
Set 10:
Synchrotron



Lorentz Force
• Acceleration of electrons due to the magnetic field gives rise to

synchrotron radiation

• Lorentz force

dP µ

dτ
=
e

c
F µ

νU
ν , F µ

ν =


0 Ex Ey Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0



d

dτ
γm


c

vx

vy

vz

 =
e

c


0 Ex Ey Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0

 γ


c

vx

vy

vz





Lorentz Force
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Energy-Momentum Equations
• Energy and momentum equations

d

dt
γmc2 = eE · v

d

dt
γmv = e(E +

v

c
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• Consider a B field with no E field

d

dt
γmc2 = 0,

d
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v

c
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where the former ignores radiation energy losses

• Then the velocity is constant

dγ

dt
= 0 → γ = const → |v| = const



Cyclical Motion
.
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• Define components v‖ ‖ B,
v⊥ ⊥ B. Momentum equation becomes

dv‖
dt

= 0
dv⊥
dt

=
e

γmc
v⊥ ×B

so that v‖ =const. v2 = v2‖ + v2⊥ =const.
and thus v⊥ =const.

• Acceleration is orthogonal to v⊥ with
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γmc
|v⊥|B



Power
• Equation of motion solved by

v⊥(t) = v⊥

(
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)
, ωB =
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γmc

• Radiated power
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• Synchrotron emission can be viewed as Compton scattering off of

virtual B photons. Defining the pitch angle α between B and v,

v⊥ = v sinα 〈sin2 α〉 =

∫
sin2 α
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Virtual Photons
• The energy density associated with the magnetic field is
uB = B2/8π

〈Psynch〉 =
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• Power in Compton scattering

〈Pcomp〉 =
4

3
σT cβ

2γ2uγ

so that synchrotron power= Compton power with incident energy
density replaced by the magnetic field energy density

〈Psynch〉
〈Pcomp〉

=
uB
uγ

• Synchrotron radiation produces photons for inverse Compton
scattering - removes energy from electrons - self regulation process



Frequency Spectrum
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• The electron
gyrates at a frequency

ωB =
eB

γmc

• Non relativistic,
or cyclotron limit, given by
the dipole approximation.
The electric
field of the radiation
follows a sinusoid:
the frequency structure is
a near delta function at ωB



Frequency Spectrum
• As the velocities become relativistic beaming sharpens the time

profile while remaining periodic

• Appears as a series of delta functions at integer multiples of ωB

• The beaming sets the width of the pulses and hence a cut off in the
frequency spectrum of ωc ∼ 1/∆t

• In the ultrarelativistic limit, the frequency content extends to
ωc � ωB and forms a continuum due to the range of γ’s



Frequency Spectrum
.

∆θ

observer
1/γ

R

π/2−1/γ

ds

• The profile
width is given by beaming
by determining the
length of time the emission
is observable. Take
the ultra-relativistic limit
where the radiation makes
a cone of angle α ∼ 1/γ

• The observer first sees the radiation when the velocity (tangent to
the spiral) is 1/γ from the line of sight and continues until it is 1/γ

on the other side

• These two points and the center form an equilateral triangle



Frequency Cutoff
• The angle along the spiral traversed during the emission + 2 angles

∆θ + 2

(
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2
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γ

)
= π

∆θ =
2

γ

• The arclength traversed given a gyration radius R combined with
velocity gives the duration of emission

∆s = R∆θ = v∆tem → ∆tem =
R∆θ

v
=
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γv



Frequency Cutoff
• Now eliminate the gyration radius R by expressing the angular

speed as

∆θ

∆tem
=
v

R

and extracting the angular speed from the centripetal acceleration
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Frequency Cutoff
• Reexpress using ∆θ/∆tem = v/R

γmv2
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• The arrival time is further shortened in that light must travel across
the path difference between beginning and end of the emission

∆ttrav =
∆s

c
=

2

γc

v

ωB sinα



Frequency Distribution
• The emission only beats the particle by a small amount leading to

a smaller observed pulse duration

∆t = ∆tem −∆ttrav =
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• Define a critical frequency

