Set 7:
Classical & Semi-Classical Oscillators



Dipole Approximation
e Radiation field
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e A collection of particles
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e Take the limit of coherent emission of particles such that the
wavelength A > L, the dimension of the emission region.

e Approximation equivalent to non-relativistic velocities u since the
scale of the oribits [ < L
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Dipole Approximation

e The light travel time across L < time scale of change in charged
particle orbits
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e Defining the electric dipole moment
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Dipole Approximation

e [.armor formula
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e Frequency structure reflects d(t)
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Dipole Approximation
e Energy spectrum dA = R2d)
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e Dipole radiation frequencies reflect frequencies in the dipole

moment. Generalize to higher order in the expansion of L/ or
EAR;



Thomson Scattering

e Simplest example: single free electron system
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e Incoming wave of frequency wy provides oscillatory force for

acceleration. For non-relativistic velocities the Lorentz force is
dominated by the electric field
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Thomson Scattering

e Dipole formula
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e Power is independent of frequency
e Differential Cross Section: P = (S)or
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Thomson Scattering

e Cross section decreases with mass (so electrons not protons
dominate), defines a classical size for a point particle g = e*/mc?.
Total cross section
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e O is angle between e and n. Relate to scattering angle 6 and
polarization

e For e L n (polarization out of scattering plane) then sin © = 1.
For polarization in the scattering plane © = 7/2 — 6

e Average over the two incoming polarization states
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Classical Line Emission

e An electron bound 1n a central force provides a classical model for
spontaneous emission in an atomic line

"spontaneous
emission”

nucleus
F=-kr
e electron :
restoring force
e Given a restoring force F = —kr there is a natural frequency of

oscillation. Neglecting radiation
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Radiation Reaction

e But an accelerating electron will radiate causing the oscillator to
lose energy as a damped oscillator
i+ Td+wiz =0
where I 1s the damping rate due to radiation losses

e Larmor’s formula gives power radiated or energy lost to radiation
per unit time
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Radiation Reaction

e If one assumes that losses are small across one period of the
oscillation then (like the Rosseland approximation) one can iterate
the solution
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e Problem: since x x cos(wpt 4+ ) and & o sin(wgt + 9) this
formula cannot be satisfied instantaneously representing a
breakdown of the classical treatment



Radiation Reaction

e Try average over an oscillation period 7' = 27 /w, and match

integral of cos? with sin®
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Radiation Reaction

e So the oscillator equation of motion becomes
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which quantifies the rate at which the orbit decays due to radiation

losses - 1n a quantum description of the line this 1s related the
Einstein coefficient for spontaneous emission
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[Lorentz Line Profile

e Since ' < wy one can expand
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e Get frequency content (define zero of time so that 0 = 0)
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[Lorentz Line Profile

e Frequency content dominated by region around w = wy, 1.e. the
second term
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e Interpret the amplitude in terms of 1nitial energy in the oscillator
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[Lorentz Line Profile

e All of the initial energy 1s emitted

as radiation

dW  S8mw* e* 2F; 1
dw 33 (47)2 mwi (w — wp)? + (I'/2)? _
dW — w* e*E,; 1 S
dw w2 3mmc® (w — wo)? + (I'/2)2
ors
3 mc?
dwW ['/2m

A w02



[Lorentz Line Profile

e Lorentz profile: FWHM = A with normalization
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e So that the decay rate is related to the frequency spread of the line
Aw =T
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Absorption

e ' must be related to A; the Einstein spontaneous emission
coefficient. However a direct association 1s impeded in that an
atomic state 1s classically unstable. Establish the relation by
considering the absorption coefficient

T F=-kr restoring force
Ee nucleus
0™1 e electron

e Driven oscillator: combination of the Thomson and line
calculations with incident radiation at frequency w
el 0 dwt
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Absorption

e After transients from the initial conditions are gone due to damping
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Absorption

e Reradiated power

e Interaction cross section
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o If w > wy then o(w) — or and the electron behaves as a free
particle



Rayleigh Scattering

o If w < wy then

o(w) = op (wﬁoy

and the steep frequency dependence is the reason the sky is blue

and sunsets are red - 1s the limit where e.0.m 1s
wiz = (eEy/m)e™

e If w =~ wy then line absorption and resonance
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Absorption coefficient

e Relate to Lorentz profile
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e Absorption coefficient, Einstein coefficient
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Absorption coefficient

e Quantum results are stated against this classical result as an
oscillator strength f1o
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e The Einstein A,; spontaneous emission coefficient is then
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so that the rate I" defines Aoy
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e We shall see that the relation is corrected in the semiclassical
oscillator and A21 = F(gl /gg)f12



