Set 7:

Classical \& Semi-Classical Oscillators

Dipole Approximation

- Radiation field

$$
\begin{aligned}
& \mathbf{E}_{\mathrm{rad}}=\frac{q}{c}\left[\frac{\hat{\mathbf{n}}}{\kappa^{3} R} \times((\hat{\mathbf{n}}-\beta) \times \dot{\beta})\right] \\
& \mathbf{B}_{\mathrm{rad}}=\hat{\mathbf{n}} \times \mathbf{E}_{\mathrm{rad}}
\end{aligned}
$$

- A collection of particles

$$
\mathbf{E}_{\mathrm{rad}}=\sum_{i} \frac{q_{i}}{c}\left[\frac{\hat{\mathbf{n}}_{i}}{\kappa_{i}^{3} R_{i}} \times\left(\left(\hat{\mathbf{n}}_{i}-\beta_{i}\right) \times \dot{\beta}_{i}\right)\right]
$$

- Take the limit of coherent emission of particles such that the wavelength $\lambda \gg L$, the dimension of the emission region.
- Approximation equivalent to non-relativistic velocities u since the scale of the oribits $l<L$

$$
\frac{L}{c} \ll \tau \sim \frac{l}{u}<\frac{L}{u} \quad \rightarrow u \ll c
$$

Dipole Approximation

- The light travel time across $L \ll$ time scale of change in charged particle orbits

$$
\tau \sim \frac{1}{\nu} \sim \frac{\lambda}{c} \gg \frac{L}{c}
$$

- So $\kappa_{i} \approx 1, \hat{\mathbf{n}}_{i}=\hat{\mathbf{n}}$ and $R_{i} \approx R_{0}$ the mean distance

$$
\mathbf{E}_{\mathrm{rad}}=\sum_{i} \frac{q_{i}}{c}\left[\frac{\hat{\mathbf{n}}}{R_{0}} \times\left(\hat{\mathbf{n}} \times \dot{\beta}_{i}\right)\right]
$$

- Defining the electric dipole moment

$$
\begin{aligned}
\mathbf{d} & =\sum_{i} q_{i} \mathbf{r}_{i} \\
\mathbf{E}_{\mathrm{rad}} & =\frac{1}{c^{2} R_{0}}[\hat{\mathbf{n}} \times(\hat{\mathbf{n}} \times \ddot{\mathbf{d}})]
\end{aligned}
$$

Dipole Approximation

- Larmor formula

$$
\frac{d P}{d \Omega}=\frac{\ddot{d}^{2}}{4 \pi c^{3}} \sin ^{2} \Theta \quad P=\frac{2 \ddot{d}^{2}}{3 c^{3}}
$$

- Frequency structure reflects $d(t)$

$$
\begin{aligned}
& d(t)=\int_{-\infty}^{\infty} e^{-i \omega t} d(\omega) d \omega \\
& \ddot{d}(t)=-\int_{-\infty}^{\infty} \omega^{2} d(\omega) e^{-i \omega t} d \omega
\end{aligned}
$$

in the electric field

$$
E(\omega)=-\frac{1}{c^{2} R_{0}} \omega^{2} d(\omega) \sin \Theta
$$

Dipole Approximation

- Energy spectrum $d A=R_{0}^{2} d \Omega$

$$
\begin{aligned}
\frac{d W}{d \omega d \Omega} & =c|E(\omega)|^{2} R_{0}^{2}=\frac{1}{c^{3}} \omega^{4}|d(\omega)|^{2} \sin ^{2} \Theta \\
\frac{d W}{d \omega} & =\frac{8 \pi \omega^{4}}{3 c^{3}}|d(\omega)|^{2}
\end{aligned}
$$

- Dipole radiation frequencies reflect frequencies in the dipole moment. Generalize to higher order in the expansion of L / λ or $k \Delta R_{i}$

Thomson Scattering

- Simplest example: single free electron system

- Incoming wave of frequency ω_{0} provides oscillatory force for acceleration. For non-relativistic velocities the Lorentz force is dominated by the electric field

$$
\begin{aligned}
& \mathbf{F}=e \mathbf{E}=e E_{0} \sin \omega_{0} t \hat{\mathbf{e}}=m \mathbf{a} \\
& \mathbf{a}=\frac{e E_{0}}{m} \sin \omega_{0} t \hat{\mathbf{e}}
\end{aligned}
$$