ωc =
3

2∆t
=

3

2
γ2
eB

mc
sinα



Frequency Spectrum
• Scaling relations: the frequency spectrum a function of ω/ωc

Pω = CF (ω/ωc)

and the total power is known
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• Solve for C up to an order unity coefficient
∫
F (x)dx = N

P = Cωc

∫ ∞
0

F (x)dx = CN
3

2
γ2
eB

mc
sinα

C =
σT
4π

v2B2

c

γ2 sin2 α

N 3
2
γ2 eB

mc
sinα

=
σT
6π

v2B

c

mc

Ne
sinα

=
4

9
B sinα

e3

mc2
1

N

[
σT =

8π

3

e4

m2c4

]



Electron Distribution
• Put it together

Pω =
4

9
B sinα

e3

mc2
1

N
F (ω/ωc) α =polar angle wrt B

• Power law electron distribution ne,γ ∝ γ−p

jν ∝
∫
dγne,γPω ∝

∫
ne,γF (ω/ωc)dγ ∝

∫
F (ω/ωc)γ

−pdγ

• Transform to x = ω/ωc = ω/Aγ2

dx = − 2ω

Aγ3
dγ → γ−pdγ =

γ−p+3A

2ω
dx =

( ω

Ax

)(−p+3)/2 A

2ω
dx

jν ∝ ω(−p+1)/2

• Just like inverse Compton scattering, the spectrum of radiation has
a power law ω−s with s = (p− 1)/2



Full Calculation
• A detailed integration of the orbits similar to bremsstrahlung yields

dW

dtdω
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and a maximum at x = 0.29



Polarization
• Polarization in direction perpendicular to B vs complement with a

component parallel

Π =
P⊥,ω − P‖,ω
P⊥,ω + P‖,ω

=
G(x)

F (x)
G(x) = xK2/3(x)

• The polarization is linear (when integrated over pitch angles) and
integrated over frequencies for a single γ is 75%

• For a power law distribution of electron energies

Π =
p+ 1

p+ 7
3



Radiative Transfer
• Can think of the emission and absorption as the sum over a

discrete set of states or lines with hν = E2 − E1
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where φ21(ν) the profile enforces energy conservation
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Synchrotron Self Absorption
• So that

αν =
c2

4hν3

∑
E2

[n1 − n2]Pω

• Now switch to the continuous phase space distribution

∑
E
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∫
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Synchrotron Self Absorption
• Check: for a thermal distribution fe = e−(E−µ)/kT then

fe(E − hν)− fe(E) = e−(E−µ)/kT (ehν/kT − 1)

jν
αν

=
c2

2hν3
1

ehν/kT − 1
= Bν

• In the limit that hν � E then

αν ≈ −
c2

4ν2
ge

∫
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∂fe
∂E

Pω

• For a power law distribution of relativistic electrons

ne =

∫
dγne,γ = ge

∫
d3q

(2πh̄)3
fe = ge

∫
q2dq

2π2h̄3
fe ∝

∫
γ2dγfe

• Thus fe ∝ γ−2ne,γ



Synchrotron Self Absorption
• So that for a power law ne,γ ∝ γ−p and ∂fe/∂γ ∝ γ−3−p

• Combine with phase space integration
q2dq ∝ γ2dγ and Pω ∝ F (x) and x = ω/ωc = ω/Aγ2

αν ∝ ν−2
∫
dγγ−p−1F (ω/ωc) ∝ ν−p/2−2

• Compare to emission integral

jν ∝
∫
ne,γF (ω/ωc)dγ ∝

∫
F (ω/ωc)γ

−pdγ ∝ ν−p/2+1/2 ,

• Source function has extra ν5/2: ν2 from absorption formula and
ν1/2 from extra γ

Sν =
jν
αν
∝ ν5/2



Synchrotron Self Absorption
.
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• At high synchrotron absorption optical
depth (low frequencies) Iν → Sν ∝ ν5/2

• At low optical depth Iν ∝ jν ∝ ν−(p−1)/2

• The synchrotron spectrum has a
characteristic turn over
between the regimes



Galactic Synchrotron
• HASLAM 408MHz synchrotron map



Galactic Synchrotron
• WMAP 23GHz emission and polarization map


