Set 6:

Relativity

The Metric

- The metric defines a measure on a space, distance between points, length of vectors.
- 3D Cartesian coordinates: separation vector between 2 points $d x^{i}$ (upper or contravariant indices)

$$
d s^{2}=\sum_{i=1}^{3} d x^{i} d x^{i}
$$

- Generalize to curvilinear coordinates, e.g. for spherical coordinates (r, θ, ϕ) the distances along an orthonormal set of vectors

$$
\begin{aligned}
\hat{\mathbf{e}}_{r}: & d r \\
\hat{\mathbf{e}}_{\theta}: & r d \theta \\
\hat{\mathbf{e}}_{\phi}: & r \sin \theta d \phi
\end{aligned}
$$

The Metric

- Length in spherical coordinates

$$
\begin{aligned}
d s^{2} & =d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2} \\
& =\sum_{i j} g_{i j} d x^{i} d x^{j}
\end{aligned}
$$

defines the metric

$$
g_{i j}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & r^{2} & 0 \\
0 & 0 & r^{2} \sin ^{2} \theta
\end{array}\right)
$$

The Metric

- This would look like an ordinary dot product if we introduce the dual or "covariant" components of the vector

$$
\begin{gathered}
d x_{i} \equiv g_{i j} d x^{j} \\
d s^{2}=\sum_{i} d x_{i} d x^{i} \equiv d x_{i} d x^{i}
\end{gathered}
$$

where the Einstein summation convention is that repeated pairs of upper and lower indices are summed

- Similarly the dot product between two vectors is given by

$$
V^{i} X_{i}=g_{i j} V^{i} X^{j}=V_{i} X^{i}
$$

Special Relativity

- In space time, the coordinates run from $0-3$ with $\mu=0$ as the temporal coordinate, and $d s^{2}$ represents the space-time separation

$$
d x^{\mu}=\left(c d t, d x^{1}, d x^{2}, d x^{3}\right)
$$

- Metric is defined by the requirement that
 two observers will see light propagating at the speed of light.
- Spherical pulse travels for time $d t$ at the speed of light c
$c^{2} d t^{2}=d x_{i} d x^{i} \rightarrow-c^{2} d t^{2}+d x_{i} d x^{i}=0=-c^{2} d t^{\prime 2}+d x^{\prime}{ }_{i} d x^{\prime i}$

Special Relativity

- The space time separation for light is null and invariant
- So as an invariant measure on the space time, the temporal coordinate has the opposite sign: in Cartesian coordinates

$$
\begin{gathered}
{\left[g_{\mu \nu}=\right] \eta_{\mu \nu}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)} \\
d s^{2}=d x_{\mu} d x^{\mu}=\eta_{\mu \nu} d x^{\mu} d x^{\nu}=-c^{2} d t^{2}+d x_{i} d x^{i}
\end{gathered}
$$

Lorentz Transformation

- Set of all linear coordinate transformations that leave $d s^{2}$, and hence the speed of light, invariant
- 3D example: rotations leave the length of vectors invariant, generalization of a 4D rotation is a Lorentz transformation
- Begin with a general linear transformation (excluding a constant term)

$$
\begin{aligned}
x^{\prime \mu} & =\Lambda_{\nu}^{\mu} x^{\nu} \rightarrow \Lambda_{\nu}^{\mu}=\frac{\partial x^{\prime \mu}}{\partial x^{\nu}} \\
d s^{\prime 2} & =\eta_{\alpha \beta} d x^{\prime \alpha} d x^{\prime \beta} \\
& =\eta_{\alpha \beta} \Lambda_{\mu}^{\alpha} d x^{\mu} \Lambda_{\nu}^{\beta} d x^{\nu} \\
& =d s^{2}=\eta_{\mu \nu} d x^{\mu} d x^{\nu} \\
\eta_{\mu \nu} & =\eta_{\alpha \beta} \Lambda_{\mu}^{\alpha} \Lambda_{\nu}^{\beta}
\end{aligned}
$$

Lorentz Transformation

- Suppose a particle at rest in frame
O is viewed in frame O^{\prime} moving with a velocity v

$$
\begin{aligned}
d x^{\prime \mu} & =\Lambda_{\nu}^{\mu} d x^{\nu} \\
d x^{\nu} & =(c d t, 0,0,0)
\end{aligned}
$$

