperature I(t=0)=B, ' g
T emitting with a source roe ME=OD=By
function S, ‘

e Infer a relationship ‘

e The general radiative transfer

equation says the specific
intensity evolves as

dl,
dT
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Kirchhott’s Law

e Recall that the source function is the ratio of emission and
absorption coefficients

s, =~
Ay
e Consider the source to be 1n a black body enclosure of the same
temperature. Then I,,(7 = 0) = B, (T)

e Radiative transfer must preserve I,(7) = B,(T') so S, = B, or or
the emission coefficient 5, = o, B,

e Since «, and 5, are properties of the source and not the initial
radiation field, this relationship 1s general for a black body source



Einstein Relations

e Generalize Kirchhoff’s law R 2

e Consider a 2 level atom with

energies separated by Av: in equilibrium "

the forward transition balances emission

absorption

the backwards transition leaving the level

distribution with a Boltzmann distribution

e Ignoring stimulated emission for
the moment, spontaneous emission
balances absorption

e Analog to j, for a single atom: As; the emission probability per
unit time [s™1]



Einstein Relations

e Analog to o, 1s B15 where B;5J, 1s the absorption probability per
unit time 1n an 1sotropic radiation field

e Transition rate per unit volume depends on number densities in
states
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e Detailed balance requires
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Einstein Relations

e Atoms follow the non relativistic Maxwell-Boltzmann distribution
(with 1 = p9), radiation a Planck distribution

ny < g1 exp|—FE1/kT], ng o< goexp|—(E1 + hv)/ET]
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e So 1gnoring stimulated emission would imply
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e But the rates should not depend on temperature and so something
1S missing.



Einstein Relations

e Clue: photons become Maxwell Boltzmann in the Wien tail where
there 1s on average < 1 photon at the line frequency
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e Missing term involves a condition where there 1s a large number of
photons at the transition frequency: stimulated emission

e Suppose there 1s an additional emission term whose transition rate
per unit volume
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Einstein Relations

e Then the balance equation becomes
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e Matching terms



Einstein Relations

e Import: given spontaneous emission rate, measured or calculated,
Ay — stimulated emission rate By; — absorption rate, fully
defining the radiative transfer for this process independent of the
radiation state /,,

e Usage: oscillator strength defined against a classical model for
absorption, via semiclassical (quantized atomic levels, classical
radiation) calculation of absorption and stimulated emission, or
line width measurement deterimining the spontaneous emission
rate



Einstein Relations

e Relation to j,: multiply by energy hv, divide into 47 and put a
normalized line profile [ dvg(v) =1
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e Relation to absorption o, s: similarly
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Einstein Relations

e Add stimulated term in the emission
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e Absorption and emission coefficient
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Einstein Relations

e Source function
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e In thermal equilibrium n,gs/nag1 = e™/*" and S, = B,,
Kirchoff’s law



Maser/Laser

e Net absorption coefficient becomes negative it

nigs/g1 —ng < 0

TL1/91 < n2/92

e Requires a population inversion: higher energy state 1s more
populated than lower energy state



Rosseland Approx (Tight Coupling)

e Radiative transfer near A /
equilibrium where the source function /
S, = B, . Recall plane parallel case ;)/
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1s strong then the difference between
I, and B, 1s small - solve iteratively
pdl, — pdB,

l,— B, =———
o, dz o, dz

u dB, dT
o, d1T' dz

I,=B,—




Rosseland Approx (Tight Coupling)

e Specific flux follows the temperature gradient
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and 1s inhibited by high absorption

e Net flux
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and 1s dominated by the frequencies that have the lowest
absorption — generally true: energy transport 1s dominated by the
lowest opacity channel — e.g. lines (dark) vs continuum (bright)



Rosseland Approx (Tight Coupling)

e Flux for a constant «,, involves
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e Define the Rosseland mean absorption coetficient
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e Net flux becomes
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