Set 3:
Classical E&M and Plasma Processes



Maxwell Equations

e Classical E&M defined by the Maxwell Equations (fields sourced
by matter) and the Lorentz force (matter moved by fields)

e In cgs (gaussian) units

VD =4mp, V-B=0,
10B 10D A4r,

VxE=--2 vxH=-2"4+T
8 c Ot 8 c@t+c‘]

where p = charge density, j = current density, D = €E and
B = uH with € = dielectric constant ;4 = magnetic permeability

e In vacuum, ¢ = 1 = 1 and the Maxwell equations simplify to

V- E =4mp, V-B=0,

10B 10E Ar
VxE= -2 vyxB=-24
8 c Ot 8 c@t+ c‘]7



Charge Conservation

e Maxwell equations are £/ and B symmetric aside from the lack of
magnetic charges

e Divergence of Ampere’s law — charge conservation

10E Ar
B—- -~ =
VoLV c Ot c‘]]
10V -E Ar .
V= TV
4T dp Am_
St a Y
0
O:—p+VJ



Wave Equation

e Source free propagation

invariant under E — B and B — —E, so work out equation for E

e Curl of Faraday’s law — wave equation

10B
E=——
V x [V x c@t]
10V x B
E) - V°E = — =
V(V-E)-V o
1 0°E
_VF = -~ —
v c? Ot?
V2E_l82_E_



Wave Equation
e Similarly for B

e Wave solutions k = 27 /X = 2wv/c [real part or superimposed k

and —k|
E ke .
_ 01 6z(k-x—wt)
B Boeg

e Wave solution in wave equation provides the “dispersion” relation

1
kQ——2w2:O, w = kc=2mv
c



Wave Equation
e E and B fields related by Maxwell equations

1k - élEo = O, 1k - éQBO — O,
. N LW . N W
1k X e1E0 = Z—egBo, 1k X egBO = —z—elEO, ,
c C
soe; Lk, e Lk, kxeée| é.So(ee,, 1A<) form a orthonormal
right handed basis

1k % élE() = Z‘gégBo, kEO = gBQ, — Ey = By
C C



Lorentz Force

e Lorentz force
F =g {E -+ Y% B}
c
where q 1s the charge

e For a distribution of charges in a volume, charge and current
density j = pv provide a force density

1
f=pE+-jx B
c

e Work and change 1n energy density

W:/F-dx, %:F°VZQE-V

dumech
dt

=pE.-v=E-]



Field Energy

e Use energy conservation to define field and radiation energy

e )
d“ZeCh:E J:ﬁ(vXH—%%—?) E
E - (VxH) =H-(VxE)-V-(E x H)]
d“;‘;ech:ilﬂ (VXE)—V (ExH)—%%—?-E]
[VXE:—%%—]?, H = B/s, D:eE]



Field Energy

e Rewrite field terms as a total derivative

0 OB 0 OF
o(B-B)=2B.—"  _(E-E)=2E.

e Equation forms a conservation law

0
a(umech + uﬁeld) +V-5=0

with
1 1
Ufield — — <€E2 + —B2>
3T (4

and the energy flux carried by the radiation, or Poynting vector

S:iExH
47



Field Energy

e For vacuum 1 = € = 1 and so field energy in a monocromatic
wave, time averaged over the oscillation

1
ad) = —=(E*+ B%) = —E;
<Uﬁ1d> 87T2( 0T 0) gz 0
c 1 C
(S) = EiEOBO = S_Eg

which says that (S) /(ugeq) = ¢, (recall I, /u, = c)
e Energy Flux

(S) = —E2 /du/dﬂcos@]

so the specific intensity of a monocromatic plane wave 1s a delta
function 1n frequency and angle



Specific Intensity

e Actual processes will not be monocromatic but have some
waveform associated with the acceleration of the emitter:
superposition of plane waves

E(t) = / " Blw)etdu

— 00

Blw) = = / T Bt

:% N

Total emission will be an incoherent superposition of these single
particle sources

E(t)




Specific Intensity

e Energy flux normal to propagation direction

dW C
G _— __F?
dtd A 5 A7 (t)

e Total energy passing through d A

dW c [
- E2
dA  4r /_OO (t)dt

UZ F2(t)dt = 27 /Z \E(w)|2dw]




Specific Intensity

e Now given a timescale 1" for single particle processes

aw l dW
dAdwdt T dAdw

which given w = 27v 1s the specific flux. Given a resolved source

= —|E@W)I?