Thomson Scattering

- Dipole formula

$$
\begin{aligned}
\mathbf{d} & =e \mathbf{r}, \quad \ddot{\mathbf{d}}=e \mathbf{a}=\frac{e^{2} E_{0}}{m} \sin \omega_{0} t \hat{\mathbf{e}} \\
\frac{d P}{d \Omega} & =\frac{\ddot{d}^{2}}{4 \pi c^{3}} \sin ^{2} \Theta=\frac{e^{4} E_{0}^{2}}{m^{2}} \frac{1}{4 \pi c^{3}} \sin ^{2} \Theta\left\langle\sin ^{2} \omega_{0} t\right\rangle \\
& =\frac{e^{4} E_{0}^{2}}{8 \pi m^{2} c^{3}} \sin ^{2} \Theta \quad \rightarrow P=\frac{e^{4} E_{0}^{2}}{3 m^{2} c^{3}}
\end{aligned}
$$

- Power is independent of frequency
- Differential Cross Section: $P=\langle S\rangle \sigma_{T}$

$$
\begin{aligned}
\frac{d \sigma_{T}}{d \Omega} & =\frac{\frac{d P}{d \Omega}}{\langle S\rangle}=\frac{\text { outgoing power }}{\text { incoming flux }} \\
& =\frac{\frac{e^{4}}{8 \pi m^{2} c^{3}} E_{0}^{2} \sin ^{2} \Theta}{\frac{c}{8 \pi} E_{0}^{2}}=\frac{e^{4}}{m^{2} c^{4}} \sin ^{2} \Theta
\end{aligned}
$$

Thomson Scattering

- Cross section decreases with mass (so electrons not protons dominate), defines a classical size for a point particle $r_{0}=e^{2} / m c^{2}$.
Total cross section

$$
\sigma_{T}=\int \frac{d \sigma_{T}}{d \Omega} d \Omega=\frac{8 \pi}{3} r_{0}^{2}
$$

- Θ is angle between $\hat{\text { e }}$ and $\hat{\mathbf{n}}$. Relate to scattering angle θ and polarization
- For $\hat{\mathbf{e}} \perp \hat{\mathbf{n}}$ (polarization out of scattering plane) then $\sin \Theta=1$. For polarization in the scattering plane $\Theta=\pi / 2-\theta$
- Average over the two incoming polarization states

$$
\frac{d \sigma_{T}}{d \Omega}=\frac{1}{2} r_{0}^{2}\left[1+\sin ^{2}\left(\frac{\pi}{2}-\theta\right)\right]=\frac{1}{2} r_{0}^{2}\left(1+\cos ^{2} \theta\right)
$$

Classical Line Emission

- An electron bound in a central force provides a classical model for spontaneous emission in an atomic line

- Given a restoring force $\mathbf{F}=-k \mathbf{r}$ there is a natural frequency of oscillation. Neglecting radiation

$$
m a=-k r \rightarrow \ddot{x}+\frac{k}{m} x=0 \rightarrow \ddot{x}+\omega_{0}^{2} x=0
$$

where $\left.\omega_{0}=\sqrt{(} k / m\right)$

Radiation Reaction

- But an accelerating electron will radiate causing the oscillator to lose energy as a damped oscillator

$$
\ddot{x}+\Gamma \dot{x}+\omega_{0}^{2} x=0
$$

where Γ is the damping rate due to radiation losses

- Larmor's formula gives power radiated or energy lost to radiation per unit time

$$
P=\frac{2 e^{2} \ddot{x}^{2}}{3 c^{3}}
$$

Radiation Reaction

- If one assumes that losses are small across one period of the oscillation then (like the Rosseland approximation) one can iterate the solution

$$
\begin{array}{r}
\ddot{x} \approx-\omega_{0}^{2} x \quad \\
P \quad x \approx A \cos \left(\omega_{0} t+\delta\right) \\
P=\frac{2 e^{2}}{3 c^{3}}\left(-\omega_{0}^{2} x\right)^{2}=\frac{2 e^{2}}{3 c^{3}} \omega_{0}^{4} x^{2}
\end{array}
$$

