Set 6:
Relativity



The Metric

e The metric defines a measure on a space, distance between points,
length of vectors.

e 3D Cartesian coordinates: separation vector between 2 points dz’
(upper or contravariant indices)

3
ds® = Z dx'dz!
i=1

e Generalize to curvilinear coordinates, e.g. for spherical coordinates
(r, 6, ¢) the distances along an orthonormal set of vectors

e, : dr
égi rdb
€4 rsin 0do



The Metric

e Length in spherical coordinates
ds® = dr® + r*df6* + r? sin® Odo*
= Z gijdxidzvj
]

defines the metric
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The Metric

e This would look like an ordinary dot product if we introduce the
dual or “covariant” components of the vector

ds® = Z dx;dx' = dx;dx’

where the Einstein summation convention is that repeated pairs of
upper and lower indices are summed

e Similarly the dot product between two vectors 1s given by



Special Relativity

e In space time, the coordinates run
from 0 — 3 with = 0O as the

temporal coordinate, and O [unprimed frame]

emission at
t=t'=0
x=x'=0

ds* represents the space-time separation

dot = (cdt,dx', dx?, dz?)

—>V
O' [primed frame]

e Metric 1s defined by the requirement that
two observers will see light propagating at
the speed of light.

e Spherical pulse travels for time dt at the speed of light ¢

Adt? = dr;dr’ — —Adt? + drda’ = 0 = —2dt” + da’;dz”



Special Relativity

e The space time separation for light is null and invariant

e S0 as an invariant measure on the space time, the temporal

coordinate has the opposite sign: in Cartesian coordinates
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ds* = dz,dz" = n,,dz"dz" = —dt* + dz;dz’



[Lorentz Transformation

e Set of all linear coordinate transformations that leave ds?, and
hence the speed of light, invariant

e 3D example: rotations leave the length of vectors invariant,
generalization of a 4D rotation is a Lorentz transformation

e Begin with a general linear transformation (excluding a constant
term)

ox'"
ot = A " — AP =

- Oav

dSlz = naﬁdxladilf/ﬁ
_ Qo I} v
= Nap\",d2"\” dx
= ds® = n,, dz"dz”

Ny — naﬂAaMABy



[Lorentz Transformation

e Suppose a particle at rest in frame .

. . . /
O is viewed in frame O O [rest frame]

moving with a velocity v
-V

da'" = A" dx”
—>V
dx” = (cdt,0,0,0) O' [primed frame]

e Take pt =0, u =1

cdt’ = N°yda® + A% dx" = A°,cdt
dz" = N jedt



[Lorentz Transformation

e Combine
de"" v A
cdt/ — ¢ AY
i
Az _ ——AO
0 0

e Recall invariance of ds” implies

T]MV — UQBAQMABV
e Evaluate 00 component

Moo = —1 = UaﬁAaoAﬁo
—1= _(A00)2 T (Ai 0)2



[Lorentz Transformation

e Plug in relationship between A’s

2
0 \2 v’
L= (M%) - %)
e Solve for A
1
A’ =
’ V1—v2/c? !
Ay =—'/e= -5

e Spatial components determined from 7, = 1,3\ MABV, excluding
rotation before boost in &, direction: A°, BAY,,

1= _(A01)2 + (/\11)2



[Lorentz Transformation

e Lorentz transformation for boost in €; direction

[ 4 —5700\
AE -y v 00
’ 0 0 10
\o 0 01)

or with dz'* = A¥ dx”

ct’ = yet — Byx = vye(t — éx)
C
v
t'=~(t — gx)
v’ = —fBvyct +yx

r' = ~y(x — vt)



[Lorentz Transformation

e Relativity paradoxes by holding various things fixed: simultaneity
in one frame not same as another

e Lorentz contraction: (primed: rest frame) length measured at fixed
t

Ax'|, = vAx — Az = Az’ /|,

e Time dilation measured at ¥’ = 0

/ (V)
At = W(At — gaj‘x:vt)

V2 1
= (At — —At) = —At
Y( 3 ) S
, 1
At = — At
W



[Lorentz Transformation

e Boost of a covariant vector

/
ox p
0x,
/
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[Lorentz Transformation

e Tensors: multi-index objects that transform under a Lorentz
transformation as, e.g.

