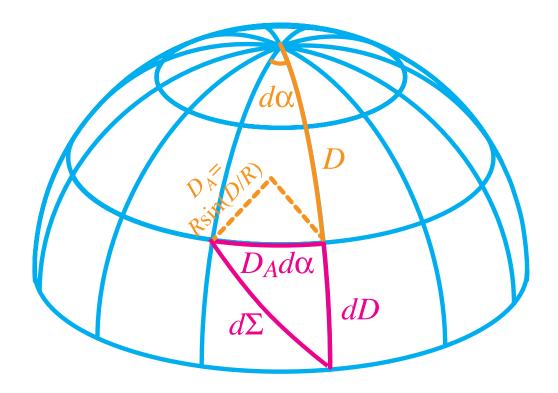
Astro 321 Lecture Notes Set 1 Wayne Hu

FRW Cosmology

- FRW cosmology = homogeneous and isotropic on large scales
- Universe observed to be nearly isotropic (e.g. CMB, radio point sources, galaxy surveys)
- Copernican principle: must be isotropic to all observers (all locations)
- Implies homogeneity; also galaxy redshift surveys (LCRS, 2dF, SDSS) have seen the "end of greatness", large scale homogeneity directly
- FRW cosmology (homogeneity, isotropy & Einstein equations) generically implies the expansion of the universe, except for special unstable cases

FRW Geometry

- Spatial geometry is that of a constant curvature (positive, negative, zero) surface
- Metric tells us how to measure distances on this surface
- ullet Consider the closed geometry of a sphere of radius R and suppress on dimension



Angular Diameter Distance

 Spatial distance: restore 3rd dimension with the usual spherical polar angles

$$d\Sigma^2 = dD^2 + D_A^2 d\alpha^2$$
$$= dD^2 + D_A^2 (d\theta^2 + \sin^2 \theta d\phi^2)$$

- D_A is called the angular diameter distance since $D_A d\alpha$ corresponds to the transverse separation or size as opposed to the Euclidean $D d\alpha$, i.e. is the apparent distance to an object through the gravitational lens of the background geometry
- In a positively curved geometry $D_A < D$ and objects are further than they appear
- In a negatively curved universe R is imaginary and $R\sin(D/R) = i|R|\sin(D/i|R|) = |R|\sinh(D/|R|)$ and $D_A > D$ objects are closer than they appear

Volume Element

• Metric also defines the volume element

$$dV = (dD)(D_A d\theta)(D_A \sin \theta d\phi)$$
$$= D_A^2 dD d\Omega$$

- Most of classical cosmology boils down to these three quantities, (comoving) distance, (comoving) angular diameter distance, and volume element
- For example, distance to a high redshift supernova, angular size of the horizon at last scattering, number density of clusters...

Comoving Coordinates

 Remaining degree of freedom (preserving homogeneity and isotropy) is an overall scale factor that relates the geometry (fixed by the radius of curvature R) to physical coordinates – a function of time only

$$d\sigma^2 = a^2(t)d\Sigma^2$$

our conventions are that the scale factor today $a(t_0) \equiv 1$

- Similarly physical distances are given by d(t) = a(t)D, $d_A(t) = a(t)D_A$.
- Distances in capital case are *comoving* i.e. they comove with the expansion and do not change with time simplest coordinates to work out geometrical effects

Time and Conformal Time

Proper time

$$d\tau^{2} = dt^{2} - d\sigma^{2}$$
$$= dt^{2} - a^{2}(t)d\Sigma^{2}$$
$$\equiv a^{2}(t)(d\eta^{2} - d\Sigma^{2})$$

• Taking out the scale factor in the time coordinate $d\eta=dt/a$ defines conformal time – useful in that photons travelling radially from observer then obey

$$\Delta D = \Delta \eta = \int \frac{dt}{a}$$

so that time and distance may be interchanged

Horizon

- Distance travelled by a photon in the whole lifetime of the universe defines the horizon
- By $d\tau = 0$, the horizon is simply the conformal time elapsed

$$D_{\text{horizon}}(t) = \int_0^t \frac{dt'}{a} = \eta(t)$$

- Since the horizon always grows with time, there is always a point in time before which two observers separated by a distance D could not have been in causal contact
- Horizon problem: why is the universe homogeneous and isotropic on large scales, near the current horizon problem deepens for objects seen at early times, e.g. CMB

FRW Metric

• Proper time defines the metric $g_{\mu\nu}$

$$d\tau^2 \equiv g_{\mu\nu} dx^{\mu} dx^{\nu}$$

signature follows Peacock's convention. Caveat reader: this is opposite to what I'm used to so I *will* occasionally mess up the sign

- Usually we will use comoving coordinates and conformal time as the "x" 's unless otherwise specified metric for other choices are related by a(t)
- We will generally skirt around real General Relativity but rudimentary knowledge will be useful

