
Set 7:
Classical & Semi-Classical Oscillators



Dipole Approximation
• Radiation field

Erad =
q

c

[
n̂

κ3R
× ((n̂− β)× β̇)

]
Brad = n̂× Erad

• A collection of particles

Erad =
∑
i

qi
c

[
n̂i
κ3
iRi

× ((n̂i − βi)× β̇i)
]

• Take the limit of coherent emission of particles such that the
wavelength λ� L, the dimension of the emission region.

• Approximation equivalent to non-relativistic velocities u since the
scale of the oribits l < L

L

c
� τ ∼ l

u
<
L

u
→ u� c



Dipole Approximation
• The light travel time across L� time scale of change in charged

particle orbits

τ ∼ 1

ν
∼ λ

c
� L

c

• So κi ≈ 1, n̂i = n̂ and Ri ≈ R0 the mean distance

Erad =
∑
i

qi
c

[
n̂

R0

× (n̂× β̇i)
]

• Defining the electric dipole moment

d =
∑
i

qiri

Erad =
1

c2R0

[n̂× (n̂× d̈)]



Dipole Approximation
• Larmor formula

dP

dΩ
=

d̈2

4πc3
sin2 Θ P =

2d̈2

3c3

• Frequency structure reflects d(t)

d(t) =

∫ ∞
−∞

e−iωtd(ω)dω

d̈(t) = −
∫ ∞
−∞

ω2d(ω)e−iωtdω

in the electric field

E(ω) = − 1

c2R0

ω2d(ω) sin Θ



Dipole Approximation
• Energy spectrum dA = R2

0dΩ

dW

dωdΩ
= c|E(ω)|2R2

0 =
1

c3
ω4|d(ω)|2 sin2 Θ

dW

dω
=

8πω4

3c3
|d(ω)|2

• Dipole radiation frequencies reflect frequencies in the dipole
moment. Generalize to higher order in the expansion of L/λ or
k∆Ri



Thomson Scattering
• Simplest example: single free electron system

E0e1 E0e2
e electron 

θ
Θ

Θ =π/2

• Incoming wave of frequency ω0 provides oscillatory force for
acceleration. For non-relativistic velocities the Lorentz force is
dominated by the electric field

F = eE = eE0 sinω0t ê = ma

a =
eE0

m
sinω0t ê



Thomson Scattering
• Dipole formula

d = er , d̈ = ea =
e2E0

m
sinω0t ê

dP

dΩ
=

d̈2

4πc3
sin2 Θ =

e4E2
0

m2

1

4πc3
sin2 Θ〈sin2 ω0t〉

=
e4E2

0

8πm2c3
sin2 Θ → P =

e4E2
0

3m2c3

• Power is independent of frequency

• Differential Cross Section: P = 〈S〉σT

dσT
dΩ

=
dP
dΩ

〈S〉
=

outgoing power

incoming flux

=
e4

8πm2c3
E2

0 sin2 Θ
c

8π
E2

0

=
e4

m2c4
sin2 Θ



Thomson Scattering
• Cross section decreases with mass (so electrons not protons

dominate), defines a classical size for a point particle r0 = e2/mc2.
Total cross section

σT =

∫
dσT
dΩ

dΩ =
8π

3
r2

0

• Θ is angle between ê and n̂. Relate to scattering angle θ and
polarization

• For ê ⊥ n̂ (polarization out of scattering plane) then sin Θ = 1.
For polarization in the scattering plane Θ = π/2− θ

• Average over the two incoming polarization states

dσT
dΩ

=
1

2
r2

0[1 + sin2(
π

2
− θ)] =

1

2
r2

0(1 + cos2 θ)



Classical Line Emission
• An electron bound in a central force provides a classical model for

spontaneous emission in an atomic line

e electron 
nucleus

F=-kr 
restoring force

"spontaneous
  emission"

• Given a restoring force F = −kr there is a natural frequency of
oscillation. Neglecting radiation

ma = −kr → ẍ+
k

m
x = 0→ ẍ+ ω2

0x = 0

where ω0 =
√

(k/m)



Radiation Reaction
• But an accelerating electron will radiate causing the oscillator to

lose energy as a damped oscillator

ẍ+ Γẋ+ ω2
0x = 0

where Γ is the damping rate due to radiation losses

• Larmor’s formula gives power radiated or energy lost to radiation
per unit time

P =
2e2ẍ2

3c3



Radiation Reaction
• If one assumes that losses are small across one period of the

oscillation then (like the Rosseland approximation) one can iterate
the solution

ẍ ≈ −ω2
0x → x ≈ A cos(ω0t+ δ)

