Set 4:

Thermal Equilibrium Applications

Saha Equation

- What is the equilibrium ionization state of a gas at a given temperature?
- Hydrogen example: $e+p \leftrightarrow H+\gamma$
- Define $n_{\text {tot }}=n_{p}+n_{H}$ and an ionization fraction $x_{e} \equiv n_{p} / n_{\text {tot }}$

$$
\frac{n_{p} n_{e}}{n_{H} n_{\mathrm{tot}}}=\frac{x_{e}^{2}}{1-x_{e}}
$$

- Number densities defined by distribution function in thermal equilibrium. e and p are non-relativistic at the eV energy scales of recombination
- Maxwell-Boltzmann distribution

$$
f=e^{-\left(m c^{2}-\mu\right) / k T} e^{-q^{2} / 2 m k T}
$$

Saha Equation

- Number density:

$$
\begin{aligned}
n & =g \int \frac{d^{3} q}{(2 \pi \hbar)^{3}} f=\frac{g e^{-\left(m c^{2}-\mu\right) / k T}}{2 \pi^{2} \hbar^{3}} \int_{0}^{\infty} q^{2} d q e^{-q^{2} / 2 m k T} \\
& =g \frac{e^{-\left(m c^{2}-\mu\right) / k T}}{2 \pi^{2} \hbar^{3}}(2 m k T)^{3 / 2}\left[\int_{0}^{\infty} x^{2} d x e^{-x^{2}}=\frac{\sqrt{\pi}}{4}\right] \\
& =g e^{-\left(m c^{2}-\mu\right) / k T}\left(\frac{m k T}{2 \pi \hbar^{2}}\right)^{3 / 2}, \quad(x=p / \sqrt{2 m k T})
\end{aligned}
$$

- Hydrogen recombination $\left(n_{\text {tot }}=n_{p}+n_{H}\right)$

$$
\begin{aligned}
n_{p} & =g_{p} e^{-\left(m_{p} c^{2}-\mu_{p}\right) / k T}\left(m_{p} k T / 2 \pi \hbar^{2}\right)^{3 / 2} \\
n_{e} & =g_{e} e^{-\left(m_{e} c^{2}-\mu_{e}\right) / k T}\left(m_{e} k T / 2 \pi \hbar^{2}\right)^{3 / 2} \\
n_{H} & =g_{H} e^{-\left(m_{H} c^{2}-\mu_{H}\right) / k T}\left(m_{H} k T / 2 \pi \hbar^{2}\right)^{3 / 2}
\end{aligned}
$$

Saha Equation

- Hydrogen binding energy $B=13.6 \mathrm{eV}: m_{H}=m_{p}+m_{e}-B / c^{2}$

$$
\frac{n_{p} n_{e}}{n_{H} n_{\mathrm{tot}}}=\frac{x_{e}^{2}}{1-x_{e}} \approx \frac{g_{p} g_{e}}{g_{H} n_{\mathrm{tot}}} e^{-B / k T} e^{\mu_{p}+\mu_{e}-\mu_{H}}\left(\frac{m_{e} k T}{2 \pi \hbar^{2}}\right)^{3 / 2}
$$

- Spin degeneracy: spin $1 / 2 g_{p}=2, g_{e}=2 ; g_{H}=4$ product
- Equilibrium $\mu_{p}+\mu_{e}=\mu_{H}$

$$
\frac{x_{e}^{2}}{1-x_{e}} \approx \frac{1}{n_{\mathrm{tot}}} e^{-B / k T}\left(\frac{m_{e} k T}{2 \pi \hbar^{2}}\right)^{3 / 2}
$$

- Quadratic equation involving T and the total density - explicit solution for $x_{e}(T)$
- Exponential dominant factor: ionization drops quickly as $k T$ drops below B - exactly where the sharp transition occurs depends on the density $n_{\text {tot }}$

Saha Equation

- Photon perspective: compare photon number density at T to $n_{\text {tot }}$

$$
\begin{gathered}
n_{\gamma}=\frac{2 \zeta(3)}{\pi^{2} \hbar^{3}}\left(\frac{k T}{c}\right)^{3} \\
\frac{x_{e}^{2}}{1-x_{e}}=\left(\frac{n_{\gamma}}{n_{\mathrm{tot}}}\right) e^{-B / k T} \frac{\pi^{2} \hbar^{3}}{2 \zeta(3)}\left(\frac{c}{k T}\right)^{3}\left(\frac{m_{e} k T}{2 \pi \hbar^{2}}\right)^{3 / 2} \\
=\left(\frac{n_{\gamma}}{n_{\mathrm{tot}}}\right) e^{-B / k T} \frac{\pi^{1 / 2}}{2^{5 / 2} \zeta(3)}\left(\frac{m_{e} c^{2}}{k T}\right)^{3 / 2}
\end{gathered}
$$