divide by the source solid angle to get /1,

o

. plane
' wave
distant
- source
approx




Stokes Parameters

e Specific intensity 1s related to quadratic combinations of the field.
Define the intensity matrix (time averaged over oscillations)(E ET)

e Hermitian matrix can be decomposed into Pauli matrices

1
P:<EET>:§(IJO+Q03+U01—VU2)»

where

1 0 0 1 0 —2 1 0
O) = ,O1 = , 092 = , O3 =
0 1 1 0 1 0 0 —1

e Stokes parameters recovered as Tr(o;P)



Stokes Parameters

e Consider a general plane wave solution

E(ta Z) — El (ta Z)él + EQ(ta Z)é2
Ei(t,z) = A el eilkz—wt)
Es(t, z) = Ase™? el(kz—wt)

e Explicitly:

[ = (BB} + B:E3) = A} + A2

Q = (E\E} — EyE3) = Al — A;

U= (B\Ej + B2 Ef) = 2A, Ay cos(¢a — 1)

V = —i(E\E} — ExEY) = 24, Ay sin(¢s — ¢1)

so that the Stokes parameters define the state up to an
unobservable overall phase of the wave



Polarization

e Radiation field involves a directed quantity, the electric field
vector, which defines the polarization

e Consider a general plane wave solution
E(ta Z) — El (ta Z)él =+ EQ(t7 Z)éQ

Ei(t, z) = ReA;e1eibz—wt)

Es(t, z) = ReAye?2eilkz—wt)
or at z = 0 the field vector traces out an ellipse

E(t, O) E— Al COS(Cdt — le)él —+ AQ COS(CUt — ng)ég
with principal axes defined by
E(t,0) = A} cos(wt)é] — A} sin(wt)é,

so as to trace out a clockwise rotation for A7, A;, > 0



Polarization

e Define polarization angle

~/ A . A
€; = COs x€1 + sl €y

A

/ . A A
€, = —sln Y€1 + COs €y

e Match

E(t,0) = A} coswt|cos yé; + sin yé,]
— Al cos wt[— sin y€; + cos yé,]
= Aj[cos ¢1 cos wt + sin ¢; sin wt|e;

+ As|cos ¢ cos wt + sin ¢g sin wit|és




Polarization
e Define relative strength of two principal states
Al = Eycos A, = Eysinf3
e Characterize the polarization by two angles
Ajcos ¢y = Eycos fcosy, Ajqsin¢; = Eysin 8 sin vy,
Ay cos ¢y = Eycos fsin vy, Ay sin g = —FEjy sin 5 cos
Or Stokes parameters by
[ =E;, Q= Ejcos23cos2y
U= E5cos2Bsin2y, V = Ejsin2f

o So I? = (Q* + U? + V#, double angles reflect the spin 2 field or
headless vector nature of polarization



Polarization

Special cases

e If 3 = 0,7/2, 7w then only one principal axis, ellipse collapses to a
line and V' = 0 — linear polarization oriented at angle

If y=0,7/2,mthen ] =+Q and U =0
If y=n/4,37/4...then ] = +U and Q) =0-soU is Q) ina
frame rotated by 45 degrees

o If 5 = 7 /4,3m/4, then principal components have equal strength

and F field rotatesonacircle: [ =+Vand @ =U =0 —
circular polarization

e U/() = tan 2y defines angle of linear polarization and
V /I = sin 25 defines degree of circular polarization



Natural Light

e A monochromatic plane wave 1s completely polarized
P=Q*+U*+V?

e Polarization matrix 1s like a density matrix in quantum mechanics
and allows for pure (coherent) states and mixed states

e Suppose the total E;; field 1s composed of different (frequency)
components

Etot — Z Ei

e Then components decorrelate in time average

(BwEle) =Y (BE])) =Y (BE])

1 )



Natural Light

e So Stokes parameters of incoherent contributions add

I=) 1 Q=) Q U= U V=)V

and since individual (), U and V' can have either sign:
I* > Q? + U? + V72, all 4 Stokes parameters needed



Polarized Radiative Transfer

e Define a specific intensity “vector”: I, = (I,1, I,2, U, V') where

]:]V1+[V27Q: Vl_]V2

i,

T I/SI/
ds |

e Source vector 1n practice
can be complicated

e Thomson collision
based on differential cross section

dO’T 3 2 A
d) s | For.