P =
2e2

3c3
(−ω2

0x)2 =
2e2

3c3
ω4

0x
2

• Set equal to mechanical work / time? by radiation reaction

2e2

3c3
ω4

0x
2 = −Fradẋ

• Problem: since x ∝ cos(ω0t+ δ) and ẋ ∝ sin(ω0t+ δ) this
formula cannot be satisfied instantaneously representing a
breakdown of the classical treatment



Radiation Reaction
• Try average over an oscillation period T = 2π/ω0 and match

integral of cos2 with sin2

∫ 2π
ω0

0

dt
2e2

3c3
ω4

0A
2 cos2(ω0t+ δ) = −

∫ 2π
ω0

0

dtFrad[−Aω0 sin(ω0t+ δ)]

2e2

3c3
ω4

0A
2 1

2
=

Frad

sin(ω0t+ δ)
Aω0

1

2

• Solve for the reaction force

Frad =
2e2ω3

0

3c3
A sin(ω0t+ δ)

= −2e2ω2
0

3c3
ẋ



Radiation Reaction
• So the oscillator equation of motion becomes

ẍ+ ω2
0x = Frad/m = −2e2ω2

0

3c3m
ẋ

Γ =
2

3

e2ω2
0

mc3

which quantifies the rate at which the orbit decays due to radiation
losses - in a quantum description of the line this is related the
Einstein coefficient for spontaneous emission

ẍ+ Γẋ+ ω2
0x = 0 x = eαt

α2 + Γα + ω2
0 = 0

α =
1

2
(−Γ±

√
Γ2 − 4ω2

0)



Lorentz Line Profile
• Since Γ� ω0 one can expand

α = ±iω0

√
1− Γ2

4ω2
0

− Γ/2 ≈ ±iω0 − Γ/2

x(t) = x(0)e−Γt/2 cos(ω0t+ δ)

• Get frequency content (define zero of time so that δ = 0)

x(t) = x(0)e−Γt/2 1

2

[
eiω0t + e−iω0t

]
x(ω) =

1

2π

∫
x(t)eiωtdt

=
x(0)

4π

[
1

Γ/2− i(ω + ω0)
+

1

Γ/2− i(ω − ω0)

]



Lorentz Line Profile
• Frequency content dominated by region around ω = ω0, i.e. the

second term

x(ω) ≈ x(0)

4π

1

Γ/2− i(ω − ω0)

|x(ω)|2 ≈ x2(0)

(4π)2

1

(ω − ω0)2 + (Γ/2)2

dW

dω
=

8πω4

3c3
e2|x(ω)|2

=
8πω4

3c3

e2x2(0)

(4π)2

1

(ω − ω0)2 + (Γ/2)2

• Interpret the amplitude in terms of initial energy in the oscillator

Ei =
1

2
kx2(0) =

1

2
mω2

0x
2(0)



Lorentz Line Profile
.
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• All of the initial energy is emitted
as radiation

dW

dω
=

8πω4

3c3

e2

(4π)2

2Ei
mω2

0

1

(ω − ω0)2 + (Γ/2)2

dW

dω
=
ω4

ω2
0

e2Ei
3πmc3

1

(ω − ω0)2 + (Γ/2)2[
Γ =

2

3

e2ω2
0

mc3

]
dW

dω
= Ei

Γ/2π

(ω − ω0)2 + (Γ/2)2



Lorentz Line Profile
• Lorentz profile: FWHM = Λ with normalization[∫

dω
Γ/2π

(ω − ω0)2 + (Γ/2)2
= 1

]
• So that the decay rate is related to the frequency spread of the line

∆ω = Γ

∆λ = 2πc
∆ω

ω2
0

=
4πe2

3mc2
≈ 1.2× 10−12cm



Absorption
• Γ must be related to A21 the Einstein spontaneous emission

coefficient. However a direct association is impeded in that an
atomic state is classically unstable. Establish the relation by
considering the absorption coefficient

E0e1 e electron 
nucleus
F=-kr restoring force

• Driven oscillator: combination of the Thomson and line
calculations with incident radiation at frequency ω

ẍ+ Γẋ+ ω2
0x =

eE0

m
eiωt



Absorption
• After transients from the initial conditions are gone due to damping

x = x0e
iωt

(−ω2 + Γiω + ω2
0)x0e

iωt =
eE0

m
eiωt

• Solution

x0 =
eE0

m

1

ω2
0 − ω2 + iωΓ

ω2 − ω2
0 + iωΓ ≡ |A|e−iδ = |A|(cos δ − i sin δ)

|A| cos δ = ω2
0 − ω2 , |A| sin δ = −Γω

tan δ =
Γω

ω2 − ω2
0

x0 =

∣∣∣∣eE0

m

−1

ω2 − ω2
0 − iωΓ

∣∣∣∣ eiδ



Absorption
• Reradiated power

P =
e2ω4

3c3
|x0|2 =

e4ω4

3c3

E2
0

m2

1

(ω2 − ω2
0)2 + (Γω)2

• Interaction cross section

σ(ω) =
P

〈S〉
=

P
c

8π
E2

0

=
8π

3c4

e4ω4

m2

1

(ω2 − ω2
0)2 + (Γω)2

= σT
ω4

(ω2 − ω2
0)2 + (Γω)2

[
σT =

8π

3

(
e2

mc2

)2
]