~

T/,UV — A,MOAVTTJT

e Special relativity: laws of physics invariant under Lorentz
transformation = laws of physics can be written as relationships
between scalars, 4 vectors and tensors

e Like ds? the contraction of a set of 4 vectors or tensors is a Lorentz
invariant

e What about laws involving derivatives?



Derivative Operator

e Derivative operator on a scalar transforms as a covariant vector

9, _ oz’ 0 _ i Bi
ox'®  O0x'* 0xP ¢ 0xP
V. =AJV;

e Derivative operator on a vector transforms as a tensor

T,) =V, V’= Oy
@ oxr®
%, o [ox'"
T B _ 18 _ 15 _ H
o VoV 8:1;’0“/ ox' (651:“ )
18 15
B ox'” 0 Vi s 0 Ox

 Oxt Oz’ ox'“ OxH



Derivative Operator

e For a Lorentz transformation, the coordinates are linearly related

158
0 Ox _ 0 A —
ox'* OxH ox'® F
Tﬁ_ﬁaz’ﬁﬁx” 0 VE_ AB R vo
“ Qak Ox' O S pa T

so that the derivative of a vector transforms as a tensor as long as
the coordinate transformation 1s “special”, 1.e. linear. In general
relativity this condition 1s lifted by promoting the ordinary
derivative to a covariant derivative through the connection

coefficients



4 Velocity

e Four velocity: ’
Orest [rest frame]
dx* is a vector d72 = —ds*/c?* is a scalar y *UER
O [lab frame]
dzt [T BT
-, = O' [boosted frame]
dT

(Ca 07 Oa O)restframe

in a boosted frame (particle velocity is opposite to
boost u = —(3,¢)

U = A Upesy = (’YUC, —BuVuC, 0, O) — 7u(c? u)



4 Velocity

e Boost again by 3 to show how velocity transforms

U" =~(U° = BUY) = yrulc — Bu') = e

U™ = (=BU° + UY) = yvyu(—Bc + u') = v
U” = U? = yu? = ypu'”
U” = U? = yu® = ypu”

which imply

Yur = VY (1 — vu'/c?)

1
Yt = Yyu(ut —v)

2,3

/4,
U 2,3

— 77u(1 — vul/c2)u’2’3 = YU



4 Velocity

e Divide two relations

1

ull— u —v

1 —vul/c?
2 Yu o 1 2
Y _fyu/u ’y(l—?)ul/c2)u
/13 1 3

T (T —wulj2) "

e Note that U*U,, = —(y¢)* + (yu)* = —c* also dot product is a
way of evaluating rest frame time component of a vector A*:

UrA, = —UYA® + Ul AP = —cAC.



4 Acceleration, Momentum, Force

e Acceleration
dUH
I 7
dr .

e Momentum (finite rest mass)
Pt =mU" = ym(c,u)

e Force

P

JalL
dT



E&M

e Wavevector: phase of wave is a Lorentz scalar

¢ = kix' — wt
¢ = k,z"
K" = (w/c, k)

e Momentum q = hk

P = (E/e.q) = hK"

A

e Doppler shift cosf =1 -k

K™ = A" K
W' =y(w — ku') = yw(l — 2 cos 0)
C

~ factor purely relativistic



E&M

e Charge conservation and 4 current

— +V,;j' =0
or Vi

V. JE=0 T = (pe.)

e 4 potential: A* = (¢, A) obeys the wave equation

1 0? 47
CAR — [V2 — A — — JH
V.V Y > (%2] ; J
e Lorentz gauge condition
. 10¢
Z‘AZ —_— — AM — O
VA + -y V.,

e Fields are related to derivatives of potential: field strength tensor

F,=V,A -V,A,



e F and B field

[0 -BE, —E, —E. )
E, 0 B. -B,
E, -B. 0 B,
\ . B, —-B. 0 )