- Set equal to mechanical work / time? by radiation reaction

$$
\frac{2 e^{2}}{3 c^{3}} \omega_{0}^{4} x^{2}=-F_{\mathrm{rad}} \dot{x}
$$

- Problem: since $x \propto \cos \left(\omega_{0} t+\delta\right)$ and $\dot{x} \propto \sin \left(\omega_{0} t+\delta\right)$ this formula cannot be satisfied instantaneously representing a breakdown of the classical treatment

Radiation Reaction

- Try average over an oscillation period $T=2 \pi / \omega_{0}$ and match integral of $\cos ^{2}$ with $\sin ^{2}$

$$
\begin{aligned}
\int_{0}^{\frac{2 \pi}{\omega_{0}}} d t \frac{2 e^{2}}{3 c^{3}} \omega_{0}^{4} A^{2} \cos ^{2}\left(\omega_{0} t+\delta\right) & =-\int_{0}^{\frac{2 \pi}{\omega_{0}}} d t F_{\mathrm{rad}}\left[-A \omega_{0} \sin \left(\omega_{0} t+\delta\right)\right] \\
\frac{2 e^{2}}{3 c^{3}} \omega_{0}^{4} A^{2} \frac{1}{2} & =\frac{F_{\mathrm{rad}}}{\sin \left(\omega_{0} t+\delta\right)} A \omega_{0} \frac{1}{2}
\end{aligned}
$$

- Solve for the reaction force

$$
\begin{aligned}
F_{\text {rad }} & =\frac{2 e^{2} \omega_{0}^{3}}{3 c^{3}} A \sin \left(\omega_{0} t+\delta\right) \\
& =-\frac{2 e^{2} \omega_{0}^{2}}{3 c^{3}} \dot{x}
\end{aligned}
$$

Radiation Reaction

- So the oscillator equation of motion becomes

$$
\begin{aligned}
\ddot{x}+\omega_{0}^{2} x & =F_{\mathrm{rad}} / m=-\frac{2 e^{2} \omega_{0}^{2}}{3 c^{3} m} \dot{x} \\
\Gamma & =\frac{2}{3} \frac{e^{2} \omega_{0}^{2}}{m c^{3}}
\end{aligned}
$$

which quantifies the rate at which the orbit decays due to radiation losses - in a quantum description of the line this is related the Einstein coefficient for spontaneous emission

$$
\begin{aligned}
\ddot{x}+\Gamma \dot{x}+\omega_{0}^{2} x & =0 \quad x=e^{\alpha t} \\
\alpha^{2}+\Gamma \alpha+\omega_{0}^{2} & =0 \\
\alpha & =\frac{1}{2}\left(-\Gamma \pm \sqrt{\Gamma^{2}-4 \omega_{0}^{2}}\right)
\end{aligned}
$$

Lorentz Line Profile

- Since $\Gamma \ll \omega_{0}$ one can expand

$$
\begin{aligned}
\alpha & = \pm i \omega_{0} \sqrt{1-\frac{\Gamma^{2}}{4 \omega_{0}^{2}}}-\Gamma / 2 \approx \pm i \omega_{0}-\Gamma / 2 \\
x(t) & =x(0) e^{-\Gamma t / 2} \cos \left(\omega_{0} t+\delta\right)
\end{aligned}
$$

- Get frequency content (define zero of time so that $\delta=0$)

$$
\begin{aligned}
x(t) & =x(0) e^{-\Gamma t / 2} \frac{1}{2}\left[e^{i \omega_{0} t}+e^{-i \omega_{0} t}\right] \\
x(\omega) & =\frac{1}{2 \pi} \int x(t) e^{i \omega t} d t \\
& =\frac{x(0)}{4 \pi}\left[\frac{1}{\Gamma / 2-i\left(\omega+\omega_{0}\right)}+\frac{1}{\Gamma / 2-i\left(\omega-\omega_{0}\right)}\right]
\end{aligned}
$$

