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• Bremsstrahlung
can be viewed
as Thomson scattering
of an electron with
the virtual photons in the
Coulomb field of the ion

• For relativistic
electrons, Coulomb
field is essentially Lorentz
contracted and also
transformed into nearly
equal transverse B field



Coulomb Field
• To a moving electron, the Coulomb field of an ion is Lorentz

transformed from a spherically symmetric field to a pulse
resembling a radiation field

• From the general formula for the Lorentz transformation of the
field Coulomb E field and B = 0

E ′‖ = E‖ B′‖ = 0

E ′⊥ = γE⊥ B′⊥ = −γβ × E



Coulomb Field
• Given an electron moving in the x direction it will see a field of the

form

E ′x =
qx

r3
=
qγ(x′ − vt′)

r3
, B′x = 0

E ′y =
qγy

r3
=
qγy′

r3
, B′y = −qγβz

′

r3

E ′z =
qγz

r3
=
qγz′

r3
, B′z =

qγβy′

r3

r2 = γ2(x′ − vt′)2 + y′
2

+ z′
2

• Take the electron to be at x′ = 0, z′ = 0 and y′ = b then the fields
are

E′ =
qγ

(γ2v2t′2 + b2)3/2
(−vt′, b, 0)

B′ = (0, 0, βE ′y)



Rest Frame Radiation
• Take an ion of charge q = −Ze, the acceleration of the electron in

the rest frame

a′‖ = −eE
′
x

m
=

Ze2vγt′

m(γ2v2t′2 + b2)3/2

a′⊥ = −
eE ′y
m

= − Ze2γb

m(γ2v2t′2 + b2)3/2

• Power is radiated via the Larmor formula and frequency content
comes from the Fourier moments

P ′ =
2e2a′2

3c3

dW ′

dω′
=

8πe2

3c3
|a′(ω′)|2



Rest Frame Radiation
• Frequency spectrum

a(ω) =
1

2π

∫ ∞
−∞

a(t)eiωtdt

a′⊥(ω′) = − 1

2π

∫ ∞
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eiω
′t′dt′
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2πm
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γ
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Bremsstrahlung
• The modified Bessel functions K0 K1 have a characteristic high

frequency cut off for y � 1 or ω′ � γv/b with

lim
y→0

yK1(y) = 1 lim
y→∞

yK1(y) =

√
πy

2
e−y

lim
y→0

yK0(y) = 0 lim
y→∞

yK0(y) =

√
πy

2
e−y

• More power comes out in the ⊥ term especially for γ � 1, thus
since dW/dω is a Lorentz invariant

dW

dω
=
dW ′

dω′
≈ 8πe2

3c3

1

4π2m2

(
Z2e4

b2v2

)
4y2K2

1(y)

=
8e6Z2

3πm2c3b2v2
y2K2

1(y) [ω = γω′]



Virtual Quanta
• Bremsstrahlung can be viewed as Thomson scattering of virtual

particles: the Coulomb field looks like a pulse of radiation
quantified by its electric field:

dW ′

dAdω′

∣∣∣
virtual

= c|E(ω)|2 =
cm2

e2
|a⊥(ω′)|2

=
cm2

e2
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Non-Relativistic Bremsstrahlung
• For non-relativistic velocities γ = 1 and ω′ ≈ ω

• yK1(y) can be approximated by a step function at y = 1 or
ω = v/b

dW

dω
=

8

3π

e6Z2

m2c3b2v2
×

{
1 ω < v/b,

0 ω > v/b.