O [rest frame]

- Take $\mu=0, \mu=i$

$$
\begin{aligned}
& c d t^{\prime}=\Lambda_{0}^{0} d x^{0}+\Lambda_{i}^{0} d x^{i}=\Lambda_{0}^{0} c d t \\
& d x^{\prime i}=\Lambda_{0}^{i} c d t
\end{aligned}
$$

Lorentz Transformation

- Combine

$$
\begin{aligned}
\frac{d x^{\prime i}}{c d t^{\prime}} & \equiv-\frac{v^{i}}{c}=\frac{\Lambda_{0}^{i}}{\Lambda_{0}^{0}} \\
\Lambda_{0}^{i} & =-\frac{v^{i}}{c} \Lambda_{0}^{0}
\end{aligned}
$$

- Recall invariance of $d s^{2}$ implies

$$
\eta_{\mu \nu}=\eta_{\alpha \beta} \Lambda_{\mu}^{\alpha} \Lambda_{\nu}^{\beta}
$$

- Evaluate 00 component

$$
\begin{aligned}
& \eta_{00}=-1=\eta_{\alpha \beta} \Lambda_{0}^{\alpha} \Lambda_{0}^{\beta} \\
& -1=-\left(\Lambda_{0}^{0}\right)^{2}+\left(\Lambda_{0}^{i}\right)^{2}
\end{aligned}
$$

Lorentz Transformation

- Plug in relationship between Λ 's

$$
\begin{aligned}
-1 & =-\left(\Lambda_{0}^{0}\right)^{2}+\frac{v^{2}}{c^{2}}\left(\Lambda_{0}^{0}\right)^{2} \\
1 & =\left(\Lambda_{0}^{0}\right)^{2}\left(1-\frac{v^{2}}{c^{2}}\right)
\end{aligned}
$$

- Solve for $\Lambda^{0}{ }_{0}$

$$
\begin{aligned}
\Lambda_{0}^{0} & =\frac{1}{\sqrt{1-v^{2} / c^{2}}} \equiv \gamma \\
\Lambda_{0}^{i} & =-\gamma v^{i} / c=-\gamma \beta^{i}
\end{aligned}
$$

- Spatial components determined from $\eta_{\mu \nu}=\eta_{\alpha \beta} \Lambda^{\alpha}{ }_{\mu} \Lambda^{\beta}{ }_{\nu}$, excluding rotation before boost in $\hat{\mathbf{e}}_{1}$ direction: $\Lambda^{0}{ }_{1}=-\beta \Lambda^{1}{ }_{1}$, $1=-\left(\Lambda^{0}{ }_{1}\right)^{2}+\left(\Lambda^{1}{ }_{1}\right)^{2}$

Lorentz Transformation

- Lorentz transformation for boost in $\hat{\mathbf{e}}_{1}$ direction

$$
\Lambda_{\nu}^{\mu}=\left(\begin{array}{cccc}
\gamma & -\beta \gamma & 0 & 0 \\
-\beta \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

or with $d x^{\prime \mu}=\Lambda^{\mu}{ }_{\nu} d x^{\nu}$

$$
\begin{aligned}
c t^{\prime} & =\gamma c t-\beta \gamma x=\gamma c\left(t-\frac{\beta}{c} x\right) \\
t^{\prime} & =\gamma\left(t-\frac{v}{c^{2}} x\right) \\
x^{\prime} & =-\beta \gamma c t+\gamma x \\
x^{\prime} & =\gamma(x-v t)
\end{aligned}
$$

Lorentz Transformation

- Relativity paradoxes by holding various things fixed: simultaneity in one frame not same as another
- Lorentz contraction: (primed: rest frame) length measured at fixed t

$$
\left.\Delta x^{\prime}\right|_{t}=\gamma \Delta x \rightarrow \Delta x=\Delta x^{\prime} /\left.\gamma\right|_{t}
$$

- Time dilation measured at $x^{\prime}=0$

$$
\begin{aligned}
\Delta t^{\prime} & =\gamma\left(\Delta t-\left.\frac{v}{c^{2}} x\right|_{x=v t}\right) \\
& =\gamma\left(\Delta t-\frac{v^{2}}{c^{2}} \Delta t\right)=\frac{1}{\gamma} \Delta t \\
\Delta t^{\prime} & =\frac{1}{\gamma} \Delta t
\end{aligned}
$$

