Set 10:
Synchrotron



Lorentz Force

e Acceleration of electrons due to the magnetic field gives rise to

synchrotron radiation
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Lorentz Force
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Energy-Momentum Equations

e Energy and momentum equations

d
%’ymc2 =cek - v
d (E+ ~ x B)
—Ymv =€ —
alt7 c
e Consider a B field with no £ field
d d
%ymg = 0, Evmv = e% x B

where the former 1gnores radiation energy losses
e Then the velocity 1s constant
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Cyclical Motion

o Define components v || B,
v 1 B. Momentum equation becomes
dVH B dv i €

oL B
dt dt ymc Vi

so that v =const. v* = vjf + v} =const.
and thus v, =const.

e Acceleration 1s orthogonal to v; with
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Power

e Equation of motion solved by

sin(wpt + 9) eB
vi(t)=wvy : Wp =
cos(wpt + 0) ymce
e Radiated power
2¢? 2 etv? B? 1 v? B? 8w et
p_ € a2 €01 2 _ 1 2 _
33 LT3 T2 | T am ¢ 7T 7T = 73 m2

e Synchrotron emission can be viewed as Compton scattering off of
virtual B photons. Defining the pitch angle o between B and v,
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Virtual Photons

e The energy density associated with the magnetic field 1s
up — B 2 / T

4 2 4
(Piyneh) = gaT%WQuB = §0T65 Vup
e Power in Compton scattering
4
<Pcomp> — gOTcﬁ 7 U~

so that synchrotron power= Compton power with incident energy
density replaced by the magnetic field energy density

<Psynch> _ U_B
(Peomp) Uy

e Synchrotron radiation produces photons for inverse Compton

scattering - removes energy from electrons - self regulation process



Frequency Spectrum

e The electron TN N
gyrates at a frequency NV eyclotron
8 A
eB - » .
W B = — B
ymc
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e Non relativistic, 7 E~__7 ¢ pulse
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Frequency Spectrum

e As the velocities become relativistic beaming sharpens the time
profile while remaining periodic

e Appears as a series of delta functions at integer multiples of wg

e The beaming sets the width of the pulses and hence a cut off in the
frequency spectrum of w, ~ 1/At

e In the ultrarelativistic limit, the frequency content extends to
w. > wp and forms a continuum due to the range of ~’s



Frequency Spectrum

e The profile
width 1s given by beaming
by determining the

» observer

length of time the emission

1s observable. Take

the ultra-relativistic limit
where the radiation makes
a cone of angle o ~ 1/~

e The observer first sees the radiation when the velocity (tangent to
the spiral) is 1/~ from the line of sight and continues until it is 1/~
on the other side

e These two points and the center form an equilateral triangle



Frequency Cutoft

e The angle along the spiral traversed during the emission + 2 angles

A9+2(f—1>:w
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e The arclength traversed given a gyration radius /2 combined with
velocity gives the duration of emission
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Frequency Cutoft

e Now eliminate the gyration radius R by expressing the angular
speed as

A0 v

At.. R

and extracting the angular speed from the centripetal acceleration
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Frequency Cutoft

e Reexpress using A0/Ato, = v/ R

1 v
ymv*—= = e—Bsina
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e The arrival time 1s further shortened in that light must travel across
the path difference between beginning and end of the emission
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Frequency Distribution

e The emission only beats the particle by a small amount leading to
a smaller observed pulse duration

At = At — At = 2 (1 _ 9)
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e Define a critical frequency

3 3 ,eB g
W, = —~v“—— sin o
2AL 27 mc



Frequency Spectrum

e Scaling relations: the frequency spectrum a function of w/w,

P,=CF(w/w.)

and the total power 1s known
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e Solve for C' up to an order unity coefficient [ F(x)dz = N

> 3 B
P = C’cuC/ F(x)dx = CN—nye— sin o
0 2 mc
orv?B? A2 sin? o or V2B mc
C = — sin o

4w ¢ N%erBsinoz_&T c Ne

mc

4 | 8 4
:§Bsinoze—— [O’T: Te ]

mc2 N 3 m?2ct



Electron Distribution
e Put it together

4 51
P, = =Bsin A" —F (w/we) o =polar angle wrt B
9 mc?

e Power law electron distribution 7., oc 7y~

I oc/dfynmpw X /an(w/wc)d*y X /F(w/wc)vpdfy

e Transform to z = w/w, = w/Av?
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e Just like inverse Compton scattering, the spectrum of radiation has
a power law w™° with s = (p — 1) /2



Full Calculation

e A detailed integration of the orbits similar to bremsstrahlung yields

aw \/§63381na F(w)w.)
dtdw — 1w WiWe

mc?
= CC/ K5/3 dy

with asymptotic behavior
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and a maximum at x = 0.29




Polarization

e Polarization in direction perpendicular to B vs complement with a
component parallel

H — P—L7w B PH?"‘) — G(x)
P ,+ P Flx)

G(z) = zKy/3(7)

e The polarization 1s linear (when integrated over pitch angles) and
integrated over frequencies for a single v 1s 75%

e For a power law distribution of electron energies
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Radiative Transfer

e Can think of the emission and absorption as the sum over a
discrete set of states or lines with hvy = Ey — E;

Jy = Z Z noAsi a1 (v = 1 Z Pyng = — Z 21 B,ng
E>
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where ¢ (1) the profile enforces energy conservation
hy = E2 — E1
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Synchrotron Selt Absorption

e So that

(32

= s Z[nl — ng| P,
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e Now switch to the continuous phase space distribution
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Synchrotron Selt Absorption
o Check: for a thermal distribution f. = e~ (E=#/*T then

Fu(B = hv) = fu(B) = e~ BT (kT _ 1)
Tu B c? 1 _ B
&_V T ohu3 ehv/kT _ 1 T TV
e In the limit that hr < E then
o, X —C_Qg / g afeP
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e For a power law distribution of relativistic electrons
d’q q*dq
e — d e,y — Ye e — Ye e
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e Thus f, x v ?n.,




Synchrotron Selt Absorption

e So that for a power law n. ., & v? and df, /0y o y 3P

e Combine with phase space integration
¢°dq < y*dvy and P,  F(z) and r = w/w. = w/AY

o, X v 2 / dyy P F(w/w,) oc vTP/22
e Compare to emission integral
Ju o / Ne (W /we)dry o / F(w/we)y Pdry oc y™ P12

e Source function has extra v°/2: v from absorption formula and
v/2 from extra



Synchrotron Selt Absorption

e At high synchrotron absorption optical

depth (low frequencies) I, — S, oc 1%/

o Atlow optical depth I,  j, ox v~ (P~1)/2

e The synchrotron spectrum has a

characteristic turn over .

between the regimes



Galactic Synchrotron
e HASLAM 408MHz synchrotron map




Galactic Synchrotron

1zation map
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