• If ω � ω0 then σ(ω)→ σT and the electron behaves as a free
particle



Rayleigh Scattering
• If ω � ω0 then

σ(ω)→ σT

(
ω

ω0

)4

and the steep frequency dependence is the reason the sky is blue
and sunsets are red - is the limit where e.o.m is
ω2

0x = (eE0/m)eiωt

• If ω ≈ ω0 then line absorption and resonance

(ω2 − ω2
0) = (ω − ω0)(ω + ω0) ≈ 2ω0(ω − ω0)

σ(ω) = σT
ω4

0

4ω2
0(ω − ω0)2 + (Γω0)2

σ(ω) =
σT
4

ω2
0

(ω − ω0)2 + (Γ/2)2



Absorption coefficient
• Relate to Lorentz profile

σ(ω) =
σT
4

2πω2
0

Γ

Γ/2π

(ω − ω0)2 + (Γ/2)2

[
Γ =

2

3

e2ω2
0

mc3

]
= 2π2 e

2

mc

Γ/2π

(ω − ω0)2 + (Γ/2)2

[
σT =

8π

3

(
e2

mc2

)2
]

• Absorption coefficient, Einstein coefficient

αν = nσ(ω) =
hν0

4π
nB12φ(ν)

σ(ω) =
hν0

4π
B12φ(ν)∫

dνσ(ω) =

∫
dω

2π
σ(ω) =

2π2

2π

e2

mc
=
hν0

4π
B12 → B12 =

4π2e2

hν0mc



Absorption coefficient
• Quantum results are stated against this classical result as an

oscillator strength f12

B12 =
4π2e2

hν0mc
f12

• The Einstein A21 spontaneous emission coefficient is then

A21 =
2h

c2
ν3

0

g1

g2

B12 =
8π2ν2

0e
2

mc3

g1

g2

f12 = 3Γ
g1

g2

f12

so that the rate Γ defines A21

• We shall see that the relation is corrected in the semiclassical
oscillator and A21 = Γ(g1/g2)f12



Quantum Oscillator
• Schrodinger equation in the absence of radiation field

Hψ = ih̄
∂ψ

∂t

• The Hamiltonian including the radiation field is in Coulomb gauge
[∇ · A = 0 and ∇2φ = −4πρ (=0 for radiation)]

Hrelativistic = [(cq− eA)2 +m2c2]1/2 + eφ

H ≈ q2

2m
+ eφ− e

mc
A · q H = H0 +HI

• Radiative transitions are approximated through an interaction
Hamiltonian in time dependent perturbation theory

HI = − e

mc
A · q =

ieh̄

mc
A · ∇

which connects the initial and final state



Quantum Oscillator
• Original eigenstates |n〉 such that H0|n〉 = En|n〉
• Expand the wave function in the original eigenfunctions

|ψ〉 =
∑

cn|n〉e−iEnt/h̄

ih̄
∂

∂t
|ψ〉 =

[
H0 +HI

]
|ψ〉

ih̄
dcm
dt

=
∑
n

〈m|HI |n〉cn(t)ei(Em−En)t/h̄

• Initially the atom is in the initial state ci = 1 and cn6=i = 0 and the
perturbation induces a transition to a final state m = f with
strength given by the matrix element HI

fi(t) = 〈f |HI |i〉. A short
time T later

cf (T ) = − i
h̄

∫ T

0

dtHI
fi(t)e

i(Ef−Ei)t/h̄ ≡ − i
h̄

2πHI
fi(ωfi)



Quantum Oscillator
• The integral is a Fourier transform that picks out frequency
ωfi = (Ef − Ei)/h̄ in HI with some width determined by how
long (T ) one waits before accumulating significant probability.