Lorentz Transformation

- Boost of a covariant vector

$$
\begin{aligned}
& x_{\mu}^{\prime}=\tilde{\Lambda}_{\mu}{ }^{\nu} x_{\nu} \rightarrow \tilde{\Lambda}_{\mu}{ }^{\nu} \equiv \frac{\partial x_{\mu}^{\prime}}{\partial x_{\nu}} \\
& x_{\alpha} x^{\alpha}=x_{\mu}^{\prime} x^{\prime \mu}=\tilde{\Lambda}_{\mu}{ }^{\alpha} x_{\alpha} \Lambda^{\mu}{ }_{\beta} x^{\beta} \\
& \tilde{\Lambda}_{\mu}^{\alpha} \Lambda^{\mu}{ }_{\beta}=\delta^{\alpha}{ }_{\beta} \rightarrow \tilde{\Lambda} \boldsymbol{\Lambda}=\mathbf{I} \rightarrow \tilde{\Lambda}=\Lambda^{-1} \\
& \tilde{\Lambda}_{\mu}{ }^{\nu} \equiv \frac{\partial x^{\nu}}{\partial x^{\mu \prime}} \\
& \tilde{\Lambda}_{\mu}{ }^{\nu}=\left(\begin{array}{cccc}
\gamma & \beta \gamma & 0 & 0 \\
\beta \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Lorentz Transformation

- Tensors: multi-index objects that transform under a Lorentz transformation as, e.g.

$$
T_{\nu}^{\prime \mu}=\Lambda_{\sigma}^{\mu} \tilde{\Lambda}_{\nu}{ }^{\tau} T_{\tau}^{\sigma}
$$

- Special relativity: laws of physics invariant under Lorentz transformation = laws of physics can be written as relationships between scalars, 4 vectors and tensors
- Like $d s^{2}$ the contraction of a set of 4 vectors or tensors is a Lorentz invariant
- What about laws involving derivatives?

Derivative Operator

- Derivative operator on a scalar transforms as a covariant vector

$$
\begin{aligned}
& \frac{\partial}{\partial x^{\prime \alpha}}=\frac{\partial x^{\beta}}{\partial x^{\prime \alpha}} \frac{\partial}{\partial x^{\beta}}=\tilde{\Lambda}_{\alpha}{ }^{\beta} \frac{\partial}{\partial x^{\beta}} \\
& \nabla_{\alpha}^{\prime}=\tilde{\Lambda}_{\alpha}^{\beta} \nabla_{\beta}
\end{aligned}
$$

- Derivative operator on a vector transforms as a tensor

$$
\begin{aligned}
T_{\alpha}{ }^{\beta} & =\nabla_{\alpha} V^{\beta}=\frac{\partial}{\partial x^{\alpha}} V^{\beta} \\
T_{\alpha}^{\prime}{ }^{\beta} & =\nabla_{\alpha}^{\prime} V^{\prime \beta}=\frac{\partial}{\partial x^{\prime \alpha}} V^{\prime \beta}=\frac{\partial}{\partial x^{\prime \alpha}}\left(\frac{\partial x^{\prime \beta}}{\partial x^{\mu}} V^{\mu}\right) \\
& =\frac{\partial x^{\prime \beta}}{\partial x^{\mu}} \frac{\partial}{\partial x^{\prime \alpha}} V^{\mu}+V^{\mu} \frac{\partial}{\partial x^{\prime \alpha}} \frac{\partial x^{\prime \beta}}{\partial x^{\mu}}
\end{aligned}
$$

Derivative Operator

- For a Lorentz transformation, the coordinates are linearly related

$$
\begin{gathered}
\frac{\partial}{\partial x^{\prime \alpha}} \frac{\partial x^{\prime \beta}}{\partial x^{\mu}}=\frac{\partial}{\partial x^{\prime \alpha}} \Lambda_{\mu}^{\beta}=0 \\
T_{\alpha}{ }^{\beta}=\frac{\partial x^{\prime \beta}}{\partial x^{\mu}} \frac{\partial x^{\nu}}{\partial x^{\prime \alpha}} \frac{\partial}{\partial x^{\nu}} V^{\mu}=\Lambda_{\mu}^{\beta} \tilde{\Lambda}_{\alpha}^{\nu} T_{\nu}^{\alpha}
\end{gathered}
$$

so that the derivative of a vector transforms as a tensor as long as the coordinate transformation is "special", i.e. linear. In general relativity this condition is lifted by promoting the ordinary derivative to a covariant derivative through the connection coefficients

