Set 10:
 Synchrotron

Lorentz Force

- Acceleration of electrons due to the magnetic field gives rise to synchrotron radiation
- Lorentz force

$$
\begin{aligned}
\frac{d P^{\mu}}{d \tau} & =\frac{e}{c} F^{\mu}{ }_{\nu} U^{\nu}, \quad F_{\nu}^{\mu}=\left(\begin{array}{cccc}
0 & E_{x} & E_{y} & E_{z} \\
E_{x} & 0 & B_{z} & -B_{y} \\
E_{y} & -B_{z} & 0 & B_{x} \\
E_{z} & B_{y} & -B_{x} & 0
\end{array}\right) \\
\frac{d}{d \tau} \gamma m\left(\begin{array}{c}
c \\
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right) & =\frac{e}{c}\left(\begin{array}{cccc}
0 & E_{x} & E_{y} & E_{z} \\
E_{x} & 0 & B_{z} & -B_{y} \\
E_{y} & -B_{z} & 0 & B_{x} \\
E_{z} & B_{y} & -B_{x} & 0
\end{array}\right) \gamma\left(\begin{array}{c}
c \\
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right)
\end{aligned}
$$

Lorentz Force

$$
\begin{aligned}
\frac{d}{d \tau} \gamma m\left(\begin{array}{c}
c \\
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right) & =\frac{e}{c} \gamma\left(\begin{array}{c}
\mathbf{E} \cdot \mathbf{v} \\
E_{x} c+B_{z} v_{y}-B_{y} v_{z} \\
E_{y} c-B_{z} v_{x}+B_{x} v_{z} \\
E_{z} c+B_{y} v_{x}-B_{x} v_{y}
\end{array}\right) \\
\frac{d}{d \tau} \gamma m\binom{c}{\mathbf{v}} & =\frac{e}{c} \gamma\binom{\mathbf{E} \cdot \mathbf{v}}{\mathbf{E} c+\mathbf{v} \times \mathbf{B}} \quad[d \tau=d t / \gamma] \\
\frac{d}{d t} \gamma m\binom{c}{\mathbf{v}} & =\frac{e}{c}\binom{\mathbf{E} \cdot \mathbf{v}}{\mathbf{E} c+\mathbf{v} \times \mathbf{B}}
\end{aligned}
$$

Energy-Momentum Equations

- Energy and momentum equations

$$
\begin{aligned}
\frac{d}{d t} \gamma m c^{2} & =e \mathbf{E} \cdot \mathbf{v} \\
\frac{d}{d t} \gamma m \mathbf{v} & =e\left(\mathbf{E}+\frac{\mathbf{v}}{c} \times \mathbf{B}\right)
\end{aligned}
$$

- Consider a B field with no E field

$$
\frac{d}{d t} \gamma m c^{2}=0, \quad \frac{d}{d t} \gamma m \mathbf{v}=e \frac{\mathbf{v}}{c} \times \mathbf{B}
$$

where the former ignores radiation energy losses

- Then the velocity is constant

$$
\frac{d \gamma}{d t}=0 \quad \rightarrow \gamma=\mathrm{const} \quad \rightarrow|v|=\mathrm{const}
$$

Cyclical Motion

- Define components $\mathbf{v}_{\|} \| \mathbf{B}$, $\mathbf{v}_{\perp} \perp \mathbf{B}$. Momentum equation becomes

$$
\frac{d \mathbf{v}_{\|}}{d t}=0 \quad \frac{d \mathbf{v}_{\perp}}{d t}=\frac{e}{\gamma m c} \mathbf{v}_{\perp} \times \mathbf{B}
$$

so that $v_{\|}=$const. $v^{2}=v_{\|}^{2}+v_{\perp}^{2}=$ const.
 and thus $v_{\perp}=$ const.