• Transition rate is the probability per unit time for the transition

wfi =
4π2

h̄2T
|HI

fi(ωfi)|2

• Field carries time dependence A(r, t) = A(t)eik·r and integral
picks out ωfi component of field

HI
fi(ωfi) = A(ωfi)

ieh̄

mc
〈f |eik·r∇|i〉

〈f |eik·r∇|i〉 =

∫
d3xψ∗fe

ik·r∇ψi

in dipole approx eik·r ≈ 1 across region ψ has support



Einstein Coefficient
• Time reversal symmetry gives wif = wfi, is the quantum origin of

the relationship between B12 and B21 the absorption and
stimulated emission coefficient

• For absorption

w12 = B12Jν

and what remains is to relate the A embedded in the interaction
Hamiltonian with the specific intensity

dW

dAdωdt
=
c|E(ω)|2

T
dW

dAdνdt
=

2πc|E(ω)|2

T



Einstein Coefficient
• Given B = ∇×B and E0 = B0, in Fourier space field and

potential related by

|E(ω)|2 =
ω2

c2
|A(ω)|2

• A plane wave is a delta function in angle so that Jν = 1
4π

∫
dΩIν

simply divides the result by 4π or

Jν =
1

2

ω2

cT
|A(ω)|2



Einstein Coefficient
• Eliminate in favor of Jν

wfi =
2c

ω2
fi

4π2
|HI

fi(ωfi)|2

|A(ω)|2
Jν

=
8π2

ω2
fi

e2

m2c

∣∣∣〈f |eik·r∇|i〉∣∣∣2Jν
• Determines Einstein coefficient

B12 =
8π2

ω2
fi

e2

m2c

∣∣∣〈f |eik·r∇|i〉∣∣∣2



Einstein Coefficient
• Determines the oscillator strength f12, typically less than unity

B12 =
8π2

ω2
fi

e2

m2c

∣∣∣〈f |eik·r∇|i〉∣∣∣2
=

4π2e2

h̄ωfimc
f12

f12 =
2h̄

ωfim

∣∣∣〈f |eik·r∇|i〉∣∣∣2
• Stimulated emission can be similarly handled, the difference being

for degenerate levels the result is averaged over initial states and
summed over final states – hence the g1, g2 factors



Einstein Coefficient
• Spontaneous emission formally requires second (field)

quantization but can be derived semiclassically by the Einstein
relation. Key of the quantum derivation is the field behaves as a
quantized oscillator and the states are normalized as

a†|n〉 ∝ (n+ 1)1/2|n+ 1〉

where the n� 1 returns the semiclassical stimulated emission
coefficient B21 and the n = 0 returns the spontaneous emission A21

• When the coefficients cannot be calculated A21 is measured and
the others inferred



Line Profile
• The natural linewidth is determined by A21 = Γ exactly as in the

semiclassical theory (but without the relationship
Γ = 2e2ω2

0/3mc
3) , yielding a Lorentzian profile

• Linewidth is broadened by thermal motion. Frequency shifted
according to the Doppler shift from the line of sight velocity v‖

ν − ν0 = ν0

v‖
c

• The velocity distribution is Maxwellian given the atomic mass ma( m

2πkT

)1/2

e−mav
2
‖/2kTdv‖

• The net result is a Voigt profile

φ(ν) =
Γ

4π2

∫ ∞
−∞

dv‖
1

(ν − ν0)2 + (Γ/4π)2

( m

2πkT

)1/2

e−mav
2
‖/2kTdv‖



Line Profile
• Finally, collisions can also broaden the profile. They introduce a

random phase in the electric field. As shown in RL Problem 10.7,
collisions of a frequency νcol cause 〈|E(t)|2〉 ∝ e−νcolt (a Poisson
process) and comparing this to the e−Γt/2 natural decay implies
that the total Lorentzian width of the line

Γ→ Γ + 2νcol



Electronic, Vibrational, Rotational Lines
• Electronic lines tend to have an energy given by the physical scale

of the orbital (atom) and tends to be in the few eV energy scale

Eelect ∼
1

2

p2

me

∼ 1

2

h̄2

a2me

p ∼ h̄

a

• Molecules can have vibrations. For vibrations, the atoms execute
simple harmonic motion around their equilibrium position with the
restoring force associated with the electronic binding energy - so
that a displacement of order a must given the electronic energy

Eelect =
1

2

h̄2

a2me

=
1

2
ka2 =

1

2
maω

2
viba

2

Evib = h̄ωvib =
h̄2

a2m
1/2
e m

1/2
a

∼
(
me

ma

)1/2

Eelect



Electronic, Vibrational, Rotational Lines
• Vibrational energies are lower by of order a percent of the

electronic energies, i.e. 10−2 − 10−1 eV or infrared

• Rotational energy is associated with the moment of inertial
I ∼ maa

2

Erot ≈
h̄2`(`+ 1)

2I
∼ h̄2

2a2ma

≈ me

ma

Eelect

or 10−3 eV in the far infrared and radio

• Ratio of energies

Eelect : Evib : Erot = 1 :

(
me

ma

)1/2

:
me

ma