• Spectrum is flat out to a cut off frequency. The interaction takes
place over a temporal extent ∆t which defines the range of
frequencies→ for low ω looks like a δ function

v∆t = b → ∆t =
b

v
→ ωmax ≈

v

b



Non-Relativistic Bremsstrahlung
• The amplitude is related to the change in velocity through the

dipole formula

d̈ = ev̇ →FT −ω2d(ω) =
e

2π

∫
v̇eiωtdt

≈ e

2π
∆v ω < v/b, eiωt ∼ 1

dW

dω
=

8π

3c3

e2

4π2
∆v2

• The total change in velocity can be found by integrating the
acceleration

∆v =

∫
a⊥dt = −

∫
dt

Ze2b

m(v2t2 + b2)3/2
= −Ze

2

mbv

∫
dx

(1 + x)3/2

= −2Ze2

mbv
[x = vt/b]



Non-Relativistic Bremsstrahlung
• The flat energy distribution for ω < v/b then becomes as before

dW

dω
=

8

3π

e6Z2

m2c3b2v2

• To get the total bremsstrahlung emission given an ion density ni
and electron density ne, consider that[

nev = electron flux
]
×
[
2πbdb = d(area)

]
=
dNe

dt
dW

dωdV dt
= (electron flux)

∫
d(area)

dW

dω
(ion density)

= neni2πv

∫ bmax

bmin

8

3π

e6Z2

m2c3b2v2
bdb

=
16

3

e6Z2

m2c3v
neni ln

bmax

bmin



Gaunt Factor
• The dependence on maximum and minimum scale is logarithmic

and so only a crude specification is needed

• The maximum impact parameter is set by the condition of ωmax

ω <
v

b
→ b <

v

ω

• The minimum impact parameter comes from two sources:
violation of the Born approximation that the acceleration is
evaluated on the unperturbed path

∆v ∼ Ze2

mbv
= v

b ∼ Ze2

mv2



Gaunt Factor
• Or a violation of the uncertainty principle

∆x∆q > h̄ → bmv > h̄ → b >
h

mv

bmin = max

(
Ze2

mv2
,
h

mv

)
• These factors are collected in to a Gaunt factor

dW

dωdV dt
=

16πe6Z2

3
√

3c3m2v
nenigff(v, ω)

gff(v, ω) =

√
3

π
ln

(
bmax

bmin

)
in practice gff is calibrated and tabulated



Thermal Bremsstrahlung
• Integrate over thermal distribution of electron velocities

ne =

∫
d3q

(2πh̄)3
fe ∝

∫
v2e−mv

2/2kTdv

require that the kinetic energy be sufficient to emit a photon
1
2
mv2 > hν → vmin to get any radiation

• Qualitative: replace v with thermal velocity ∼ (kT/m)1/2

dW

dνdV dt
→
∫∞
vmin

dW
dνdV dt

v2e−mv
2/2kTdv∫∞

0
v2e−mv2/2kTdv

=
25πZ2e6

3m2c3

(
2πm

3kT

)1/2

nenie
−hν/kT ḡff

where ḡff is the velocity averaged Gaunt factor. Notice the
spectrum is flat out to hν ∼ kT



Thermal Emission and Absorption
• Emission coefficient

dW

dtdV dν
= 4πjff

ν

jff
ν =

23Z2e6

3m2c3

(
2πm

3kT

)1/2

nenie
−hν/kT ḡff

• Kirchoff’s law Sν = jν/αν gives the thermal absorption coefficient

jff
ν = αff

νBν(T ) = αff
ν

2hν3/c2

ehν/kT − 1

αff
ν =

4Z2e6

3m2ch

(
2πm

3kT

)1/2

neniν
−3(1− e−hν/kT )ḡff

• Note the steep spectrum in frequency: low frequency absorption is
very efficient and yields a high optical depth Iν → Sν



Radiative Transfer
• Alternately, non-relativistic bremsstrahlung can be characterized

by a collision term like the Kompaneets equation (k = h̄ = c = 1,
x = hν/kTe)

Cff [f ] =

√
2

π

(
Te
m

)−1/2

Z2αT−3
e nineσTgff

e−x

x3
[1− (ex − 1)f ]

note that emission and absorption is balanced only if
f = 1/(ex − 1), a true blackbody (no chemical potential)



Galactic Bremsstrahung
• Hα (n = 3→ 2, hydrogen) as a tracer of ionized gas and hence

bremsstrahlung emission in galaxy


