Set 9:
Bremsstrahlung



Coulomb Field

e Bremsstrahlung « >

can be viewed
as Thomson scattering ,
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of an electron with

the virtual photons in the lab frame
Coulomb field of the ion

e For relativistic
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. rest (primed) frame
transformed into nearly

equal transverse B field



Coulomb Field

e To a moving electron, the Coulomb field of an 10on 1s Lorentz
transformed from a spherically symmetric field to a pulse
resembling a radiation field

e From the general formula for the Lorentz transformation of the
field Coulomb £ field and B = 0
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Coulomb Field

e Given an electron moving in the x direction 1t will see a field of the

form
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e Take the electron to be at 2/ = 0, 2’ = 0 and vy’ = b then the fields
are
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Rest Frame Radiation

e Take an 1on of charge ¢ = —Ze, the acceleration of the electron 1n
the rest frame
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e Power 1s radiated via the Larmor formula and frequency content
comes from the Fourier moments
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Rest Frame Radiation

e Frequency spectrum
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Bremsstrahlung

e The modified Bessel functions K K; have a characteristic high
frequency cut off for y > 1 or w’ > ~v /b with
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e More power comes out in the | term especially for v > 1, thus

since dWW/dw is a Lorentz invariant
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Virtual Quanta

e Bremsstrahlung can be viewed as Thomson scattering of virtual
particles: the Coulomb field looks like a pulse of radiation
quantified by its electric field:
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Non-Relativistic Bremsstrahlung

e For non-relativistic velocities v = 1 and w’ ~ w

e yK(y) can be approximated by a step function at y = 1 or
w=1uv/b
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dw 31 m2c3be? 0 w>uv/b.

e Spectrum is flat out to a cut off frequency. The interaction takes
place over a temporal extent At which defines the range of
frequencies — for low w looks like a 0 function
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Non-Relativistic Bremsstrahlung

e The amplitude is related to the change 1n velocity through the
dipole formula
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e The total change in velocity can be found by integrating the

acceleration
Ze%b Ze? dx
(V) /GJL / m(02t2+b2)3/2 mbv/(l—l—x)3/2
27 e?

= lx = vt/

mbuv



Non-Relativistic Bremsstrahlung

e The flat energy distribution for w < v/b then becomes as before
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e To get the total bremsstrahlung emission given an 1on density n;

and electron density n., consider that
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Gaunt Factor

e The dependence on maximum and minimum scale 1s logarithmic
and so only a crude specification 1s needed

e The maximum impact parameter is set by the condition of wy,ax
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e The minimum impact parameter comes from two sources:

violation of the Born approximation that the acceleration 1s
evaluated on the unperturbed path
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Gaunt Factor

e Or a violation of the uncertainty principle
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e These factors are collected 1in to a Gaunt factor
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in practice gg 1s calibrated and tabulated



Thermal Bremsstrahlung

e Integrate over thermal distribution of electron velocities
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require that the kinetic energy be sufficient to emit a photon

smu? > hv — Up, to get any radiation

e Qualitative: replace v with thermal velocity ~ (k7T /m)

1/2

oo dW 2 —mv2/2kT
dW fvmin dvava U € dv

dvdVdt [ u2em AT gy

251725 (2rm\ —hv /KT
— NeTl; € ag
3m?2c3 3kT

where gg 1s the velocity averaged Gaunt factor. Notice the

spectrum is flat out to hv ~ KT



Thermal Emission and Absorption

e Emission coefficient
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e Kirchoff’s law S, = j, /«, gives the thermal absorption coefficient
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e Note the steep spectrum in frequency: low frequency absorption is
very efficient and yields a high optical depth I, — S,



Radiative Transfer

e Alternately, non-relativistic bremsstrahlung can be characterized

by a collision term like the Kompaneets equation (k = h = ¢ = 1,
r = hv/kT),)
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note that emission and absorption 1s balanced only 1f

f =1/(e* — 1), a true blackbody (no chemical potential)



Galactic Bremsstrahung

e Ha (n =3 — 2, hydrogen) as a tracer of 1onized gas and hence
bremsstrahlung emission in galaxy




