
Set 8:
Compton Scattering



Energy-Momentum Conservation
• Thomson scattering ei + γi → ef + γf where the frequencies
ωi = ωf (elastic scattering) cannot strictly be true

• Photons carry off E/c momentum and so to conserve momentum
the electron must recoil.

• The electron then carries away some of the available energy and so
the Thomson limit requires h̄ωi/mc2 � 1 in the electron rest
frame

• General case (arbitrary electron velocity)

Pi ni

vi

nf

vfQi

Pf

Qf
electron

photon

directional
vectors



Energy-Momentum Conservation
• 4 momenta

Pi =
Ei
c

(1, n̂i) , Pf =
Ef
c

(1, n̂f ) , photon

Qi = γim(c, v̂i) , Qf = γfm(c, v̂f ) , electron

• To work out change in photon energy consider Lorentz invariants:

QµQ
µ = γ2m2(v2 − c2) = m2 v2 − c2

1− v2/c2 = −m2c2

PµP
µ = 0



Energy-Momentum Conservation
• Conservation

Pi +Qi = Pf +Qf

also Pf · [Pi +Qi = Pf +Qf ]

Pf · Pi + Pf ·Qi = Pf ·Qf

• Some identities to express final state in terms of initial state

(Pi +Qi)µ(Pi +Qi)
µ = (Pf +Qf )µ(Pf +Qf )

µ

2PiµQ
µ
i −m2c2 = 2PfµQ

µ
f −m2c2

Pi ·Qi = Pf ·Qf

• So

Pf · Pi + Pf ·Qi = Pi ·Qi



Energy-Momentum Conservation
• In three vector notation

Ei
c

Ef
c

(n̂i · n̂f − 1) +
Ef
c
γim(n̂f · vi − c) =

Ei
c
γim(n̂i · vi − c)

• Introducing the scattering angle as n̂i · n̂f = cos θ and auxiliary
angles n̂f · vi = vi cosαf and n̂i · vi = vi cosαi

EiEf (cos θ − 1) + Efγimc
2(βi cosαf − 1) = Eiγimc

2(βi cosαi − 1)

Ef =
Eiγimc

2(βi cosαi − 1)

Ei(cos θ − 1) + γimc2(βi cosαi − 1)

• So the change in photon energy is given by

Ef
Ei

=
1− βi cosαi

1− βi cosαf + Ei

γmc2
(1− cos θ)



Recoil Effect
• Two ways of changing the energy: Doppler boost βi from

incoming electron velocity and Ei comparable to γmc2

• Take the incoming electron rest frame βi = 0 and γ = 1

Ef
Ei

∣∣∣
rest

=
1

1 + Ei

mc2
(1− cos θ)

• Since −1 ≤ cos θ ≤ 1, Ef ≤ Ei, energy is lost from the recoil
except for purely forward scattering via comparing the incoming
photon energy Ei and the electron rest mass mc2

• The backwards scattering limit is easy to derive

|qf | = m|vf | = 2
Ei
c
, ∆E =

1

2
mv2f =

1

2
m

(
2Ei
mc

)2

=
2Ei
mc2

Ei

Ef = Ei −∆E = (1− 2Ei
mc2

)Ei ≈
Ei

1 + 2Ei

mc2



Compton Wavelength
• Alternate phrasing in terms of length scales E = hν = hc/λ so

λi
λf

∣∣∣
rest

=
1

1 + hc
λimc2

(1− cos θ)

λf
λi
− 1
∣∣∣
rest

=
h

mcλi
(1− cos θ) ≡ λc

λi
(1− cos θ)

where the Compton wavelength is λc = h/mc ≈ 2.4× 10−10 cm.

• Doppler effect: consider the limit of βi � 1 then expand to first
order

Ef
Ei

= 1− βi cosαi + βi cosαf −
Ei
mc2

(1− cos θ)

however averaging over angles the Doppler shifts don’t change the
energies



Second Order Doppler Shift
• To second order in the velocities, the Doppler shift transfers energy

from the electron to the photon in opposition to the recoil

Ef
Ei

= 1− βi cosαi + βi cosαf + β2
i cos2 αf −

Ei
mc2

〈Ef
Ei
〉 ≈ 1 +

1

3
β2
i −

Ei
mc2

• For a thermal distribution of velocities

1

2
m〈v2〉 =

3kT

2
β2
i ≈

3kT

mc2
→ 〈Ef

Ei
− 1〉 ∼ kT − Ei

mc2

so that if Ei � kT the photon gains energy and Ei � kT it loses
energy→ this is a thermalization process



