
Set 5:
Classical E&M and Plasma Processes



Maxwell Equations
• Classical E&M defined by the Maxwell Equations (fields sourced

by matter) and the Lorentz force (matter moved by fields)

• In cgs (gaussian) units

∇ ·D = 4πρ, ∇ ·B = 0,

∇× E = −1

c

∂B

∂t
, ∇×H =

1

c

∂D

∂t
+

4π

c
j.

where ρ = charge density, j = current density, D = εE and
B = µH with ε = dielectric constant µ = magnetic permeability

• In vacuum, ε = µ = 1 and the Maxwell equations simplify to

∇ · E = 4πρ, ∇ ·B = 0,

∇× E = −1

c

∂B

∂t
, ∇×B =

1

c

∂E

∂t
+

4π

c
j,



Charge Conservation
• Maxwell equations are E and B symmetric aside from the lack of

magnetic charges

• Divergence of Ampere’s law→ charge conservation

∇ · [∇×B =
1

c

∂E

∂t
+

4π

c
j]

0 =
1

c

∂∇ · E
∂t

+
4π

c
∇ · j

0 =
4π

c

∂ρ

∂t
+

4π

c
∇ · j

0 =
∂ρ

∂t
+∇ · j



Wave Equation
• Source free propagation

∇ · E = 0, ∇ ·B = 0,

∇× E = −1

c

∂B

∂t
, ∇×B =

1

c

∂E

∂t
,

invariant under E→ B and B→ −E, so work out equation for E

• Curl of Faraday’s law→ wave equation

∇× [∇× E = −1

c

∂B

∂t
]

∇(∇ · E)−∇2E = −1

c

∂∇×B

∂t

−∇2E = − 1

c2

∂2E

∂t2

∇2E− 1

c2

∂2E

∂t2
= 0



Wave Equation
• Similarly for B

[
∇2 − 1

c2

∂2

∂t2

](
E

B

)
= 0

• Wave solutions k = 2π/λ = 2πν/c [real part or superimposed k

and −k] (
E

B

)
=

(
E0e1

B0e2

)
ei(k·x−ωt)

• Wave solution in wave equation provides the “dispersion” relation

k2 − 1

c2
ω2 = 0, ω = kc = 2πν



Wave Equation
• E and B fields related by Maxwell equations

ik · ê1E0 = 0, ik · ê2B0 = 0,

ik× ê1E0 = i
ω

c
ê2B0, ik× ê2B0 = −iω

c
ê1E0, ,

so ê1 ⊥ k, ê2 ⊥ k, k× ê1 ‖ ê2. So (ê1, ê2, k̂) form a orthonormal
right handed basis

ik× ê1E0 = i
ω

c
ê2B0, kE0 =

ω

c
B0, → E0 = B0



Lorentz Force
• Lorentz force

F = q
[
E +

v

c
×B

]
where q is the charge

• For a distribution of charges in a volume, charge and current
density j = ρv provide a force density

f = ρE +
1

c
j×B

• Work and change in energy density

W =

∫
F · dx, dW

dt
= F · v = qE · v

dumech

dt
= ρE · v = E · j



Field Energy
• Use energy conservation to define field and radiation energy

4π

c
j = ∇×H− 1

c

∂D

∂t

j =
c

4π

(
∇×H− 1

c

∂D

∂t

)
dumech

dt
= E · j =

c

4π

(
∇×H− 1

c

∂D

∂t

)
· E

[E · (∇×H) = H · (∇× E)−∇ · (E×H)]

dumech

dt
=

c

4π

[
H · (∇× E)−∇ · (E×H)− 1

c

∂D

∂t
· E
]

[
∇× E = −1

c

∂B

∂t
, H = B/µ, D = εE

]
=

1

4π

[
− 1

µ

∂B

∂t
·B− ε∂E

∂t
· E− c∇ · (E×H)

]



Field Energy
• Rewrite field terms as a total derivative

∂

∂t
(B ·B) = 2B · ∂B

∂t
,

∂

∂t
(E · E) = 2E · ∂E

∂t

• Equation forms a conservation law

∂

∂t
(umech + ufield) +∇ · S = 0

with

ufield =
1

8π

(
εE2 +

1

µ
B2

)
and the energy flux carried by the radiation, or Poynting vector

S =
c

4π
E×H



Field Energy
• For vacuum µ = ε = 1 and so field energy in a monocromatic

wave, time averaged over the oscillation

〈ufield〉 =
1

8π

1

2
(E2

0 +B2
0) =

1

8π
E2

0

〈S〉 =
c

4π

1

2
E0B0 =

c

8π
E2

0

which says that 〈S〉/〈ufield〉 = c, (recall Iν/uν = c)