- Acceleration is orthogonal to v_{\perp} with

$$
\left|a_{\perp}\right|=\frac{e}{\gamma m c}\left|v_{\perp}\right| B
$$

Power

- Equation of motion solved by

$$
\mathbf{v}_{\perp}(t)=v_{\perp}\binom{\sin \left(\omega_{B} t+\delta\right)}{\cos \left(\omega_{B} t+\delta\right)}, \quad \omega_{B}=\frac{e B}{\gamma m c}
$$

- Radiated power

$$
P=\frac{2 e^{2}}{3 c^{3}} \gamma^{4} a_{\perp}^{2}=\frac{2}{3} \frac{e^{4} v_{\perp}^{2} B^{2}}{m^{2} c^{5}} \gamma^{2}=\frac{1}{4 \pi} \frac{v_{\perp}^{2} B^{2}}{c} \gamma^{2} \sigma_{T}, \quad\left[\sigma_{T}=\frac{8 \pi}{3} \frac{e^{4}}{m^{2} c^{4}}\right]
$$

- Synchrotron emission can be viewed as Compton scattering off of virtual B photons. Defining the pitch angle α between \mathbf{B} and \mathbf{v},

$$
\begin{aligned}
v_{\perp} & =v \sin \alpha \quad\left\langle\sin ^{2} \alpha\right\rangle=\int \sin ^{2} \alpha \frac{d \Omega}{4 \pi}=\frac{2}{3} \\
\left\langle P_{\text {synch }}\right\rangle & =\frac{1}{6 \pi} \frac{v^{2} B^{2}}{c} \gamma^{2} \sigma_{T}
\end{aligned}
$$

Virtual Photons

- The energy density associated with the magnetic field is $u_{B}=B^{2} / 8 \pi$

$$
\left\langle P_{\mathrm{synch}}\right\rangle=\frac{4}{3} \sigma_{T} \frac{v^{2}}{c} \gamma^{2} u_{B}=\frac{4}{3} \sigma_{T} c \beta^{2} \gamma^{2} u_{B}
$$

- Power in Compton scattering

$$
\left\langle P_{\text {comp }}\right\rangle=\frac{4}{3} \sigma_{T} c \beta^{2} \gamma^{2} u_{\gamma}
$$

so that synchrotron power= Compton power with incident energy density replaced by the magnetic field energy density

$$
\frac{\left\langle P_{\text {synch }}\right\rangle}{\left\langle P_{\text {comp }}\right\rangle}=\frac{u_{B}}{u_{\gamma}}
$$

- Synchrotron radiation produces photons for inverse Compton scattering - removes energy from electrons - self regulation process

Frequency Spectrum

- The electron gyrates at a frequency

$$
\omega_{B}=\frac{e B}{\gamma m c}
$$

- Non relativistic, or cyclotron limit, given by the dipole approximation.
The electric
field of the radiation
follows a sinusoid:
the frequency structure is
a near delta function at ω_{B}

cyclotron

pulse sharpening
synchrotron (blended)

Frequency Spectrum

- As the velocities become relativistic beaming sharpens the time profile while remaining periodic
- Appears as a series of delta functions at integer multiples of ω_{B}
- The beaming sets the width of the pulses and hence a cut off in the frequency spectrum of $\omega_{c} \sim 1 / \Delta t$
- In the ultrarelativistic limit, the frequency content extends to $\omega_{c} \gg \omega_{B}$ and forms a continuum due to the range of γ 's

Frequency Spectrum

- The profile width is given by beaming by determining the
length of time the emission is observable. Take

the ultra-relativistic limit
where the radiation makes
a cone of angle $\alpha \sim 1 / \gamma$
- The observer first sees the radiation when the velocity (tangent to the spiral) is $1 / \gamma$ from the line of sight and continues until it is $1 / \gamma$ on the other side
- These two points and the center form an equilateral triangle

Frequency Cutoff

- The angle along the spiral traversed during the emission +2 angles

$$
\begin{aligned}
\Delta \theta+2\left(\frac{\pi}{2}-\frac{1}{\gamma}\right) & =\pi \\
\Delta \theta & =\frac{2}{\gamma}
\end{aligned}
$$