Energy Transfer
• A more proper treatment of the radiative transfer equation (below)

for the distribution gives the Kompaneets equation and

Ef
Ei
− 1 =

4kT − Ei
mc2

where the coefficient reflects the fact that averaged over the Wien
tail 〈Ei〉 = 3kT and 〈E2

i 〉 = 12(kT )2 so that

Ef − Ei ∝ 4kTEi − E2
i = 0

in thermodynamic equilibrium. For multiple scattering events one
finds that the energy transfer goes as

4
k(Te − Tγ)

mc2
τ



Inverse Compton Scattering
• Relativistic electrons boost energy of low energy photons by a

potentially enormous amount - a way of getting γ rays in
astrophysics

Ef
Ei

=
1− βi cosαi

1− βi cosαf + Ei

γimc2
(1− cos θ)

• Take βi → 1 and γ � 1 but Ei < γimc
2 so that the scattering is

Thomson in the rest frame

• Qualitative: αi incoming angle wrt electron velocity can be
anything; BUT outgoing αf is strongly beamed in direction of
velocity with αf ∼ 1/γ � 1 or cosαf ≈ 1 so

Ef
Ei
≈ 1− βi cosαi

1− βi

[
1

γ2i
= (1− β)(1 + β) ≈ 2(1− β)

]
≈ (1− βi cosαi)2γ

2
i



Inverse Compton Scattering
• Since the incoming angle is random, a typical photon gains energy

by a factor of γ2i !

• From the electron’s perspective: see a bunch of (beamed) photons
coming head on boosted in energy by a factor of γi and scatter out
roughly isotropic preserving energy in the rest frame. Reverse the
boost and pick up another factor of γi in the lab frame beamed into
the direction of motion.

• Limit to energy transfer - total energy of the electron in lab frame

Ef − Ei ≈ Ef < γimc
2

γ2iEi < γimc
2

γiEi < mc2



Inverse Compton Scattering
• Maximum energy boost

Ef = γi(γiEi) < γimc
2 = γi(511keV)

so that Ef can be an enormous energy and the scattering is still
Thomson in the rest frame

• Is it consistent to neglect recoil compared with 1/γ2i in the lab
frame? The condition becomes

Recoil =
Ei

γimc2
� 1

γ2i

Eiγi � mc2

Yes until the maximum energy is reached.



Inverse Compton Scattering
• With γi = 103

radio 1GHz = 109Hz→ 1015Hz ≈ 300nm UV

optical 4× 1014Hz→ 4× 1020Hz ≈ 1.6MeV gamma ray

• These energies are less than the maximal γi(512keV) = 512MeV
so still Thomson in rest frame.



Single Scattering
• Consider a distribution of photons (and electrons) in the lab frame.

Characterize the radiative transfer in the optically thin single
scattering regime

• Consider the energy density (A is a constant)

u = 2

∫
d3p

(2πh̄)2
Ef = A

∫
fp3dpdΩ

• In the electron rest frame the energy density transforms with the
aid of the Lorentz transformations

p′ = pγ(1− βµ)

dΩ′ =
dΩ

γ2(1− βµ)2
→ p′

2
dΩ′ = p2dΩ

f ′ = f



Single Scattering
• Therefore energy density transforms as

u′ = A

∫
f ′p′

3
dp′dΩ′ = A

∫
fp′p2dp′dΩ

= A

∫
γ2(1− βµ)2fp3dpdΩ

• Assume that f is isotropic (in lab frame) then the energy densities
are related as

u′ =

∫
dΩγ2(1− βµ)2A

∫
fp3dp

=

∫
dΩγ2(1− βµ)2

u

4π

= γ2(1 +
1

3
β2)u



Single Scattering
• In the rest frame the emitted power is given by the Thomson

scattering strength σT = P/S and power is a Lorentz invariant

dErad

dt
=
dE ′

dt′
= cσTu

′

= cσTγ
2[1 +

1

3
β2]u

• The total power accounts for the “absorbed” energy of the
incoming photons

dE

dt
= cσT [γ2(1 +

1

3
β2)− 1]u , γ2 − 1 = γ2β2

=
4

3
σT cγ

2β2u



Single Scattering
• If we assume a thermal distribution of electrons 〈β2〉 = 3kT/mc2

we get

du

dt
=

4kT

mc2
cσTneu → du

dτ
=

4kT

mc2
u

• Assume a power law distribution of electron energies dE = mc2dγ

confined to a range γmin ≤ γ ≤ γmax

ne =

∫
ne,γdγ ne,γ = Kγ−p

• Change in the radiation energy density given γ � 1 (β ≈ 1)

du

dt
=

d2E

dtdV
=

∫
dE

dt
ne,γdγ

=
4

3
σT cu

K

3− p(γ3−pmax − γ3−pmin )