Hubble Parameter

Useful to define the expansion rate or Hubble parameter

$$H(t) \equiv \frac{1}{a} \frac{da}{dt}$$

since dynamics (Einstein equations) will give this directly as $H(a) \equiv H(t(a))$

Time becomes

$$t = \int dt = \int \frac{da}{aH(a)}$$

Conformal time becomes

$$\eta = \int \frac{dt}{a} = \int \frac{da}{a^2 H(a)}$$

Redshift

• Wavelength of light "stretches" with the scale factor, so that it is convenient to define a shift-to-the-red or redshift as the scale factor increases

$$\lambda(a) = a(t)\Lambda$$

$$\frac{\lambda(1)}{\lambda(a)} = \frac{1}{a} \equiv (1+z)$$

$$\frac{\delta\lambda}{\lambda} = -\frac{\delta\nu}{\nu} = z$$

- Given known frequency of emission $\nu(a)$, redshift can be precisely measured (modulo Doppler shifts from peculiar velocities) interpreting the redshift as a Doppler shift, objects receed in an expanding universe
- Given a measure of distance, $D(z) \equiv D(z(a))$ can be measured

Distance-Redshift Relation

• All distance redshift relations are based on the comoving distance D(z)

$$D(a) = \int dD = \int_{a}^{1} \frac{da'}{a^{2}H(a)}$$
$$(da = -(1+z)^{-2}dz = -a^{2}dz)$$
$$D(z) = -\int_{z}^{0} \frac{dz'}{H(z')} = \int_{0}^{z} \frac{dz'}{H(z')}$$

Note limiting case is the Hubble law

$$\lim_{z \to 0} D(z) = z/H(z=0) \equiv z/H_0$$

• Hubble constant usually quoted as $H_0 = 100h \text{ km s}^{-1} \text{ Mpc}^{-1}$, observationally $h \sim 0.7$; in natural units $H_0 = (2997.9)^{-1}h \text{ Mpc}^{-1}$ defines an inverse length scale

Distance-Redshift Relation

• Example: object of known physical size $\lambda = a(t)\Lambda$ ("standard ruler") subtending an (observed) angle on the sky α

$$\alpha = \frac{\Lambda}{D_A(z)} = \frac{\lambda}{aR\sin(D(z)/R)}$$
$$= \frac{\lambda}{R\sin(D(z)/R)}(1+z) \equiv \frac{\lambda}{d_A(z)}$$

• Example: object of known luminosity L ("standard candle") with a measured flux S. Comoving surface area $4\pi D_A^2$, frequency/energy (1+z), time-dilation or arrival rate of photons (crests) (1+z):

$$S = \frac{L}{4\pi D_A^2} \frac{1}{(1+z)^2}$$

$$\equiv \frac{L}{4\pi d_L^2} \quad (d_L = (1+z)D_A = (1+z)^2 d_A)$$

Absolute calibration

- If absolute calibration of standards unknown, then Hubble constant not measured
- Still measures evolution of Hubble parameter $H(z)/H_0$:

$$\frac{d_{A,L}(z)}{d_{A,L}(\delta z)} = \frac{H_0}{\delta z} d_{A,L}(z)$$

- Alternately, distances & curvature are measured in units of h^{-1} Mpc.
- Fundamental dependence (aside from (1+z) factors)

$$H_0 D_A(z) = H_0 R \sin(D(z)/R)$$

$$= \tilde{R} \sin(H_0 D(z)/\tilde{R}), \quad \tilde{R} = H_0 R$$

$$H_0 D(z) = \int \frac{da}{a^2} \frac{H_0}{H(a)}$$

Evolution of Scale Factor

- FRW cosmology is fully specified if the function a(t) is given
- General relativity relates the scale factor with the matter content of universe.
- Build the Einstein tensor $G_{\mu\nu}$ out of the metric and use Einstein equation

$$G_{\mu\nu} = -8\pi G T_{\mu\nu}$$

$$G^{0}_{0} = -\frac{3}{a^{2}} \left[\left(\frac{\dot{a}}{a} \right)^{2} + \frac{1}{R^{2}} \right]$$

$$G^{i}_{j} = -\frac{1}{a^{2}} \left[2\frac{\ddot{a}}{a} - \left(\frac{\dot{a}}{a} \right)^{2} + \frac{1}{R^{2}} \right] \delta^{i}_{j}$$

Einstein Equations

Isotropy demands that the stress-energy tensor take the form

$$T^{0}_{0} = \rho$$
$$T^{i}_{j} = -p\delta^{i}_{j}$$

where ρ is the energy density and p is the pressure

So Einstein equations become

$$\left(\frac{\dot{a}}{a}\right)^2 + \frac{1}{R^2} = \frac{8\pi G}{3}a^2\rho$$

$$2\frac{\ddot{a}}{a} - \left(\frac{\dot{a}}{a}\right)^2 + \frac{1}{R^2} = -8\pi Ga^2p$$
or
$$\frac{\ddot{a}}{a} - \left(\frac{\dot{a}}{a}\right)^2 = -\frac{4\pi G}{3}a^2(\rho + 3p)$$

