Astro 305: Problem Set 6
Due Nov 15

1 Lyman α Forest Power Spectrum

The IGM is nearly fully ionized but retains a small neutral component due to ionization balance which fluctuates with the density to form a forest of Ly α absorption (1s \rightarrow 2p) in the spectra of distant quasars. One use of this forest is to measure the (cosmological) density fluctuations in the IGM. Derive the scaling between optical depth and density. Hint: keeping track of dimensions will help you sort out the physical form of the relations below.

- Using the Einstein relations, write down the optical depth to (true) absorption by the Ly α line in terms of the transition wavelength λ [cm], the transition rate $\Gamma = A_{21}$ [s⁻¹], the line profile $\phi(\nu)$ [s], the neutral hydrogen fraction $x_{\rm HI}$, and the baryon number density n_b [cm⁻³].
- To find $x_{\rm HI}$ in the presence of ionizing flux, write down the ionization balance equation for $dx_{\rm HI}/dt = [{\rm sources-sinks}]$ given photoionization and recombination. Express your answer in terms of the isotropic ionizing specific intensity J_{ν} [ergs s⁻¹ cm⁻² Hz⁻¹ sr⁻¹], recombination coefficient R [cm³ s⁻¹], photoionization cross section as a function of frequency σ_{ν} [cm²] and baryon number density n_b [cm⁻³].
- The photoionization cross section σ_{ν} gives the strength of a bound-free transition and has a strong frequency dependence. Where in ν do you expect the ionizing specific intensity to be most important. Call this value $J_{\rm HI}$.
- Assuming ionization equilibrium show how the Ly α optical depth as a scales with baryon mass density ρ_b , $J_{\rm HI}$ and temperature T. You may assume that the recombination coefficient $R \propto T^{-0.7}$ and the medium is nearly completely ionized. Take a barotropic equation of state of $p_b \propto \rho_b^{\gamma}$ and reduce this scaling to one of ρ_b and $J_{\rm HI}$.
- Explain how optical depth (absorption) measurements in the spectrum of quasars at high redshift can measure density fluctuations in the baryons and hence the power spectrum of large-scale structure.

2 R&L

Problems 10.7