Single Scattering
• Energy spectrum in the power law case

d2E

dtdV
∝
∫
γ2−pdγ

and the scattered photon energy Ef ∝ γ2Ei

d2E

dtdV dEf
=

dγ

dEf

d2E

dtdV dγ
∝ 1

γ
γ2−p = γ1−p ∝ E

(1−p)/2
f

so the scattered spectrum is also a power law E−sf but with a power
law index s = (p− 1)/2.



Radiative Transfer Equation
• For full radiative transfer, we must go beyond the single scattering,

optically thin limit. Generally (set h̄ = c = k = 1 and neglect
Pauli blocking and polarization)

∂f

∂t
=

1

2E(pf )

∫
d3pi

(2π)3
1

2E(pi)

∫
d3qf
(2π)3

1

2E(qf )

∫
d3qi

(2π)3
1

2E(qi)

× (2π)4δ(pf + qf − pi − qi)|M |2

× {fe(qi)f(pi)[1 + f(pf )]− fe(qf )f(pf )[1 + f(pi)]}
where the matrix element is calculated in field theory and is
Lorentz invariant. In terms of the rest frame α = e2/h̄c (c.f. Klein
Nishina Cross Section)

|M |2 = 2(4π)2α2

[
E(pi)

E(pf )
+
E(pf )

E(pi)
− sin2 β

]
with β as the rest frame scattering angle



Kompaneets Equation
• The Kompaneets equation is the radiative transfer equation in the

limit that electrons are thermal

fe = e−(m−µ)/Tee−q
2/2mTe

[
ne = e−(m−µ)/Te

(
mTe
2π

)3/2
]

=

(
2π

mTe

)3/2

nee
−q2/2mTe

and assume that the energy transfer is small (non-relativistic
electrons, Ei � m

Ef − Ei
Ei

� 1 [O(Te/m,Ei/m)]



Kompaneets Equation
• Kompaneets equation (restoring h̄, c k)

∂f

∂t
= neσT c

(
kTe
mc2

)
1

x2
∂

∂x

[
x4
(
∂f

∂x
+ f(1 + f)

)]
x = h̄ω/kTe

• Equilibrium solution must be a Bose-Einstein distribution
∂f/∂t = 0 [

x4
(
∂f

∂x
+ f(1 + f)

)]
= K

∂f

∂x
+ f(1 + f) =

K

x4



Kompaneets Equation
Assume that as x→ 0, f → 0 then K = 0 and

df

dx
= −f(1 + f) → df

f(1 + f)
= dx

ln
f

1 + f
= −x+ c → f

1 + f
= e−x+c

f =
e−x+c

1− e−x+c =
1

ex−c − 1



Kompaneets Equation
• More generally, no evolution in the number density

nγ ∝
∫
d3pf ∝

∫
dxx2f

∂nγ
∂t
∝
∫
dxx2

1

x2
∂

∂x

[
x4
(
∂f

∂x
+ f(1 + f)

)]
∝ x4

[
∂f

∂x
+ f(1 + f)

]∞
0

= 0

• Energy evolution R ≡ neσT c(kTe/mc
2)

u = 2

∫
d3p

(2πh̄)3
Ef = 2

∫
p3dpc

2π2h̄3
f =

[
(kTe)

4

c4h̄3
1

π2
≡ A

] ∫
x3dxf

∂u

∂t
= AR

∫
dxx

∂

∂x

[
x4
(
∂f

∂x
+ f(1 + f)

)]



Kompaneets Equation

∂u

∂t
= −AR

∫
dxx4

(
∂f

∂x
+ f(1 + f)

)
= AR

∫
dx4x3f − AR

∫
dxx4f(1 + f)

= 4neσT c
kTe
mc2

u− AR
∫
dxx4f(1 + f)