Lorentz Line Profile

- Frequency content dominated by region around $\omega=\omega_{0}$, i.e. the second term

$$
\begin{aligned}
x(\omega) & \approx \frac{x(0)}{4 \pi} \frac{1}{\Gamma / 2-i\left(\omega-\omega_{0}\right)} \\
|x(\omega)|^{2} & \approx \frac{x^{2}(0)}{(4 \pi)^{2}} \frac{1}{\left(\omega-\omega_{0}\right)^{2}+(\Gamma / 2)^{2}} \\
\frac{d W}{d \omega} & =\frac{8 \pi \omega^{4}}{3 c^{3}} e^{2}|x(\omega)|^{2} \\
& =\frac{8 \pi \omega^{4}}{3 c^{3}} \frac{e^{2} x^{2}(0)}{(4 \pi)^{2}} \frac{1}{\left(\omega-\omega_{0}\right)^{2}+(\Gamma / 2)^{2}}
\end{aligned}
$$

- Interpret the amplitude in terms of initial energy in the oscillator

$$
E_{i}=\frac{1}{2} k x^{2}(0)=\frac{1}{2} m \omega_{0}^{2} x^{2}(0)
$$

Lorentz Line Profile

- All of the initial energy is emitted as radiation

$$
\begin{aligned}
& \frac{d W}{d \omega}= \frac{8 \pi \omega^{4}}{3 c^{3}} \frac{e^{2}}{(4 \pi)^{2}} \frac{2 E_{i}}{m \omega_{0}^{2}} \frac{1}{\left(\omega-\omega_{0}\right)^{2}+(\Gamma / 2)^{2}} \\
& \frac{d W}{d \omega}=\frac{\omega^{4}}{\omega_{0}^{2}} \frac{e^{2} E_{i}}{3 \pi m c^{3}} \frac{1}{\left(\omega-\omega_{0}\right)^{2}+(\Gamma / 2)^{2}} \\
& {\left[\Gamma=\frac{2}{3} \frac{e^{2} \omega_{0}^{2}}{m c^{3}}\right] } \\
& \frac{d W}{d \omega}=E_{i} \frac{\Gamma / 2 \pi}{\left(\omega-\omega_{0}\right)^{2}+(\Gamma / 2)^{2}}
\end{aligned}
$$

Lorentz Line Profile

- Lorentz profile: FWHM = Λ with normalization

$$
\left[\int d \omega \frac{\Gamma / 2 \pi}{\left(\omega-\omega_{0}\right)^{2}+(\Gamma / 2)^{2}}=1\right]
$$

- So that the decay rate is related to the frequency spread of the line $\Delta \omega=\Gamma$

$$
\Delta \lambda=2 \pi c \frac{\Delta \omega}{\omega_{0}^{2}}=\frac{4 \pi e^{2}}{3 m c^{2}} \approx 1.2 \times 10^{-12} \mathrm{~cm}
$$

Absorption

- Γ must be related to A_{21} the Einstein spontaneous emission coefficient. However a direct association is impeded in that an atomic state is classically unstable. Establish the relation by considering the absorption coefficient

- Driven oscillator: combination of the Thomson and line calculations with incident radiation at frequency ω

$$
\ddot{x}+\Gamma \dot{x}+\omega_{0}^{2} x=\frac{e E_{0}}{m} e^{i \omega t}
$$

Absorption

- After transients from the initial conditions are gone due to damping

$$
\begin{aligned}
x & =x_{0} e^{i \omega t} \\
\left(-\omega^{2}+\Gamma i \omega+\omega_{0}^{2}\right) x_{0} e^{i \omega t} & =\frac{e E_{0}}{m} e^{i \omega t}
\end{aligned}
$$

- Solution

$$
\begin{aligned}
& x_{0}=\frac{e E_{0}}{m} \frac{1}{\omega_{0}^{2}-\omega^{2}+i \omega \Gamma} \\
& \omega^{2}-\omega_{0}^{2}+i \omega \Gamma \equiv|A| e^{-i \delta}=|A|(\cos \delta-i \sin \delta) \\
&|A| \cos \delta=\omega_{0}^{2}-\omega^{2}, \quad|A| \sin \delta=-\Gamma \omega \\
& \tan \delta=\frac{\Gamma \omega}{\omega^{2}-\omega_{0}^{2}} \\
& x_{0}=\left|\frac{e E_{0}}{m} \frac{-1}{\omega^{2}-\omega_{0}^{2}-i \omega \Gamma}\right| e^{i \delta}
\end{aligned}
$$