- The arclength traversed given a gyration radius R combined with velocity gives the duration of emission

$$
\Delta s=R \Delta \theta=v \Delta t_{\mathrm{em}} \quad \rightarrow \Delta t_{\mathrm{em}}=\frac{R \Delta \theta}{v}=\frac{2 R}{\gamma v}
$$

Frequency Cutoff

- Now eliminate the gyration radius R by expressing the angular speed as

$$
\frac{\Delta \theta}{\Delta t_{\mathrm{em}}}=\frac{v}{R}
$$

and extracting the angular speed from the centripetal acceleration

$$
\gamma m \frac{\Delta \mathbf{v}}{\Delta t_{\mathrm{em}}}=\gamma m v \frac{\Delta \theta}{\Delta t_{\mathrm{em}}}=\frac{e}{c} \mathbf{v} \times \mathbf{B}=e \frac{v}{c} B \sin \alpha \quad[\Delta v=v \Delta \theta]
$$

Frequency Cutoff

- Reexpress using $\Delta \theta / \Delta t_{\mathrm{em}}=v / R$

$$
\begin{aligned}
\gamma m v^{2} \frac{1}{R} & =e \frac{v}{c} B \sin \alpha \\
R & =\frac{\gamma m v c}{e B \sin \alpha}=\frac{v}{\omega_{B} \sin \alpha} \\
\Delta t_{\mathrm{em}} & =\frac{2}{\gamma \omega_{B} \sin \alpha}
\end{aligned}
$$

- The arrival time is further shortened in that light must travel across the path difference between beginning and end of the emission

$$
\Delta t_{\text {trav }}=\frac{\Delta s}{c}=\frac{2}{\gamma c} \frac{v}{\omega_{B} \sin \alpha}
$$

Frequency Distribution

- The emission only beats the particle by a small amount leading to a smaller observed pulse duration

$$
\begin{aligned}
& \Delta t=\Delta t_{\mathrm{em}}-\Delta t_{\mathrm{trav}}=\frac{2}{\gamma \omega_{B} \sin \alpha}\left(1-\frac{v}{c}\right) \\
& \Delta t \approx \frac{1}{\gamma^{3} \omega_{B} \sin \alpha}=\frac{m c}{\gamma^{2} e B \sin \alpha} \quad\left[1-\frac{v}{c} \approx \frac{1}{2 \gamma^{2}}\right]
\end{aligned}
$$

- Define a critical frequency

$$
\omega_{c}=\frac{3}{2 \Delta t}=\frac{3}{2} \gamma^{2} \frac{e B}{m c} \sin \alpha
$$

Frequency Spectrum

- Scaling relations: the frequency spectrum a function of ω / ω_{c}

$$
P_{\omega}=C F\left(\omega / \omega_{c}\right)
$$

and the total power is known

$$
P=\frac{\sigma_{T}}{4 \pi} \frac{v^{2} B^{2}}{c} \gamma^{2} \sin ^{2} \alpha=\int_{0}^{\infty} P_{\omega} d \omega
$$

- Solve for C up to an order unity coefficient $\int F(x) d x=N$

$$
\begin{aligned}
P & =C \omega_{c} \int_{0}^{\infty} F(x) d x=C N \frac{3}{2} \gamma^{2} \frac{e B}{m c} \sin \alpha \\
C & =\frac{\sigma_{T}}{4 \pi} \frac{v^{2} B^{2}}{c} \frac{\gamma^{2} \sin ^{2} \alpha}{N \frac{3}{2} \gamma^{2} \frac{e B}{m c} \sin \alpha}=\frac{\sigma_{T}}{6 \pi} \frac{v^{2} B}{c} \frac{m c}{N e} \sin \alpha \\
& =\frac{4}{9} B \sin \alpha \frac{e^{3}}{m c^{2}} \frac{1}{N} \quad\left[\sigma_{T}=\frac{8 \pi}{3} \frac{e^{4}}{m^{2} c^{4}}\right]
\end{aligned}
$$

Electron Distribution

- Put it together

$$
P_{\omega}=\frac{4}{9} B \sin \alpha \frac{e^{3}}{m c^{2}} \frac{1}{N} F\left(\omega / \omega_{c}\right) \quad \alpha=\text { polar angle wrt } \mathbf{B}
$$