• Energy Flux

〈S〉 =
c

8π
E2

0 =

∫
dν

∫
dΩ cos θIν

so the specific intensity of a monocromatic plane wave is a delta
function in frequency and angle



Specific Intensity
• Actual processes will not be monocromatic but have some

waveform associated with the acceleration of the emitter:
superposition of plane waves

E(t) =

∫ ∞
−∞

E(ω)e−iωtdω

E(ω) =
1

2π

∫ ∞
−∞

E(t)eiωtdt

Total emission will be an incoherent superposition of these single
particle sources

<t>~T

t

E(t)



Specific Intensity
• Energy flux normal to propagation direction

dW

dtdA
= S =

c

4π
E2(t)

• Total energy passing through dA

dW

dA
=

c

4π

∫ ∞
−∞

E2(t)dt[∫ ∞
−∞

E2(t)dt = 2π

∫ ∞
−∞
|E(ω)|2dω

]
=

c

4π

[
4π

∫ ∞
0

|E(ω)|2dω
]

dW

dAdω
= c|E(ω)|2



Specific Intensity
• Now given a timescale T for single particle processes

dW

dAdωdt
=

1

T

dW

dAdω
=

c

T
|E(ω)|2

which given ω = 2πν is the specific flux. Given a resolved source
divide by the source solid angle to get Iν

plane 
wave 
distant
source
approx



Stokes Parameters
• Specific intensity is related to quadratic combinations of the field.

Define the intensity matrix (time averaged over oscillations)〈EE†〉

• Hermitian matrix can be decomposed into Pauli matrices

P =
〈
EE†

〉
=

1

2
(Iσ0 +Qσ3 + U σ1 − V σ2) ,

where

σ0 =

(
1 0

0 1

)
,σ1 =

(
0 1

1 0

)
,σ2 =

(
0 −i
i 0

)
,σ3 =

(
1 0

0 −1

)

• Stokes parameters recovered as Tr(σiP)



Stokes Parameters
• Consider a general plane wave solution

E(t, z) = E1(t, z)ê1 + E2(t, z)ê2

E1(t, z) = A1e
iφ1ei(kz−ωt)

E2(t, z) = A2e
iφ2ei(kz−ωt)

• Explicitly:

I = 〈E1E
∗
1 + E2E

∗
2〉 = A2

1 + A2
2

Q = 〈E1E
∗
1 − E2E

∗
2〉 = A2

1 − A2
2

U = 〈E1E
∗
2 + E2E

∗
1〉 = 2A1A2 cos(φ2 − φ1)

V = −i 〈E1E
∗
2 − E2E

∗
1〉 = 2A1A2 sin(φ2 − φ1)

so that the Stokes parameters define the state up to an
unobservable overall phase of the wave



Polarization
• Radiation field involves a directed quantity, the electric field

vector, which defines the polarization

• Consider a general plane wave solution

E(t, z) = E1(t, z)ê1 + E2(t, z)ê2

E1(t, z) = ReA1e
iφ1ei(kz−ωt)

E2(t, z) = ReA2e
iφ2ei(kz−ωt)

or at z = 0 the field vector traces out an ellipse

E(t, 0) = A1 cos(ωt− φ1)ê1 + A2 cos(ωt− φ2)ê2

with principal axes defined by

E(t, 0) = A′1 cos(ωt)ê′1 − A′2 sin(ωt)ê′2

so as to trace out a clockwise rotation for A′1, A
′
2 > 0



Polarization
.

e1

e'1e'2

e2

χ

E(t)

• Define polarization angle

ê′1 = cosχê1 + sinχê2

ê′2 = − sinχê1 + cosχê2

• Match

E(t, 0) = A′1 cosωt[cosχê1 + sinχê2]

− A′2 cosωt[− sinχê1 + cosχê2]

= A1[cosφ1 cosωt+ sinφ1 sinωt]ê1

+ A2[cosφ2 cosωt+ sinφ2 sinωt]ê2



Polarization
• Define relative strength of two principal states

A′1 = E0 cos β A′2 = E0 sin β

• Characterize the polarization by two angles

A1 cosφ1 = E0 cos β cosχ, A1 sinφ1 = E0 sin β sinχ,

A2 cosφ2 = E0 cos β sinχ, A2 sinφ2 = −E0 sin β cosχ

Or Stokes parameters by

I = E2
0 , Q = E2

0 cos 2β cos 2χ

U = E2
0 cos 2β sin 2χ , V = E2

0 sin 2β

• So I2 = Q2 + U2 + V 2, double angles reflect the spin 2 field or
headless vector nature of polarization