Absorption

- Reradiated power

$$
P=\frac{e^{2} \omega^{4}}{3 c^{3}}\left|x_{0}\right|^{2}=\frac{e^{4} \omega^{4}}{3 c^{3}} \frac{E_{0}^{2}}{m^{2}} \frac{1}{\left(\omega^{2}-\omega_{0}^{2}\right)^{2}+(\Gamma \omega)^{2}}
$$

- Interaction cross section

$$
\begin{aligned}
\sigma(\omega) & =\frac{P}{\langle S\rangle}=\frac{P}{\frac{c}{8 \pi} E_{0}^{2}}=\frac{8 \pi}{3 c^{4}} \frac{e^{4} \omega^{4}}{m^{2}} \frac{1}{\left(\omega^{2}-\omega_{0}^{2}\right)^{2}+(\Gamma \omega)^{2}} \\
& =\sigma_{T} \frac{\omega^{4}}{\left(\omega^{2}-\omega_{0}^{2}\right)^{2}+(\Gamma \omega)^{2}} \quad\left[\sigma_{T}=\frac{8 \pi}{3}\left(\frac{e^{2}}{m c^{2}}\right)^{2}\right]
\end{aligned}
$$

- If $\omega \gg \omega_{0}$ then $\sigma(\omega) \rightarrow \sigma_{T}$ and the electron behaves as a free particle

Rayleigh Scattering

- If $\omega \ll \omega_{0}$ then

$$
\sigma(\omega) \rightarrow \sigma_{T}\left(\frac{\omega}{\omega_{0}}\right)^{4}
$$

and the steep frequency dependence is the reason the sky is blue and sunsets are red - is the limit where e.o.m is
$\omega_{0}^{2} x=\left(e E_{0} / m\right) e^{i \omega t}$

- If $\omega \approx \omega_{0}$ then line absorption and resonance

$$
\begin{aligned}
\left(\omega^{2}-\omega_{0}^{2}\right) & =\left(\omega-\omega_{0}\right)\left(\omega+\omega_{0}\right) \approx 2 \omega_{0}\left(\omega-\omega_{0}\right) \\
\sigma(\omega) & =\sigma_{T} \frac{\omega_{0}^{4}}{4 \omega_{0}^{2}\left(\omega-\omega_{0}\right)^{2}+\left(\Gamma \omega_{0}\right)^{2}} \\
\sigma(\omega) & =\frac{\sigma_{T}}{4} \frac{\omega_{0}^{2}}{\left(\omega-\omega_{0}\right)^{2}+(\Gamma / 2)^{2}}
\end{aligned}
$$

Absorption coefficient

- Relate to Lorentz profile

$$
\begin{array}{rlc}
\sigma(\omega) & =\frac{\sigma_{T}}{4} \frac{2 \pi \omega_{0}^{2}}{\Gamma} \frac{\Gamma / 2 \pi}{\left(\omega-\omega_{0}\right)^{2}+(\Gamma / 2)^{2}} & {\left[\Gamma=\frac{2}{3} \frac{e^{2} \omega_{0}^{2}}{m c^{3}}\right]} \\
& =2 \pi^{2} \frac{e^{2}}{m c} \frac{\Gamma / 2 \pi}{\left(\omega-\omega_{0}\right)^{2}+(\Gamma / 2)^{2}} & {\left[\sigma_{T}=\frac{8 \pi}{3}\left(\frac{e^{2}}{m c^{2}}\right)^{2}\right]}
\end{array}
$$

- Absorption coefficient, Einstein coefficient

$$
\begin{aligned}
\alpha_{\nu} & =n \sigma(\omega)=\frac{h \nu_{0}}{4 \pi} n B_{12} \phi(\nu) \\
\sigma(\omega) & =\frac{h \nu_{0}}{4 \pi} B_{12} \phi(\nu) \\
\int d \nu \sigma(\omega) & =\int \frac{d \omega}{2 \pi} \sigma(\omega)=\frac{2 \pi^{2}}{2 \pi} \frac{e^{2}}{m c}=\frac{h \nu_{0}}{4 \pi} B_{12} \rightarrow B_{12}=\frac{4 \pi^{2} e^{2}}{h \nu_{0} m c}
\end{aligned}
$$