- Photon-baryon ratio controls when recombination occurs: typically a very large number since baryon number is conserved $(\mu \neq 0)$-a low baryon density medium is easy to keep ionized with the high energy photons in tail of the black body
- Cosmologically, recombination occurs at an energy scale of $k T \sim 0.3 \mathrm{eV}$

Saha Equation

- Electron perspective: the relevant length scale is the ("thermal") de Broglie wavelength for a typical particle

$$
\begin{aligned}
m_{e} v^{2} & \sim k T, \quad q^{2} \sim m_{e}^{2} v^{2} \sim\left(m_{e} k T\right) \\
\lambda_{T e} & =\frac{h}{q}=\frac{h}{\left(2 \pi m_{e} k T\right)^{1 / 2}}=\left(\frac{2 \pi \hbar^{2}}{m_{e} k T}\right)^{1 / 2}
\end{aligned}
$$

which is the factor in the Saha equation

$$
\frac{x_{e}^{2}}{1-x_{e}}=\frac{1}{n_{\mathrm{tot}} \lambda_{T e}^{3}} e^{-B / k T}
$$

$N_{T e}=n_{e} \lambda_{T e}^{3}=\#$ electrons in a de Broglie volume and is $\ll 1$ for non-degenerate matter

- Equivalently, occupation number $f_{e} \ll 1$ at average momenta

Saha Equation

- Saha equation

$$
\frac{x_{e}}{1-x_{e}}=\frac{1}{N_{T e}} e^{-B / k T}
$$

- Electron chemical potential

$$
\begin{aligned}
N_{T e} & =2 e^{-\left(m_{e} c^{2}-\mu_{e}\right) / k T} \\
\frac{x_{e}}{1-x_{e}} & =\frac{1}{2} e^{-\left[B-\left(m_{e} c^{2}-\mu_{e}\right)\right] / k T}
\end{aligned}
$$

- Transition occurs when $B_{\text {eff }}=B-m_{e} c^{2}+\mu_{e}=k T$ - chemical potential or number density determines correction to $B \sim k T$ rule
- However equilibrium may not be maintained - 2 body interaction may not be rapid enough in low density environment - e.g. freezeout cosmologically

Cosmic Recombination

- Rates insufficient to maintain equilibrium - due to Ly α opacity cosmic recombination relies on forbidden 2 photon decay and redshift

Kirchhoff's Law

- Infer a relationship between absorption and emission based on thermodynamic equilibrium
- Consider a source at temperature T emitting with a source function S_{ν}
- The general radiative transfer
 equation says the specific intensity evolves as

$$
\frac{d I_{\nu}}{d \tau}=-I_{\nu}+S_{\nu}
$$

Kirchhoff's Law

- Recall that the source function is the ratio of emission and absorption coefficients

$$
S_{\nu}=\frac{j_{\nu}}{\alpha_{\nu}}
$$

- Consider the source to be in a black body enclosure of the same temperature. Then $I_{\nu}(\tau=0)=B_{\nu}(T)$
- Radiative transfer must preserve $I_{\nu}(\tau)=B_{\nu}(T)$ so $S_{\nu}=B_{\nu}$ or or the emission coefficient $j_{\nu}=\alpha_{\nu} B_{\nu}$
- Since α_{ν} and j_{ν} are properties of the source and not the initial radiation field, this relationship is general for a black body source

Einstein Relations

- Generalize Kirchhoff's law
- Consider a 2 level atom with energies separated by $h \nu$: in equilibrium the forward transition balances the backwards transition leaving the level distribution with a Boltzmann distribution

- Ignoring stimulated emission for the moment, spontaneous emission balances absorption
- Analog to j_{ν} for a single atom: A_{21} the emission probability per unit time $\left[s^{-1}\right]$

Einstein Relations

- Analog to α_{ν} is B_{12} where $B_{12} J_{\nu}$ is the absorption probability per unit time in an isotropic radiation field
- Transition rate per unit volume depends on number densities in states

$$
1 \rightarrow 2: \quad n_{1} B_{12} J_{\nu} ; \quad 2 \rightarrow 1: \quad n_{2} A_{21}
$$