Polarization
Special cases

• If β = 0, π/2, π then only one principal axis, ellipse collapses to a
line and V = 0→ linear polarization oriented at angle χ

If χ = 0, π/2, π then I = ±Q and U = 0

If χ = π/4, 3π/4... then I = ±U and Q = 0 - so U is Q in a
frame rotated by 45 degrees

• If β = π/4, 3π/4, then principal components have equal strength
and E field rotates on a circle: I = ±V and Q = U = 0→
circular polarization

• U/Q = tan 2χ defines angle of linear polarization and
V/I = sin 2β defines degree of circular polarization



Natural Light
• A monochromatic plane wave is completely polarized
I2 = Q2 + U2 + V 2

• Polarization matrix is like a density matrix in quantum mechanics
and allows for pure (coherent) states and mixed states

• Suppose the total Etot field is composed of different (frequency)
components

Etot =
∑
i

Ei

• Then components decorrelate in time average〈
EtotE

†
tot

〉
=
∑
ij

〈
EiE

†
j

〉
=
∑
i

〈
EiE

†
i

〉



Natural Light
• So Stokes parameters of incoherent contributions add

I =
∑
i

Ii Q =
∑
i

Qi U =
∑
i

Ui V =
∑
i

Vi

and since individual Q, U and V can have either sign:
I2 ≥ Q2 + U2 + V 2, all 4 Stokes parameters needed



Polarized Radiative Transfer
• Define a specific intensity “vector”: Iν = (Iν1, Iν2, U, V ) where
I = Iν1 + Iν2, Q = Iν1 − Iν2

dIν
ds

= αν(Sν − Iν)

.

Thomson 
Scattering

Θ

e1

e1

e2

e2

e-

'

'

• Source vector in practice
can be complicated

• Thomson collision
based on differential cross section

dσT
dΩ

=
3

8π
|Ê′ · Ê|2σT ,



Polarized Radiative Transfer
• Ê′ and Ê denote the incoming and outgoing directions of the

electric field or polarization vector.

• Thomson scattering into e1: Iν2 → Iν2 but Iν1 does not scatter

• More generally if Θ is the scattering angle then referenced to the
plane of the scattering αν = neσT and

Sν =
3

8π

∫
dΩ′


cos2 Θ 0 0 0

0 1 0 0

0 0 cos Θ 0

0 0 0 cos Θ

 I′ν

• But to calculate Stokes parameters in a fixed coordinate system
must rotate into the scattering basis, scatter and rotate back out to
the fixed coordinate system



Plasma Effects
• Astrophysical media are typically ionized so that radiation does

not propagate in a vacuum but through an ionized plasma.

• However the plasma is typically so rarified that only the very
lowest frequency radiation is affected

• Maxwell equations for plane wave radiation exp[i(k · r− ωt)] with
sources

ik · E = 4πρ, ik ·B = 0,

ik× E = i
ω

c
B, ik×B = −iω

c
E +

4π

c
j,

• Medium is globally neutral but electric field of the radiation cause
a high frequency electron drift→ current→ charge via continuity



Plasma Sources
• Lorentz force

mv̇ = eE → v = − eE

iωm

• Current density carried by electrons of number density n

j = nev = −ne
2E

iωm
≡ σE

σ =
ine2

ωm
conductivity

• Charge conservation

−iωρ+ ik · j = 0

ρ =
k · j
ω

=
σ

ω
k · E



Plasma Frequency
• Maxwell equation with ρ

ik · E = 4π
σ

ω
k · E

i

(
1− 4πσ

ωi

)
k · E = 0

ik · εE = 0

with the dielectric constant

ε = 1− 4πσ

ωi
= 1− 4πne2

mω2

= 1−
ω2
p

ω2

[
ω2
p =

4πne2

m

]



Plasma Frequency
• Likewise the Maxwell equation with j

ik×B =
4π

c
j− iω

c
E

=

(
4π

c
σ − iω

c

)
E

ik×B = −iω
c
εE

• So that the Maxwell equations become source free equations

ik · εE = 0, ik ·B = 0,

ik× E = i
ω

c
B, ik×B = −iω

c
εE,



Wave Equation
• Wave equation becomes (similarly for B ⊥ E)

i[k× (k× E)] = −ik2E = i
ω

c
k×B = −iω

2

c2
εE

• Modified dispersion relation

k2 =
ω2

c2
ε =

ω2

c2

(
1−

ω2
p

ω2

)
k =

1

c

√
ω2 − ω2

p

• If ω < ωp then k is imaginary and the wave function has an
exponential suppression - waves don’t propagate below the plasma
frequency