4 Velocity

- Four velocity:
$d x^{\mu}$ is a vector $d \tau^{2}=-d s^{2} / c^{2}$ is a scalar

$$
\begin{aligned}
& \frac{d x^{\mu}}{d \tau} \equiv U^{\mu} \\
& \quad(c, 0,0,0)_{\text {restframe }}
\end{aligned}
$$

in a boosted frame (particle velocity is opposite to boost $u=-\beta_{u} c$)

$$
U^{\mu}=\Lambda_{\nu}^{\mu} U_{\mathrm{rest}}^{\nu}=\left(\gamma_{u} c,-\beta_{u} \gamma_{u} c, 0,0\right)=\gamma_{u}(c, \mathbf{u})
$$

4 Velocity

- Boost again by β to show how velocity transforms

$$
\begin{aligned}
& U^{\prime 0}=\gamma\left(U^{0}-\beta U^{1}\right)=\gamma \gamma_{u}\left(c-\beta u^{1}\right) \equiv \gamma_{u^{\prime}} c \\
& U^{\prime 1}=\gamma\left(-\beta U^{0}+U^{1}\right)=\gamma \gamma_{u}\left(-\beta c+u^{1}\right) \equiv \gamma_{u^{\prime}} u^{\prime 1} \\
& U^{\prime 2}=U^{2}=\gamma_{u} u^{2}=\gamma_{u^{\prime}} u^{\prime 2} \\
& U^{\prime 3}=U^{3}=\gamma_{u} u^{3}=\gamma_{u^{\prime}} u^{\prime 3}
\end{aligned}
$$

which imply

$$
\begin{aligned}
\gamma_{u^{\prime}} & =\gamma \gamma_{u}\left(1-v u^{1} / c^{2}\right) \\
\gamma_{u^{\prime}} u^{\prime 1} & =\gamma \gamma_{u}\left(u^{1}-v\right) \\
\gamma_{u^{\prime}} u^{\prime 2,3} & =\gamma \gamma_{u}\left(1-v u^{1} / c^{2}\right) u^{\prime 2,3}=\gamma_{u} u^{2,3}
\end{aligned}
$$

4 Velocity

- Divide two relations

$$
\begin{aligned}
u^{\prime 1} & =\frac{u^{1}-v}{1-v u^{1} / c^{2}} \\
u^{\prime 2} & =\frac{\gamma_{u}}{\gamma_{u^{\prime}}} u^{2}=\frac{1}{\gamma\left(1-v u^{1} / c^{2}\right)} u^{2} \\
u^{3} & =\frac{1}{\gamma\left(1-v u^{1} / c^{2}\right)} u^{3}
\end{aligned}
$$

- Note that $U^{\mu} U_{\mu}=-(\gamma c)^{2}+(\gamma u)^{2}=-c^{2}$ also dot product is a way of evaluating rest frame time component of a vector A^{μ} : $U^{\mu} A_{\mu}=-U^{0} A^{0}+U^{i} A^{i}=-c A^{0}$.

4 Acceleration, Momentum, Force

- Acceleration

$$
\frac{d U^{\mu}}{d \tau}=a^{\mu}
$$

- Momentum (finite rest mass)

$$
P^{\mu}=m U^{\mu}=\gamma m(c, \mathbf{u})
$$

- Force

$$
F^{\mu}=\frac{d P^{\mu}}{d \tau}
$$

E \& M

- Wavevector: phase of wave is a Lorentz scalar

$$
\begin{aligned}
\phi & =k_{i} x^{i}-\omega t \\
\phi & =k_{\mu} x^{\mu} \\
K^{\mu} & =(\omega / c, \mathbf{k})
\end{aligned}
$$