Uy

e Maxwell Equations

4
V'LLFMV: _ﬂ-Jua VOFMV+VVFJM+V/LFVU =0
C

e Lorentz scalars (an electromagnetic field cannot be transtormed
away)

F,F* =2(B*> - FE?), detF = (E-B)’



E&M

e Lorentz force
H — € v
C 1%
e Phase space occupation
dSZU:’y_ldBZEI, dngvd?’q/

so d>zd3q is a Lorentz scalar and photon number is conserved so f
1s a Lorentz scalar (note that the energy spread 1s negligible in the
rest frame)

e Field transformation
/ L -~ o -~ /8
FW = AM A7 Fyp
\=Ey,  Bj=DB
" =v(E,.+ 8 xB), ' =v(B. -8 xE)



Coulomb Field Transformation

o Take Coulomb field in the particle rest frame E' = (¢/r'*)i’ and
boost in the = direction

qx qy(z — i)

by = v e , B, =0
n_0Y _ay B —_TBT @bz
y ,r/S o T/S Y y ,r/3 o 7“’3
o gz qyz B By qvBy
Z 7“/3 o 7“/3 Y z 70/3 o 7“/3

' =22 (2 — vt)? + y? + 22

This may be rewritten as the velocity term 1n the Lienard-Wiechart
fields



Power

e Power 1s a Lorentz scalar (4 momentum transformation with zero
spatial momentum from symmetry)

dW  dW’
dW = ~dW’ dt =~dt', P=— = = P’
,‘Y Y, f}/ 9 dt dt/

e In particular in the instananeous rest frame the power can be

calculated using the Larmor formula

_Q_QQ ,’2_2_412 p
32 _303a U

o given a* = d*z"/d7* one can show a| = 7’a| and ¢, = y%a

Pl

2q2

L 4
P=3a7

(a1 +~’aj)

so that a parallel acceleration causes a much larger power radiation



Relativistic Beaming

e [sotropic emission also becomes beamed:
by the addition of
velocities, the angle changes with a boost

W+ uy
uj = UL =
1+ vuy/c? Y1+ vy /c?)
g — UL _ w1 u' sin 6’

u u’+v_:fyu’cosﬁ’+v
T

for light u’ = ¢ and the aberration
formula 1s

c sinf’

tanf = —
v ccos b + v

O [lab frame] «~——



Relativistic Beaming

For ' = 7/2 then tan§ = ¢/~vv and for v > 1, v — ¢ and so
tanf ~ 6 ~ 1/~ - beamed a tight half angle

Explains the differential power transformation: Larmor in [primed]
rest frame

Solid angle transformation: again apply addition for light to get

U U uy
COS@I | :—H7 COS(Q/:—H
Jara e c
9/
o — 8 +v/c
1+v/ccosb

So df) = dcosfd¢ and

1

dQ2 = dY
v2(1 + [ cos6')?




Differential power

e Energy and arrival time as (i = cos )

dW = v(dW' +vdP.) = ~(1 + By )dW’
dt 4 = ~v(1 — Bu)dt’
e Identity

1
(14 6w)

e Transformation of differential power

%1_@0:v

P dw 1 dP'

dQ ~ dQdt, A4 — Bu)t A
2 12

= ! 44 sin® ©’

ML= Bp)t dmed



Differential power

e Acceleration parallel to
velocity: dipole pattern gets perpendicular 8

lobes bent toward the velocity direction
—a’ s
Vv
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e Acceleration
perpendicular to velocity: forward X T | @ly

a'
O' [rest frame] 0 [lab frame]

dipole enhanced, second lobe distorted