νp =
ωp
2π

= 0.01 MHz
( n

1cm−3

)1/2



Plasma Cutoff & Refraction
• For the ionosphere n ∼ 104 cm−3 and radio waves at < 1MHz

cannot propagate

• For ISM n < 1 cm−3 and the cut off is a much smaller < 0.01

MHz

• The phase velocity defines the index of refaction

vp =
ω

k
≡ c

nr
→ nr ≡

√
ε =

√
1−

ω2
p

ω2

• Radio waves can be refracted according to Snell’s law and change
their direction of propagation along the path s

dnrk̂

ds
= ∇nr



Dispersion Measure
• For wave packet propagation the relevant quantity is the group

velocity defined by demanding that the phase remain stationary for
constructive interference

φ(k) = kz − ω(k)t

∂φ

∂k
= 0 = z − ∂ω

∂k
t = z − vgt

vg =
∂ω

∂k
= c

√
1−

ω2
p

ω2
≤ c

≈ c(1− 1

2

ω2
p

ω2
) [ω � ωp]

• Photons effectively gain a mass leading to a delay in arrival times



Dispersion Measure
• For a pulse of radiation from a pulsar

tp =

∫ d

0

ds

vg
≈ d

c
+

1

2cω2

∫ d

0

ω2
pds

tp =
d

c
+

2πe2

mcω2

[∫ d

0

nds ≡ D

]
∂tp
∂ω

= − 4πe2

mcω3
D

Change in arrival time with frequency→ dispersion measure→
distance given a mean n



Faraday Rotation
• In an external magnetic field B0 = B0e3 the electron responds to

the magnetic field as well as the electric field of the radiation

m
dv

dt
= eE +

e

c
v ×B0

• Examine the propagation of circularly polarized states

E±(t) = E±e
−iωt[e1 ± ie2]

• Take a trial solution

v±(t) = v±e
−iωt[e1 ± ie2]

−imωv±[e1 ± ie2] = eE±[e1 ± ie2] +
e

c
v±B0[−e2 ± ie1]

= [eE± ± i
e

c
B0v±][e1 ± ie2]



Faraday Rotation

−i(ωm± e

c
B0)v± = eE±

v± =
ieE±

m(ω ± ωB)

[
ωB =

eB0

mc

]
• Conductivity

σ =
j±
E±

=
env±
E±

=
ie2n

m(ω ± ωB)

ε± = 1− 4πσ

ωi

= 1− 4πne2

m(ω ± ωB)ω

= 1−
ω2
p

ω(ω ± ωB)



Faraday Rotation
.

t1 t1t2 t2
x2

+

equal speed
linear
polar.

t1 t1
t2

t2
x2

+

unequal
speed

rotated

• Right and left polarizations
travel at different velocities: disperson
relation for ω � ωB and ω � ωp

k± =
ω

c

√
ε± ≈

ω

c

[
1− 1

2

ω2
p

ω2

(
1± ωB

ω

)]
• Considering linear polarization

as a superposition of right and left circular
polarization, the difference in propagation
speeds will lead to a Faraday rotation of the linear polarization



Faraday Rotation
• Phase

φ± =

∫ d

0

k±ds

∆φ

2
=

1

2

∫ d

0

(k+ − k−)ds =
1

2c

∫ d

0

ω2
p

ω2
ωBds

• ∆φ/2 gives the rotation of linear polarization

∆θ =
∆φ

2
=

1

2cω2

4πe2

m

e

mc

∫ d

0

B0nds

=
2πe3

m2c2ω2

∫
B0nds

• More generally B0 → B‖ the line of sight component

• Given an average n measure B – e.g. magnetic field of ISM,
cluster



E & M Potentials
• Introduce the vector and scalar potential to simplify source

calculation

• ∇ ·B = 0 implies that B = ∇×A, where A is the vector potential

• So Faraday’s law becomes

∇× E = −1

c

∂

∂t
(∇×A)