- Power law electron distribution $n_{e, \gamma} \propto \gamma^{-p}$

$$
j_{\nu} \propto \int d \gamma n_{e, \gamma} P_{\omega} \propto \int n_{e, \gamma} F\left(\omega / \omega_{c}\right) d \gamma \propto \int F\left(\omega / \omega_{c}\right) \gamma^{-p} d \gamma
$$

- Transform to $x=\omega / \omega_{c}=\omega / A \gamma^{2}$
$d x=-\frac{2 \omega}{A \gamma^{3}} d \gamma \rightarrow \gamma^{-p} d \gamma=\frac{\gamma^{-p+3} A}{2 \omega} d x=\left(\frac{\omega}{A x}\right)^{(-p+3) / 2} \frac{A}{2 \omega} d x$
$j_{\nu} \propto \omega^{(-p+1) / 2}$
- Just like inverse Compton scattering, the spectrum of radiation has a power law ω^{-s} with $s=(p-1) / 2$

Full Calculation

- A detailed integration of the orbits similar to bremsstrahlung yields

$$
\begin{aligned}
& \frac{d W}{d t d \omega} \equiv P_{\omega}=\frac{\sqrt{3}}{2 \pi} \frac{e^{3} B \sin \alpha}{m c^{2}} F\left(\omega / \omega_{c}\right) \\
& F(x)=x \int_{x}^{\infty} K_{5 / 3}(y) d y
\end{aligned}
$$

with asymptotic behavior

$$
\begin{aligned}
& \lim _{x \ll 1} F(x)=\frac{4 \pi}{\sqrt{3} \Gamma(1 / 3)}\left(\frac{x}{2}\right)^{1 / 3} \\
& \lim _{x \gg 1} F(x)=\left(\frac{\pi}{2}\right)^{1 / 2} e^{-x} x^{1 / 2}
\end{aligned}
$$

and a maximum at $x=0.29$

Polarization

- Polarization in direction perpendicular to \mathbf{B} vs complement with a component parallel

$$
\Pi=\frac{P_{\perp, \omega}-P_{\|, \omega}}{P_{\perp, \omega}+P_{\|, \omega}}=\frac{G(x)}{F(x)} \quad G(x)=x K_{2 / 3}(x)
$$

- The polarization is linear (when integrated over pitch angles) and integrated over frequencies for a single γ is 75%
- For a power law distribution of electron energies

$$
\Pi=\frac{p+1}{p+\frac{7}{3}}
$$

Radiative Transfer

- Can think of the emission and absorption as the sum over a discrete set of states or lines with $h \nu=E_{2}-E_{1}$

$$
\begin{aligned}
j_{\nu}=\frac{h \nu}{4 \pi} \sum_{E_{2}} \sum_{E_{1}} n_{2} A_{21} \phi_{21}(\nu) & =\frac{1}{4 \pi} \sum_{E_{2}} P_{\nu} n_{2}=\frac{1}{4 \pi} \sum_{E_{2}} 2 \pi P_{\omega} n_{2} \\
h \nu \sum_{E_{1}} A_{21} \phi_{21}(\nu) & =2 \pi P_{\omega}
\end{aligned}
$$

where $\phi_{21}(\nu)$ the profile enforces energy conservation $h \nu=E_{2}-E_{1}$

$$
\begin{aligned}
\alpha_{\nu} & =\frac{h \nu}{4 \pi} \sum_{E_{1}} \sum_{E_{2}}\left[n_{1} B_{12}-n_{2} B_{21}\right] \phi_{21}(\nu) \\
\alpha_{\nu} & =\frac{h \nu}{4 \pi} \sum_{E_{1}} \sum_{E_{2}}\left[n_{1}-n_{2}\right] \frac{c^{2}}{2 h \nu^{3}} A_{21} \phi_{21}(\nu)
\end{aligned}
$$