Quantum Oscillator

e Schrodinger equation 1n the absence of radiation field

Ghid
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e The Hamiltonian including the radiation field 1s in Coulomb gauge
[V -A=0and V?¢p = —4mp (=0 for radiation)]
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e Radiative transitions are approximated through an interaction
Hamiltonian in time dependent perturbation theory
e 1eh
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which connects the 1nitial and final state



Quantum Oscillator
e Original eigenstates |n) such that H°|n) = E,|n)

e Expand the wave function in the original eigenfunctions
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e Initially the atom is in the initial state ¢; = 1 and ¢,,; = 0 and the
perturbation induces a transition to a final state m = f with
strength given by the matrix element Hy,(t) = (f|H"|i). A short
time 7' later

: T .
(1) = — /O AHL()HE P = Lo ()



Quantum Oscillator

e The integral 1s a Fourier transform that picks out frequency
we; = (Er — E;)/hin H! with some width determined by how
long ('T") one waits before accumulating significant probability.

e Transition rate 1s the probability per unit time for the transition

wpi = ——|Hpi(wps)|

e Field carries time dependence A (r,t) = A(t)e’®™ and integral
picks out wy; component of field
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in dipole approx e’** a2 1 across region 1) has support



Einstein Coefficient

e Time reversal symmetry gives w;r = wy;, 1S the quantum origin of
the relationship between B, and By, the absorption and
stimulated emission coefficient

e For absorption

Wig = Bng,,

and what remains is to relate the A embedded in the interaction
Hamiltonian with the specific intensity
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Einstein Coefficient

e Given B =V x B and Ey = B, in Fourier space field and
potential related by

e A plane wave is a delta function in angle so that J, = ﬁ [ dQ2I,
simply divides the result by 47 or
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Einstein Coefficient

e Eliminate in favor of ./,
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Einstein Coefficient

e Determines the oscillator strength fi,, typically less than unity
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e Stimulated emission can be similarly handled, the difference being

(fle™ Vi)
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for degenerate levels the result 1s averaged over 1nitial states and
summed over final states — hence the ¢g;, g, factors



Einstein Coefficient

e Spontaneous emission formally requires second (field)
quantization but can be derived semiclassically by the Einstein
relation. Key of the quantum derivation 1s the field behaves as a
quantized oscillator and the states are normalized as

a'|n) oc (n+ 1)Y2|n + 1)

where the n > 1 returns the semiclassical stimulated emission
coefficient By; and the n = 0 returns the spontaneous emission Ay

e When the coefficients cannot be calculated A,; is measured and
the others inferred



[Line Profile

e The natural linewidth is determined by As; = I' exactly as in the
semiclassical theory (but without the relationship
[' = 2e?w? /3mc?) , yielding a Lorentzian profile

e Linewidth is broadened by thermal motion. Frequency shifted

according to the Doppler shift from the line of sight velocity v,
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e The velocity distribution 1s Maxwellian given the atomic mass m,
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e The net result 1s a Voigt profile
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[Line Profile

e Finally, collisions can also broaden the profile. They introduce a
random phase 1n the electric field. As shown in RL Problem 10.7,
collisions of a frequency v, cause (| E(t)]?) oc e 7' (a Poisson
process) and comparing this to the e~ 1*/?

that the total Lorentzian width of the line

natural decay implies

I' =1+ 2Vc0]



Electronic, Vibrational, Rotational Lines

e Electronic lines tend to have an energy given by the physical scale
of the orbital (atom) and tends to be in the few eV energy scale
1p> 1 A h

EelectN_ N_2 p~ —
2m. 2a*m, a

e Molecules can have vibrations. For vibrations, the atoms execute
simple harmonic motion around their equilibrium position with the
restoring force associated with the electronic binding energy - so
that a displacement of order a must given the electronic energy
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Electronic, Vibrational, Rotational Lines

e Vibrational energies are lower by of order a percent of the
electronic energies, i.e. 1072 — 10~! eV or infrared

e Rotational energy 1s associated with the moment of inertial

I ~ m,a?
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or 1072 eV in the far infrared and radio
e Ratio of energies
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