Absorption coefficient

- Quantum results are stated against this classical result as an oscillator strength f_{12}

$$
B_{12}=\frac{4 \pi^{2} e^{2}}{h \nu_{0} m c} f_{12}
$$

- The Einstein A_{21} spontaneous emission coefficient is then

$$
A_{21}=\frac{2 h}{c^{2}} \nu_{0}^{3} \frac{g_{1}}{g_{2}} B_{12}=\frac{8 \pi^{2} \nu_{0}^{2} e^{2}}{m c^{3}} \frac{g_{1}}{g_{2}} f_{12}=3 \Gamma \frac{g_{1}}{g_{2}} f_{12}
$$

so that the rate Γ defines A_{21}

- We shall see that the relation is corrected in the semiclassical oscillator and $A_{21}=\Gamma\left(g_{1} / g_{2}\right) f_{12}$

Quantum Oscillator

- Schrodinger equation in the absence of radiation field

$$
H \psi=i \hbar \frac{\partial \psi}{\partial t}
$$

- The Hamiltonian including the radiation field is in Coulomb gauge [$\nabla \cdot A=0$ and $\nabla^{2} \phi=-4 \pi \rho$ ($=0$ for radiation) $]$

$$
\begin{aligned}
H_{\text {relativistic }} & =\left[(c \mathbf{q}-e \mathbf{A})^{2}+m^{2} c^{2}\right]^{1 / 2}+e \phi \\
H & \approx \frac{q^{2}}{2 m}+e \phi-\frac{e}{m c} \mathbf{A} \cdot \mathbf{q} \quad H=H^{0}+H^{I}
\end{aligned}
$$

- Radiative transitions are approximated through an interaction Hamiltonian in time dependent perturbation theory

$$
H^{I}=-\frac{e}{m c} \mathbf{A} \cdot \mathbf{q}=\frac{i e \hbar}{m c} \mathbf{A} \cdot \nabla
$$

which connects the initial and final state

Quantum Oscillator

- Original eigenstates $|n\rangle$ such that $H^{0}|n\rangle=E_{n}|n\rangle$
- Expand the wave function in the original eigenfunctions

$$
\begin{aligned}
|\psi\rangle & =\sum c_{n}|n\rangle e^{-i E_{n} t / \hbar} \\
i \hbar \frac{\partial}{\partial t}|\psi\rangle & =\left[H^{0}+H^{I}\right]|\psi\rangle \\
i \hbar \frac{d c_{m}}{d t} & =\sum_{n}\langle m| H^{I}|n\rangle c_{n}(t) e^{i\left(E_{m}-E_{n}\right) t / \hbar}
\end{aligned}
$$

- Initially the atom is in the initial state $c_{i}=1$ and $c_{n \neq i}=0$ and the perturbation induces a transition to a final state $m=f$ with strength given by the matrix element $H_{f i}^{I}(t)=\langle f| H^{I}|i\rangle$. A short time T later

$$
c_{f}(T)=-\frac{i}{\hbar} \int_{0}^{T} d t H_{f i}^{I}(t) e^{i\left(E_{f}-E_{i}\right) t / \hbar} \equiv-\frac{i}{\hbar} 2 \pi H_{f i}^{I}\left(\omega_{f i}\right)
$$

Quantum Oscillator

- The integral is a Fourier transform that picks out frequency $\omega_{f i}=\left(E_{f}-E_{i}\right) / \hbar$ in H^{I} with some width determined by how long (T) one waits before accumulating significant probability.
- Transition rate is the probability per unit time for the transition

$$
w_{f i}=\frac{4 \pi^{2}}{\hbar^{2} T}\left|H_{f i}^{I}\left(\omega_{f i}\right)\right|^{2}
$$