- Detailed balance requires

$$
n_{1} B_{12} J_{\nu}=n_{2} A_{21} \rightarrow \frac{A_{21}}{B_{12}}=\frac{n_{1}}{n_{2}} J_{\nu}
$$

Einstein Relations

- Atoms follow the non relativistic Maxwell-Boltzmann distribution (with $\mu_{1}=\mu_{2}$), radiation a Planck distribution

$$
\begin{gathered}
n_{1} \propto g_{1} \exp \left[-E_{1} / k T\right], \quad n_{2} \propto g_{2} \exp \left[-\left(E_{1}+h \nu\right) / k T\right] \\
J_{\nu}=\frac{2 h}{c^{2}} \frac{\nu^{3}}{e^{h \nu / k T}-1}
\end{gathered}
$$

- So ignoring stimulated emission would imply

$$
\frac{A_{21}}{B_{12}}=\frac{g_{1}}{g_{2}} e^{h \nu / k T} \frac{2 h}{c^{2}} \frac{\nu^{3}}{e^{h \nu / k T}-1}
$$

- But the rates should not depend on temperature and so something is missing.

Einstein Relations

- Clue: photons become Maxwell Boltzmann in the Wien tail where there is on average <1 photon at the line frequency

$$
J_{\nu} \approx \frac{2 h}{c^{2}} \nu^{3} e^{-h \nu / k T}
$$

- Then

$$
\frac{A_{21}}{B_{12}}=\frac{g_{1}}{g_{2}} \frac{2 h}{c^{2}} \nu^{3}
$$

- Missing term involves a condition where there is a large number of photons at the transition frequency: stimulated emission
- Suppose there is an additional emission term whose transition rate per unit volume

$$
2 \rightarrow 1: \quad n_{2} J_{\nu} B_{21}
$$

Einstein Relations

- Then the balance equation becomes

$$
\begin{aligned}
n_{1} B_{12} J_{\nu} & =n_{2} A_{21}+n_{2} J_{\nu} B_{21} \\
J_{\nu} & =\frac{2 h}{c^{2}} \frac{\nu^{3}}{e^{h \nu / k T}-1}=\frac{A_{21}}{\left(n_{1} / n_{2}\right) B_{12}-B_{21}} \\
& =\frac{A_{21}}{B_{21}\left[\left(g_{1} B_{12} / B_{21} g_{2}\right) e^{h \nu / k T}-1\right]}
\end{aligned}
$$

- Matching terms

$$
g_{1} B_{12}=g_{2} B_{21}, \quad \frac{2 h}{c^{2}} \nu^{3}=\frac{A_{21}}{B_{21}}
$$

Einstein Relations

- Import: given spontaneous emission rate, measured or calculated, $A_{21} \rightarrow$ stimulated emission rate $B_{21} \rightarrow$ absorption rate, fully defining the radiative transfer for this process independent of the radiation state I_{ν}
- Usage: oscillator strength defined against a classical model for absorption, via semiclassical (quantized atomic levels, classical radiation) calculation of absorption and stimulated emission, or line width measurement deterimining the spontaneous emission rate

Einstein Relations

- Relation to j_{ν} : multiply by energy $h \nu$, divide into 4π and put a normalized line profile $\int d \nu \phi(\nu)=1$

$$
\begin{aligned}
d E_{\mathrm{em}} & =j_{\nu} d V d \Omega d \nu d t=h \nu \phi(\nu) d \nu n_{2} A_{21} d V \frac{d \Omega}{4 \pi} d t \\
j_{\nu} & =\frac{h \nu}{4 \pi} n_{2} A_{21} \phi(\nu)
\end{aligned}
$$

- Relation to absorption $\alpha_{\text {abs }}$: similarly

$$
\begin{aligned}
d E_{\mathrm{abs}} & =h \nu \phi(\nu) d \nu n_{1} B_{12} J_{\nu} d V \frac{d \Omega}{4 \pi} d \nu d t \\
& =-\left[d J_{\nu}=-\alpha_{\mathrm{abs}} J_{\nu} d s\right] d t d \nu d A d \Omega \\
\alpha_{\mathrm{abs}} & =\frac{h \nu}{4 \pi} n_{1} B_{12} \phi(\nu)
\end{aligned}
$$