- Momentum $\mathbf{q}=\hbar \mathbf{k}$

$$
P^{\mu}=(E / c, \mathbf{q})=\hbar K^{\mu}
$$

- Doppler shift $\cos \theta=\hat{\mathbf{u}} \cdot \hat{\mathbf{k}}$

$$
\begin{aligned}
K^{\prime \mu} & =\Lambda_{\nu}^{\mu} K^{\nu} \\
\omega^{\prime} & =\gamma\left(\omega-k_{i} u^{i}\right)=\gamma \omega\left(1-\frac{u}{c} \cos \theta\right)
\end{aligned}
$$

γ factor purely relativistic

E \& M

- Charge conservation and 4 current

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\nabla_{i} j^{i}=0 \\
& \nabla_{\mu} J^{\mu}=0 \quad J^{\mu}=(\rho c, \mathbf{j})
\end{aligned}
$$

- 4 potential: $A^{\mu}=(\phi, \mathbf{A})$ obeys the wave equation

$$
\nabla_{\alpha} \nabla^{\alpha} A^{\mu}=\left[\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right] A^{\mu}=-\frac{4 \pi}{c} J^{\mu}
$$

- Lorentz gauge condition

$$
\nabla_{i} A^{i}+\frac{1}{c} \frac{\partial \phi}{\partial t}=\nabla_{\mu} A^{\mu}=0
$$

- Fields are related to derivatives of potential: field strength tensor

$$
F_{\mu \nu}=\nabla_{\mu} A_{\nu}-\nabla_{\nu} A_{\mu}
$$

E \& M

- E and B field

$$
F_{\mu \nu}=\left(\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & B_{z} & -B_{y} \\
E_{y} & -B_{z} & 0 & B_{x} \\
E_{z} & B_{y} & -B_{x} & 0
\end{array}\right)
$$

- Maxwell Equations

$$
\nabla^{\mu} F_{\mu \nu}=\frac{4 \pi}{c} J_{\nu}, \quad \nabla_{\sigma} F_{\mu \nu}+\nabla_{\nu} F_{\sigma \mu}+\nabla_{\mu} F_{\nu \sigma}=0
$$

- Lorentz scalars (an electromagnetic field cannot be transformed away)

$$
F_{\mu \nu} F^{\mu \nu}=2\left(B^{2}-E^{2}\right), \quad \operatorname{det} F=(\mathbf{E} \cdot \mathbf{B})^{2}
$$

E \& M

- Lorentz force

$$
F^{\mu}=\frac{e}{c} F^{\mu}{ }_{\nu} U^{\nu}
$$

- Phase space occupation

$$
d^{3} x=\gamma^{-1} d^{3} x^{\prime}, \quad d^{3} q=\gamma d^{3} q^{\prime}
$$

so $d^{3} x d^{3} q$ is a Lorentz scalar and photon number is conserved so f is a Lorentz scalar (note that the energy spread is negligible in the rest frame)

- Field transformation

$$
\begin{gathered}
F_{\mu \nu}^{\prime}=\tilde{\Lambda}_{\mu}^{\alpha} \tilde{\Lambda}_{\nu}^{\beta} F_{\alpha \beta} \\
E_{\|}^{\prime}=E_{\|}, \quad B_{\|}^{\prime}=B_{\|} \\
\mathbf{E}_{\perp}^{\prime}=\gamma\left(\mathbf{E}_{\perp}+\beta \times \mathbf{B}\right), \quad \mathbf{B}_{\perp}^{\prime}=\gamma\left(\mathbf{B}_{\perp}-\beta \times \mathbf{E}\right)
\end{gathered}
$$

Coulomb Field Transformation

- Take Coulomb field in the particle rest frame $\mathbf{E}^{\prime}=\left(q / r^{\prime 2}\right) \hat{\mathbf{r}}^{\prime}$ and boost in the x direction

$$
\begin{aligned}
& E_{x}=\frac{q x^{\prime}}{r^{\prime 3}}=\frac{q \gamma(x-v t)}{r^{\prime 3}}, B_{x}=0 \\
& E_{y}=\frac{q \gamma y^{\prime}}{r^{\prime 3}}=\frac{q \gamma y^{\prime}}{r^{\prime 3}}, \quad B_{y}=-\frac{q \gamma \beta z^{\prime}}{r^{\prime 3}}=-\frac{q \gamma \beta z^{\prime}}{r^{\prime 3}} \\
& E_{z}=\frac{q \gamma z^{\prime}}{r^{\prime 3}}=\frac{q \gamma z}{r^{\prime 3}}, \quad B_{z}=\frac{q \gamma \beta y^{\prime}}{r^{\prime 3}}=\frac{q \gamma \beta y}{r^{\prime 3}} \\
& r^{\prime^{\prime 2}}=\gamma^{2}(x-v t)^{2}+y^{2}+z^{2}
\end{aligned}
$$