- Field carries time dependence $\mathbf{A}(\mathbf{r}, t)=\mathbf{A}(t) e^{i \mathbf{k} \cdot \mathbf{r}}$ and integral picks out $\omega_{f i}$ component of field

$$
\begin{aligned}
H_{f i}^{I}\left(\omega_{f i}\right) & =\mathbf{A}\left(\omega_{f i}\right) \frac{i e \hbar}{m c}\langle f| e^{i \mathbf{k} \cdot \mathbf{r}} \nabla|i\rangle \\
\langle f| e^{i \mathbf{k} \cdot \mathbf{r}} \nabla|i\rangle & =\int d^{3} x \psi_{f}^{*} e^{i \mathbf{k} \cdot \mathbf{r}} \nabla \psi_{i}
\end{aligned}
$$

in dipole approx $e^{i \mathbf{k} \cdot \mathbf{r}} \approx 1$ across region ψ has support

Einstein Coefficient

- Time reversal symmetry gives $w_{i f}=w_{f i}$, is the quantum origin of the relationship between B_{12} and B_{21} the absorption and stimulated emission coefficient
- For absorption

$$
w_{12}=B_{12} J_{\nu}
$$

and what remains is to relate the A embedded in the interaction Hamiltonian with the specific intensity

$$
\begin{aligned}
\frac{d W}{d A d \omega d t} & =\frac{c|E(\omega)|^{2}}{T} \\
\frac{d W}{d A d \nu d t} & =\frac{2 \pi c|E(\omega)|^{2}}{T}
\end{aligned}
$$

Einstein Coefficient

- Given $\mathbf{B}=\nabla \times \mathbf{B}$ and $E_{0}=B_{0}$, in Fourier space field and potential related by

$$
|E(\omega)|^{2}=\frac{\omega^{2}}{c^{2}}|A(\omega)|^{2}
$$

- A plane wave is a delta function in angle so that $J_{\nu}=\frac{1}{4 \pi} \int d \Omega I_{\nu}$ simply divides the result by 4π or

$$
J_{\nu}=\frac{1}{2} \frac{\omega^{2}}{c T}|\mathbf{A}(\omega)|^{2}
$$

Einstein Coefficient

- Eliminate in favor of J_{ν}

$$
\begin{aligned}
w_{f i} & =\frac{2 c}{\omega_{f i}^{2}} 4 \pi^{2} \frac{\left|H_{f i}^{I}\left(\omega_{f i}\right)\right|^{2}}{|\mathbf{A}(\omega)|^{2}} J_{\nu} \\
& \left.=\frac{8 \pi^{2}}{\omega_{f i}^{2}} \frac{e^{2}}{m^{2} c}\left|\langle f| e^{i \mathbf{k} \cdot \mathbf{r}} \nabla\right| i\right\rangle\left.\right|^{2} J_{\nu}
\end{aligned}
$$

- Determines Einstein coefficient

$$
\left.B_{12}=\frac{8 \pi^{2}}{\omega_{f i}^{2}} \frac{e^{2}}{m^{2} c}\left|\langle f| e^{i \mathbf{k} \cdot \mathbf{r}} \nabla\right| i\right\rangle\left.\right|^{2}
$$

Einstein Coefficient

- Determines the oscillator strength f_{12}, typically less than unity

$$
\begin{aligned}
B_{12} & \left.=\frac{8 \pi^{2}}{\omega_{f i}^{2}} \frac{e^{2}}{m^{2} c}\left|\langle f| e^{i \mathbf{k} \cdot \mathbf{r}} \nabla\right| i\right\rangle\left.\right|^{2} \\
& =\frac{4 \pi^{2} e^{2}}{\hbar \omega_{f i} m c} f_{12} \\
f_{12} & \left.=\frac{2 \hbar}{\omega_{f i} m}\left|\langle f| e^{i \mathbf{k} \cdot \mathbf{r}} \nabla\right| i\right\rangle\left.\right|^{2}
\end{aligned}
$$

- Stimulated emission can be similarly handled, the difference being for degenerate levels the result is averaged over initial states and summed over final states - hence the g_{1}, g_{2} factors

Einstein Coefficient

- Spontaneous emission formally requires second (field) quantization but can be derived semiclassically by the Einstein relation. Key of the quantum derivation is the field behaves as a quantized oscillator and the states are normalized as

$$
a^{\dagger}|n\rangle \propto(n+1)^{1 / 2}|n+1\rangle
$$

where the $n \gg 1$ returns the semiclassical stimulated emission coefficient B_{21} and the $n=0$ returns the spontaneous emission A_{21}