Einstein Relations

- Add stimulated term in the emission

$$
d E_{\mathrm{em}}=h \nu \phi(\nu) d \nu n_{2} B_{21} J_{\nu} d V d t \frac{d \Omega}{4 \pi}, \quad \alpha_{\mathrm{em}}=-\frac{h \nu}{4 \pi} n_{2} B_{21} \phi(\nu)
$$

- Absorption and emission coefficient

$$
\begin{aligned}
\alpha_{\nu} & =\frac{h \nu}{4 \pi} \phi(\nu)\left[n_{1} B_{12}-n_{2} B_{21}\right] \\
& =\frac{h \nu}{4 \pi} \phi(\nu)\left(\frac{n_{1} g_{2}}{g_{1}}-n_{2}\right) \frac{c^{2}}{2 h \nu^{3}} A_{21} \\
j_{\nu} & =\frac{h \nu}{4 \pi} n_{2} A_{21} \phi(\nu)
\end{aligned}
$$

Einstein Relations

- Source function

$$
S_{\nu}=j_{\nu} / \alpha_{\nu}=\frac{1}{\left(n_{1} g_{2} / n_{2} g_{1}-1\right)} \frac{2 h \nu^{3}}{c^{2}}
$$

- In thermal equilibrium $n_{1} g_{2} / n_{2} g_{1}=e^{h \nu / k T}$ and $S_{\nu}=B_{\nu}$, Kirchoff's law

Maser/Laser

- Net absorption coefficient becomes negative if

$$
\begin{gathered}
n_{1} g_{2} / g_{1}-n_{2}<0 \\
n_{1} / g_{1}<n_{2} / g_{2}
\end{gathered}
$$

- Requires a population inversion: higher energy state is more populated than lower energy state

Rosseland Approx (Tight Coupling)

- Radiative transfer near equilibrium where the source function $S_{\nu}=B_{\nu}$. Recall plane parallel case

$$
\mu \frac{d I_{\nu}}{d z}=-\alpha_{\nu}\left(I_{\nu}-B_{\nu}\right)
$$

- If interaction
is strong then the difference between I_{ν} and B_{ν} is small - solve iteratively

$$
\begin{aligned}
I_{\nu}-B_{\nu} & =-\frac{\mu}{\alpha_{\nu}} \frac{d I_{\nu}}{d z} \approx-\frac{\mu}{\alpha_{\nu}} \frac{d B_{\nu}}{d z} \\
I_{\nu} & =B_{\nu}-\frac{\mu}{\alpha_{\nu}} \frac{d B_{\nu}}{d T} \frac{d T}{d z}
\end{aligned}
$$

Rosseland Approx (Tight Coupling)

- Specific flux follows the temperature gradient

$$
\begin{aligned}
F_{\nu} & =\int I_{\nu}(z, \mu) \mu d \Omega=2 \pi \int_{-1}^{1} I_{\nu}(z, \mu) \mu d \mu \\
& =-\frac{2 \pi}{\alpha_{\nu}} \frac{d B_{\nu}}{d T} \frac{d T}{d z} \int_{-1}^{1} \mu^{2} d \mu=-\frac{4 \pi}{3 \alpha_{\nu}} \frac{d B_{\nu}}{d T} \frac{d T}{d z}
\end{aligned}
$$

and is inhibited by high absorption

- Net flux

$$
F(z)=\int_{0}^{\infty} F_{\nu} d \nu=-\frac{4 \pi}{3} \frac{d T}{d z} \int_{0}^{\infty} \frac{1}{\alpha_{\nu}} \frac{d B_{\nu}}{d T} d \nu
$$

and is dominated by the frequencies that have the lowest absorption - generally true: energy transport is dominated by the lowest opacity channel - e.g. lines (dark) vs continuum (bright)

Rosseland Approx (Tight Coupling)

- Flux for a constant α_{ν} involves

$$
\int \frac{d B}{d T} d \nu=\frac{d}{d T} \int_{0}^{\infty} B_{\nu} d \nu=4 \frac{\sigma}{\pi} T^{3}
$$

- Define the Rosseland mean absorption coefficient

$$
\alpha_{R}^{-1}=\frac{\int \alpha_{\nu}^{-1} \frac{d B_{\nu}}{d T} d \nu}{\int \frac{d B_{\nu}}{d T} d \nu}
$$

- Net flux becomes

$$
F(z)=\frac{4 \sigma T^{3}}{\pi \alpha_{R}}\left(-\frac{4 \pi}{3} \frac{d T}{d z}\right)=-\frac{16 \sigma T^{3}}{3 \alpha_{R}} \frac{d T}{d z}
$$