Synchrotron Self Absorption

- So that

$$
\alpha_{\nu}=\frac{c^{2}}{4 h \nu^{3}} \sum_{E_{2}}\left[n_{1}-n_{2}\right] P_{\omega}
$$

- Now switch to the continuous phase space distribution

$$
\begin{gathered}
\sum_{E} n \rightarrow g_{e} \int \frac{d^{3} q}{(2 \pi \hbar)^{3}} f_{e} \\
\alpha_{\nu}=\frac{c^{2}}{4 h \nu^{3}} g_{e} \int \frac{d^{3} q}{(2 \pi \hbar)^{3}}\left[f_{e}(E-h \nu)-f_{e}(E)\right] P_{\omega} \\
j_{\nu}=\frac{1}{2} g_{e} \int \frac{d^{3} q}{(2 \pi \hbar)^{3}} f_{e} P_{\omega}=\frac{1}{4 \pi} g_{e} \int \frac{d^{3} q}{(2 \pi \hbar)^{3}} f_{e} P_{\nu}
\end{gathered}
$$

Synchrotron Self Absorption

- Check: for a thermal distribution $f_{e}=e^{-(E-\mu) / k T}$ then

$$
\begin{aligned}
f_{e}(E-h \nu)-f_{e}(E) & =e^{-(E-\mu) / k T}\left(e^{h \nu / k T}-1\right) \\
\frac{j_{\nu}}{\alpha_{\nu}} & =\frac{c^{2}}{2 h \nu^{3}} \frac{1}{e^{h \nu / k T}-1}=B_{\nu}
\end{aligned}
$$

- In the limit that $h \nu \ll E$ then

$$
\alpha_{\nu} \approx-\frac{c^{2}}{4 \nu^{2}} g_{e} \int \frac{d^{3} q}{(2 \pi \hbar)^{3}} \frac{\partial f_{e}}{\partial E} P_{\omega}
$$

- For a power law distribution of relativistic electrons

$$
n_{e}=\int d \gamma n_{e, \gamma}=g_{e} \int \frac{d^{3} q}{(2 \pi \hbar)^{3}} f_{e}=g_{e} \int \frac{q^{2} d q}{2 \pi^{2} \hbar^{3}} f_{e} \propto \int \gamma^{2} d \gamma f_{e}
$$

- Thus $f_{e} \propto \gamma^{-2} n_{e, \gamma}$

Synchrotron Self Absorption

- So that for a power law $n_{e, \gamma} \propto \gamma^{-p}$ and $\partial f_{e} / \partial \gamma \propto \gamma^{-3-p}$
- Combine with phase space integration $q^{2} d q \propto \gamma^{2} d \gamma$ and $P_{\omega} \propto F(x)$ and $x=\omega / \omega_{c}=\omega / A \gamma^{2}$

$$
\alpha_{\nu} \propto \nu^{-2} \int d \gamma \gamma^{-p-1} F\left(\omega / \omega_{c}\right) \propto \nu^{-p / 2-2}
$$

- Compare to emission integral

$$
j_{\nu} \propto \int n_{e, \gamma} F\left(\omega / \omega_{c}\right) d \gamma \propto \int F\left(\omega / \omega_{c}\right) \gamma^{-p} d \gamma \propto \nu^{-p / 2+1 / 2}
$$

- Source function has extra $\nu^{5 / 2}: \nu^{2}$ from absorption formula and $\nu^{1 / 2}$ from extra γ

$$
S_{\nu}=\frac{j_{\nu}}{\alpha_{\nu}} \propto \nu^{5 / 2}
$$

Synchrotron Self Absorption

- At high synchrotron absorption optical depth (low frequencies) $I_{\nu} \rightarrow S_{\nu} \propto \nu^{5 / 2}$
- At low optical depth $I_{\nu} \propto j_{\nu} \propto \nu^{-(p-1) / 2}$
- The synchrotron spectrum has a characteristic turn over
 between the regimes

Galactic Synchrotron

- HASLAM 408MHz synchrotron map

Galactic Synchrotron

- WMAP 23GHz emission and polarization map