- When the coefficients cannot be calculated A_{21} is measured and the others inferred

Line Profile

- The natural linewidth is determined by $A_{21}=\Gamma$ exactly as in the semiclassical theory (but without the relationship $\Gamma=2 e^{2} \omega_{0}^{2} / 3 m c^{3}$), yielding a Lorentzian profile
- Linewidth is broadened by thermal motion. Frequency shifted according to the Doppler shift from the line of sight velocity $v_{\|}$

$$
\nu-\nu_{0}=\nu_{0} \frac{v_{\|}}{c}
$$

- The velocity distribution is Maxwellian given the atomic mass m_{a}

$$
\left(\frac{m}{2 \pi k T}\right)^{1 / 2} e^{-m_{a} v_{\|}^{2} / 2 k T} d v_{\|}
$$

- The net result is a Voigt profile
$\phi(\nu)=\frac{\Gamma}{4 \pi^{2}} \int_{-\infty}^{\infty} d v_{\|} \frac{1}{\left(\nu-\nu_{0}\right)^{2}+(\Gamma / 4 \pi)^{2}}\left(\frac{m}{2 \pi k T}\right)^{1 / 2} e^{-m_{a} v_{\|}^{2} / 2 k T} d v_{\|}$

Line Profile

- Finally, collisions can also broaden the profile. They introduce a random phase in the electric field. As shown in RL Problem 10.7, collisions of a frequency $\nu_{\text {col }}$ cause $\left.\left.\langle | E(t)\right|^{2}\right\rangle \propto e^{-\nu_{\text {col }} t}$ (a Poisson process) and comparing this to the $e^{-\Gamma t / 2}$ natural decay implies that the total Lorentzian width of the line

$$
\Gamma \rightarrow \Gamma+2 \nu_{\mathrm{col}}
$$

Electronic, Vibrational, Rotational Lines

- Electronic lines tend to have an energy given by the physical scale of the orbital (atom) and tends to be in the few eV energy scale

$$
E_{\mathrm{elect}} \sim \frac{1}{2} \frac{p^{2}}{m_{e}} \sim \frac{1}{2} \frac{\hbar^{2}}{a^{2} m_{e}} \quad p \sim \frac{\hbar}{a}
$$

- Molecules can have vibrations. For vibrations, the atoms execute simple harmonic motion around their equilibrium position with the restoring force associated with the electronic binding energy - so that a displacement of order a must given the electronic energy

$$
\begin{aligned}
E_{\text {elect }} & =\frac{1}{2} \frac{\hbar^{2}}{a^{2} m_{e}}=\frac{1}{2} k a^{2}=\frac{1}{2} m_{a} \omega_{\mathrm{vib}}^{2} a^{2} \\
E_{\mathrm{vib}} & =\hbar \omega_{\mathrm{vib}}=\frac{\hbar^{2}}{a^{2} m_{e}^{1 / 2} m_{a}^{1 / 2}} \sim\left(\frac{m_{e}}{m_{a}}\right)^{1 / 2} E_{\text {elect }}
\end{aligned}
$$

Electronic, Vibrational, Rotational Lines

- Vibrational energies are lower by of order a percent of the electronic energies, i.e. $10^{-2}-10^{-1} \mathrm{eV}$ or infrared
- Rotational energy is associated with the moment of inertial $I \sim m_{a} a^{2}$

$$
E_{\mathrm{rot}} \approx \frac{\hbar^{2} \ell(\ell+1)}{2 I} \sim \frac{\hbar^{2}}{2 a^{2} m_{a}} \approx \frac{m_{e}}{m_{a}} E_{\mathrm{elect}}
$$

or $10^{-3} \mathrm{eV}$ in the far infrared and radio

- Ratio of energies

$$
E_{\text {elect }}: E_{\mathrm{vib}}: E_{\mathrm{rot}}=1:\left(\frac{m_{e}}{m_{a}}\right)^{1 / 2}: \frac{m_{e}}{m_{a}}
$$