- 1)

A
€
e- Thomson
®e'2 > \’ Scattering
Q)
v




Polarized Radiative Transfer

e E' and E denote the incoming and outgoing directions of the
electric field or polarization vector.

e Thomson scattering into ey: [, — [, but [,,; does not scatter

e More generally if © is the scattering angle then referenced to the
plane of the scattering o, = n.or and

( cos’® 0 0 0 \
0 1 0 0

S, = > [ aqy I

ST 0 0 cos® 0

\ 0 0 0 cos@/

e But to calculate Stokes parameters 1n a fixed coordinate system
must rotate into the scattering basis, scatter and rotate back out to
the fixed coordinate system



Plasma Effects

e Astrophysical media are typically 1onized so that radiation does
not propagate in a vacuum but through an ionized plasma.

e However the plasma is typically so rarified that only the very
lowest frequency radiation 1s affected

e Maxwell equations for plane wave radiation exp|i(k - r — wt)] with

SOUrces
1k - E = 4mp, k- B =0,
4
ik x E = i—B, szB——z—E+—7TJ,
C C

e Medium is globally neutral but electric field of the radiation cause
a high frequency electron drift — current — charge via continuity



Plasma Sources

e [.orentz force

: el
mv=ckE —v=-———
Wm

e Current density carried by electrons of number density n

ne’E
j = Nev = —— = oK
wWm
ine? .
o = —— conductivity
wm
e Charge conservation
—iwp+1k-3=0
k-j
ki o g

W W



Plasma Frequency

e Maxwell equation with p

ik-E =47k -E

)
4
i (1 _ ﬂ) k-E=0
w1
1k-eE =0
with the dielectric constant
4 4 2
e=1——2—1-"2
W1 mw

w? Arne?
p 2
=1- _: 2 [‘“ ]



Plasma Frequency

e Likewise the Maxwell equation with j

4
ika:_ﬂj_ifE
C C

4
= (—Wa—ig> E
c c

ik x B = —i2¢E
C

e So that the Maxwell equations become source free equations

k-¢eE=0, ik-B=0,

ik xE=i2B, ikxB=—i-E,
C C



Wave Equation

e Wave equation becomes (similarly for B | E)

2

ilk x (k x E)] = —ik’E = ik x B = —i"¢E

c c?
e Modified dispersion relation

e If w < w, then k 1s imaginary and the wave function has an
exponential suppression - waves don’t propagate below the plasma
frequency

1/2
v, = ;"—i — 0.01 MHz (1621_3)




Plasma Cutoff & Refraction

e For the ionosphere n ~ 10* cm™ and radio waves at < 1MHz
cannot propagate

e For ISM n < 1 ecm™—2 and the cut off is a much smaller < 0.01
MHz

e The phase velocity defines the index of refaction

2
W C W
==t %nrz\/g—\/ _
kK n, W

e Radio waves can be refracted according to Snell’s law and change
their direction of propagation along the path s

A

dn, k
ds

= Vn,



Dispersion Measure

e For wave packet propagation the relevant quantity 1s the group
velocity defined by demanding that the phase remain stationary for
constructive interference

o(k) = kz — w(k)t

)0 ow
%:O:Z—%tzz—’l}gt
Ow wg
’Ug:%:C _ESC
1 w?

e Photons effectively gain a mass leading to a delay in arrival times



Dispersion Measure

e For a pulse of radiation from a pulsar

“ds d 1 [*
t, = —%——|—2 > wpds
0 Vg C cw* Jo

d 2 2 d
t, =—+ W62[/ ndSED]
cC Mmcw 0
% _ Are? n
Ow mecw?

Change in arrival time with frequency — dispersion measure —
distance given a mean n



Faraday Rotation

e In an external magnetic field By = Byes the electron responds to
the magnetic field as well as the electric field of the radiation

dv e
mEZQE_I_EVXBO

e Examine the propagation of circularly polarized states

Ej: (t) — E:t@_iwt [el mm ieg]
e Take a trial solution
—iwt[

vi(t) =vie e; t+ ies)]

—z’mwvi [el + iez] = eEi [el + ’I;eg] -+ EU:]:BO[—GQ + iel]
C

— [GE:E =+ iEBOU:l:] [e1 mm ieg]



Faraday Rotation

—i(wm + EBo)vjE = el
c

ey eBy
Vy = wp = ——
* m(w + wpg) " e
e Conductivity
jr envy  den
E:r Ei mwxwp)
dro
€ =1— ——
)
. 4rne
B m(w + wg)w
2
— 1 — “p



Faraday Rotation

e Right and left polarizations ‘ |
travel at different velocities: disperson ’ e
equal speed

relation for w > wp and w > w, polar.