∇× [E +
1

c

∂

∂t
A] = 0

implying a scalar potential φ

E +
1

c

∂A

∂t
= −∇φ



Gauge
• Potentials (φ,A) allow for gauge freedom. Given a change in the

potentials through an arbitrary field ψ

A′ = A +∇ψ

φ′ = φ− 1

c

∂ψ

∂t

the observable E and B fields invariant

E = −1

c

∂A′

∂t
−∇φ′

= −1

c

∂A

∂t
− 1

c

∂

∂t
∇ψ −∇φ+

1

c

∂

∂t
∇ψ

= −1

c

∂A

∂t
−∇φ

B = ∇×A′ = ∇×A



Lorentz Gauge
• Gauge freedom allows one to choose a convenient gauge to

simplify equations

• Choose a gauge where the relationship between the potentials is

∇ ·A +
1

c

∂φ

∂t
= 0

• Maxwell equations simplify to

∇2φ− 1

c2

∂2φ

∂t2
= −4πρ

∇2A− 1

c2

∂2A

∂t2
= −4π

c
j



Retarded Potentials
• Green function solutions (propagate a δ function disturbance;

superimpose to get arbitrary source. [See Jackson]

• Looks like electrostatics but accounts for the finite propagation
time of light

φ(r, t) =

∫
[ρ]d3r′

|r− r′|

A(r, t) =
1

c

∫
[j]d3r′

|r− r′|

where the [] denotes evaluation at the retarded time

[f ](r′, t) = f(r′, t− 1

c
|r− r′|)



Lienard-Wiechart Potential
.

q

n

r'

r

r0(t')

R(t')

observer

• Consider a single charge on
a trajectory r0(t) with velocity u = ṙ0(t)

ρ(r, t) = qδ(r− r0(t))

j(r, t) = quδ(r− r0(t))

• Scalar potential

φ(r, t) =

∫
d3r′

∫
dt′
ρ(r′, t′)

|r− r′|
δ(t′ − t+

1

c
|r− r′|)

=

∫
d3r′

∫
dt′
qδ(r′ − r0(t′))

|r− r′|
δ(t′ − t+

1

c
|r− r′|)

= q

∫
dt′δ(t′ − t+

R(t′)

c
)

1

R(t′)
R(t) = |r− r0(t)|



Lienard-Wiechart Potential
Change variables so that explicit integration possible

t′′ = t′ − t+
R(t′)

c

dt′′ = dt′ +
1

c
Ṙ(t′)dt′

= [1 +
1

c
Ṙ(t′)]dt′

Ṙ = −ṙ0 = −u, n̂ =
R

R
, Ṙ · n̂ = −u · n̂

2RṘ = 2Ṙ ·R→ Ṙ = Ṙ · n̂ = −u · n̂

κ(t′) ≡ 1 +
1

c
Ṙ(t′) = 1− 1

c
u · n̂

which is the origin of relativistic beaming effects



Lienard-Wiechart Potential
• Thus since t′′ = 0→ t′ = t−R(t′)/c

φ(r, t) = q

∫
dt′′δ(t′′)

1

κ(t′)R(t′)
=

q

κR

∣∣∣
t′′=0

=
[ q

κR

]
• Similarly

A(r, t) =
[ qu
cκR

]
• For non-relativistic velocities κ = 1− u/c · n̂ ≈ 1 and potential

are just retarded versions of electrostatic potentials

• For u→ c then enhanced radiation along u ‖ n from relativistic
beaming



E&B Field
• Plug and chug with

E = −1

c

∂A

∂t
−∇φ, B = ∇×A

E = Evel + Erad B = n̂× E

• Velocity field falls off as 1/R2, β = u/c as a generalization of
Coulomb’s law

Evel = q

[
(n̂− β)(1− β2)

κ3R2

]
• The radiation field depends on the acceleration and falls off as 1/R

so that there is a flux E2 ∝ 1/R2 that propagates to infinity

Erad =
q

c

[
n̂

κ3R
× ((n̂− β)× β̇)

]



Larmor Formula
.

Θ

u n n x u 

Erad

• Larmor
formula: non relativistic case β � 1

Erad =
q

c

n̂

R
× (n̂× β̇)

=
q

c2R
n̂× (n̂× u̇)

• Let u̇/u̇ · n̂ = cos Θ

|Erad| =
qu̇

Rc2
sin Θ

• So flux

S =
c

4π
E2

radn̂ =
c

4π

q2u̇2

R2c4
sin2 Θ =

1

4π

q2u̇2

R2c3
sin2 Θ



Larmor Formula
• Power per unit angle dA = R2dΩ

dW

dtdΩ
=
q2u̇2

4πc3
sin2 Θ

P =
dW

dt
=
q2u̇2

4πc3

∫
dΩ sin2 Θ =

2q2u̇2

3c3

• So dipole pattern of radiation is perpendicular to acceleration and
polarization is in plane spanned by u̇ and n̂

• Larmor formula can be used more generally in that one can
transform to a frame where the particles are non-relativistic via
Lorentz transformation