This may be rewritten as the velocity term in the Lienard-Wiechart fields

Power

- Power is a Lorentz scalar (4 momentum transformation with zero spatial momentum from symmetry)

$$
d W=\gamma d W^{\prime}, \quad d t=\gamma d t^{\prime}, \quad P=\frac{d W}{d t}=\frac{d W^{\prime}}{d t^{\prime}}=P^{\prime}
$$

- In particular in the instananeous rest frame the power can be calculated using the Larmor formula

$$
P^{\prime}=\frac{2 q^{2}}{3 c^{2}}\left|a^{\prime}\right|^{2}=\frac{2 q^{2}}{3 c^{3}} a^{\mu} a_{\mu}
$$

- given $a^{\mu}=d^{2} x^{\mu} / d \tau^{2}$ one can show $a_{\|}^{\prime}=\gamma^{3} a_{\|}$and $a_{\perp}^{\prime}=\gamma^{2} a_{\perp}$

$$
P=\frac{2 q^{2}}{3 c^{3}} \gamma^{4}\left(a_{\perp}^{2}+\gamma^{2} a_{\|}^{2}\right)
$$

so that a parallel acceleration causes a much larger power radiation

Relativistic Beaming

- Isotropic emission also becomes beamed:
by the addition of
velocities, the angle changes with a boost
.
O^{\prime} [primed frame]

O [lab frame] $\longleftarrow_{\mathrm{v}}$
for light $u^{\prime}=c$ and the aberration
formula is

$$
\tan \theta=\frac{c}{\gamma} \frac{\sin \theta^{\prime}}{c \cos \theta^{\prime}+v}
$$

Relativistic Beaming

- For $\theta^{\prime}=\pi / 2$ then $\tan \theta=c / \gamma v$ and for $\gamma \gg 1, v \rightarrow c$ and so $\tan \theta \approx \theta \approx 1 / \gamma$ - beamed a tight half angle
- Explains the differential power transformation: Larmor in [primed] rest frame
- Solid angle transformation: again apply addition for light to get

$$
\begin{aligned}
& \cos \theta=\frac{u_{\|}}{\sqrt{u_{\perp}^{2}+u_{\|}^{2}}}=\frac{u_{\|}}{c} \\
& \cos \theta=\frac{\cos \theta^{\prime}+v / c}{1+v / c \cos \theta^{\prime}}
\end{aligned}
$$

- $\operatorname{So} d \Omega=d \cos \theta d \phi$ and

$$
d \Omega=d \Omega^{\prime} \frac{1}{\gamma^{2}\left(1+\beta \cos \theta^{\prime}\right)^{2}}
$$

Differential power

- Energy and arrival time as $(\mu=\cos \theta)$

$$
\begin{aligned}
d W & =\gamma\left(d W^{\prime}+v d P_{x}^{\prime}\right)=\gamma\left(1+\beta \mu^{\prime}\right) d W^{\prime} \\
d t_{A} & =\gamma(1-\beta \mu) d t^{\prime}
\end{aligned}
$$

- Identity

$$
\gamma(1-\beta \mu)=\frac{1}{\gamma\left(1+\beta \mu^{\prime}\right)}
$$

- Transformation of differential power

$$
\begin{aligned}
\frac{d P}{d \Omega} & =\frac{d W}{d \Omega d t_{A}}=\frac{1}{\gamma^{4}(1-\beta \mu)^{4}} \frac{d P^{\prime}}{d \Omega^{\prime}} \\
& =\frac{1}{\gamma^{4}(1-\beta \mu)^{4}} \frac{q^{2} a^{\prime 2}}{4 \pi c^{3}} \sin ^{2} \Theta^{\prime}
\end{aligned}
$$

Differential power

- Acceleration parallel to velocity: dipole pattern gets perpendicular lobes bent toward the velocity direction
- Acceleration
perpendicular to velocity: forward dipole enhanced, second lobe distorted

O^{\prime} [rest frame] O [lab frame]