: L Ly
by =~ Ei%g[ —%ﬁ (1iw—B)] nequarotfed

C C BL W sposd

e Considering linear polarization
as a superposition of right and left circular
polarization, the difference in propagation
speeds will lead to a Faraday rotation of the linear polarization



Faraday Rotation

d
¢i:/ kidS
0

Ao 1 [¢
725/0 (]f_|_ / —deS

e A¢/2 gives the rotation of linear polarization

1 4 2 d
AO = A¢ e’ / Bonds
0

e Phase

2 2cw? m mc

2 3
_ _=7C / Bonds

m2c2w?

e More generally By — B) the line of sight component

e Given an average n measure 5B — e.g. magnetic field of ISM,
cluster



E & M Potentials

e Introduce the vector and scalar potential to sitmplify source
calculation

e V. -B = 0implies that B =V x A, where A is the vector potential

e So Faraday’s law becomes

10
E=—— A
V X Cat(Vx )
10
E+-—A =0
V x [E+ e |
implying a scalar potential ¢
1 0A
E+-—=-Vo



Gauge

e Potentials (¢, A) allow for gauge freedom. Given a change in the
potentials through an arbitrary field ¢

A=A+ VY
10
=0~ g
the observable 5 and B fields invariant

B=VxA'=VxA



Lorentz Gauge

e Gauge freedom allows one to choose a convenient gauge to
simplify equations

e Choose a gauge where the relationship between the potentials 1s

1
V-A+ - &b =0
c Ot
e Maxwell equations simplify to
1 0%¢
2 _
VO~ Eae ~ T
1 0?A 47




Retarded Potentials

e Green function solutions (propagate a o0 function disturbance;
superimpose to get arbitrary source. [See Jackson]

e Looks like electrostatics but accounts for the finite propagation
time of light

d3 /

o(x,1 |[f]_ -
1 37!
A(r,t) = - ‘E]_ :’|

where the [] denotes evaluation at the retarded time

A1) = £t = e )



I .ienard-Wiechart Potential

e Consider a single charge on
a trajectory r((t) with velocity u = r((%)
p(r,t) = qo(r —ro(t))
j(r,t) = qud(r — ry(t))

e Scalar potential

r
observer

1
i [ a2t ot —t+ —|r —1'|)
|r—r’| c

5(r' — ro(t')) 1
/d?”/d’q C o) s gy e
C

v —r'

/dté(t — R(Ct))th,) R(t) = |r — ro(t)]



I .ienard-Wiechart Potential

Change variables so that explicit integration possible

R(t")

C

1 .
dt" = dt' + —R(t")dt'
C

"=t —t+

1 .
= [1 4+ —R(t")]dt’
C
R — —f'o — —Uu, n—

JQRR=2R-R—->R=R-fi=-u-n
(#)=1+4SR(#)=1- “u-n
k() = — =1—-u-

C C

which 1s the origin of relativistic beaming effects



I .ienard-Wiechart Potential

e Thussincet" =0—t =t — R(t')/c

o) = [ dt'5(t") s =

e Similarly

=0 kR

A= [

e For non-relativistic velocities K = 1 — u/c - n & 1 and potential
are just retarded versions of electrostatic potentials

e For u — c then enhanced radiation along u || n from relativistic
beaming



E&B Field

e Plug and chug with

E- 19 ¢y B-vxa
c Ot

E:Evel+Erad B=—nxE

e Velocity field falls off as 1/R?, 8 = u/c as a generalization of
Coulomb’s law

(0 — iggz— 52)]

Evel — (q [

e The radiation field depends on the acceleration and falls off as 1/ R
so that there is a flux £* oc 1/R? that propagates to infinity

A

B = | S (2= 8) x )

——= X
c | kR



[Larmor Formula

e Larmor
formula: non relativistic case § < 1

A

Erad:%%x(ﬂxﬁ)
:éﬂ (fi x 1)

e Letu/u-n=cos®

E..q| = % sin ©
c
e So flux
2.2 2.2
C o ~ CQqUu P S i
S = EEradn 1 p2ea Sib O = 1 23 Sin O



Larmor Formula
e Power per unit angle dA = R?d}

dW g2

_ inZ O
dtdQ ~ Axes o
dW  q*u? o 2q°1>
P = G = s | d0sin® 0 =

e So dipole pattern of radiation 1s perpendicular to acceleration and
polarization is in plane spanned by u and n

e Larmor formula can be used more generally in that one can
transform to a frame where the particles are non-relativistic via
Lorentz transformation