Change in energy is difference between Doppler and recoil

• If f is a Bose-Einstein distribution at temperature Tγ

∂f

∂xγ
= −f(1 + f) xγ =

pc

kTγ

AR

∫
dxx4f(1 + f) = −AR

∫
dxx4

∂f

∂xγ
= AR

∫
dx4x3

dx

dxγ
f



Kompaneets Equation
• Radiative transfer equation for energy density

∂u

∂t
= 4neσT c

kTe
mc2

[
1− Tγ

Te

]
u

1

u

∂u

∂t
= 4neσT c

k(Te − Tγ)
mc2

which is our original form from the energy-momentum
conservation argument

• The analogue to the optical depth for energy transfer is the
Compton y parameter

dτ = neσTds = neσtcdt

dy =
k(Te − Tγ)

mc2
dτ



Kompaneets Equation
• Example: hot X-ray cluster with kT ∼ keV and the CMB:
Te � Tγ

• Inverse Compton scattering transfers energy to the photons while
conserving the photon number

• Optically thin conditions: low energy photons boosted to high
energy leaving a deficit in the number density in the RJ tail and an
enhancement in the Wien tail called a Compton-y distortion — see
problem set

• Compton scattering off high energy electrons can give low energy
photons a large boost in energy but cannot create the photons in
the first place



Kompaneets Equation
• Numerical solution of the Kompaneets equation going from a

Compton-y distortion to a chemical potential distortion of a
blackbody

y–distortion

µ-distortion

p/Tinit

∆T
 / T

in
it

0.1

0

–0.1

–0.2

10–3 10–2 10–1 1 101 102



Compton Scattering Map
• WMAP measured the Compton “emission” of photons, i.e. the

Compton scattering of the CMB at z ∼ 1000. At 61 GHz:

• Red band at equator is galactic contamination from the next two
processes.



Compton Scattering Map
• Gamma ray bubble from center of galaxy thought to be inverse

Compton from synchrotron radiation seen at radio frequencies.
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Fig. 18.— Comparison of the Fermi bubbles with features in other maps. Top left: Point-source subtracted 1− 5 GeV Fermi-LAT 1.6
yr map, same as the lower left panel of Figure 3 with north and south bubble edges marked with green dashed line, and north arc in blue
dashed line. The approximate edge of the Loop I feature is plotted in red dotted line, and the “donut” in purple dot-dashed line. Top
right: The Haslam 408 MHz map overplotted with the same red dotted line as the top left panel. The red dotted line remarkably traces
the edge of the bright Loop I feature in the Haslam soft synchrotron map. Bottom left: the ROSAT 1.5 keV X-ray map is shown together
with the same color lines marking the prominent Fermi bubble features. Bottom right: WMAP haze at K-band 23 GHz overplotted with
Fermi bubble edges. The ROSAT X-ray features and the WMAP haze trace the Fermi bubbles well, suggesting a common origin for these
features.

shown in Figure 16, the Loop I correlated emission also
has a softer spectrum than the Fermi bubble emission.

The Loop I feature in the ROSAT map similarly has a
softer spectrum than the limb-brightened X-ray bubble

edges: as shown in Figure 20, when a low-energy map
is subtracted from a higher-energy map in such a way

that Loop I vanishes, the bubble edges remain bright.
We also see additional shell structures which follow the

Fermi bubble edges and the northern arc in the Haslam
408 MHz map (top row of Figure 26).

The Fermi bubbles are morphologically and spectrally
distinct from both the π0 emission and the IC and
bremsstrahlung emission from the disk electrons. As we

have shown in Figure 12 to Figure 17, the Fermi bub-
bles have a distinctly hard spectrum, dNγ/dE ∼ E−2,

with no evidence of spatial variation across the bub-
bles. As shown in Figure 23, an electron population

with dNe/dE ∼ E−2−2.5 is required to produce these
gamma rays by IC scattering: this is comparable to the

spectrum of electrons accelerated by supernova shocks or
polar cap acceleration (Biermann et al. 2010). However,

diffusive propagation and cooling would be expected to
soften the spectrum, making it difficult to explain the

Fermi bubbles by IC scattering from a steady-state pop-
ulation of these electrons (a single brief injection of elec-

trons with dN/dE ∼ E−2 could generate a sufficiently
hard spectrum for the bubbles if there was a mechanism
to transport them throughout the bubble without sig-

nificant cooling). The facts strongly suggest that a dis-
tinct electron component with a harder spectrum than