Friedman Equations

 More usual to see Einstein equations expressed in time not conformal time

$$\frac{\dot{a}}{a} = \frac{da}{d\eta} \frac{1}{a} = \frac{da}{dt} = aH(a)$$

$$\frac{\ddot{a}}{a} - \left(\frac{\dot{a}}{a}\right)^2 = \frac{d}{d\eta} \left(\frac{\dot{a}}{a}\right) = a\frac{d}{dt} \left(\frac{da}{dt}\right) = a\frac{d^2a}{dt^2}$$

• Friedmann equations:

$$H^{2}(a) + \frac{1}{a^{2}R^{2}} = \frac{8\pi G}{3}\rho$$
$$\frac{1}{a}\frac{d^{2}a}{dt^{2}} = -\frac{4\pi G}{3}(\rho + 3p)$$

• Convenient fiction to describe curvature as an energy density component $\rho_K = -3/(8\pi G a^2 R^2) \propto a^{-2}$

Critical Density

• Friedmann equation for H then reads

$$H^{2}(a) = \frac{8\pi G}{3}(\rho + \rho_{K}) \equiv \frac{8\pi G}{3}\rho_{c}$$

defining a critical density today ρ_c in terms of the expansion rate

• In particular, its value today is given by the Hubble constant as

$$\rho_{\rm c}(z=0) = 3H_0^2/8\pi G = 1.8788 \times 10^{-29} h^2 {\rm g \, cm^{-3}}$$

- Energy density today is given as a fraction of critical $\Omega \equiv \rho/\rho_c|_{z=0}$. Radius of curvature then given by $R^2 = H_0^2(\Omega 1)$
- If $\Omega \approx 1$, $\rho \approx \rho_c$, then $\rho_K \ll \rho_c$ or $H_0R \ll 1$, universe is flat across the Hubble distance. $\Omega < 1$ negatively curved; $\Omega > 1$ positively curved

Newtonian Interpretation

• Consider a test particle of mass m in expanding spherical region of radius r and total mass M. Energy conservation

$$E = \frac{1}{2}mv^2 - \frac{GMm}{r} = \text{const}$$

$$\frac{1}{2}\left(\frac{dr}{dt}\right)^2 - \frac{GM}{r} = \text{const}$$

$$\frac{1}{2}\left(\frac{1}{r}\frac{dr}{dt}\right)^2 - \frac{GM}{r^3} = \frac{\text{const}}{r^2}$$

$$H^2 = \frac{8\pi G\rho}{3} - \frac{\text{const}}{a^2}$$

 Constant determines whether the system is bound and in the Friedmann equation is associated with curvature – not general since neglects pressure

Conservation Law

• Second Friedmann equation, or acceleration equation, simply expresses energy conservation (why: stress energy is automatically conserved in GR via Bianchi identity)

$$d\rho V + pdV = 0$$

$$d\rho a^3 + pda^3 = 0$$

$$\dot{\rho}a^3 + 3\frac{\dot{a}}{a}\rho a^3 + 3\frac{\dot{a}}{a}pa^3 = 0$$

$$\frac{\dot{\rho}}{\rho} = -3(1+w)\frac{\dot{a}}{a} \qquad w \equiv p/\rho$$

• If w= const. then the energy density depends on the scale factor as $\rho \propto a^{-3(1+w)}$.

Multicomponent Universe

• The total energy density can be composed of a sum of components with differing equations of state

$$\rho(a) = \sum_{i} \rho_i(a) = \sum_{i} \rho_i(a=1)a^{-3(1+w_i)}, \quad \Omega_i \equiv \rho_i/\rho_c|_{a=1}$$

- Important cases: nonrelativistic matter $\rho_m = m n_m \propto a^{-3}$, $w_m = 0$; relativistic radiation $\rho_r = E n_r = \nu n_r \propto a^{-4}$, $w_r = 1/3$; "curvature" $\rho_K \propto a^{-2}$, $w_K = -1/3$; constant energy density or cosmological constant $\rho_\Lambda \propto a^0$, $w_\Lambda = -1$
- Or generally with $w_c = p_c/\rho_c = (p+p_K)/(\rho+\rho_K)$

$$\rho_c(a) = \rho_c(a=1)e^{-\int d\ln a \, 3(1+w_c(a))}$$

$$H^2(a) = H_0^2 e^{-\int d\ln a \, 3(1+w_c(a))}$$

Acceleration Equation

• Time derivative of (first) Friedman equation

$$2\frac{1}{a}\frac{da}{dt} \left[\frac{1}{a}\frac{d^{2}a}{dt^{2}} - H^{2}(a) \right] = \frac{8\pi G}{3}\frac{d\rho_{c}}{dt}$$

$$\left[\frac{1}{a}\frac{d^{2}a}{dt^{2}} - \frac{8\pi G}{3}\rho_{c} \right] = \frac{4\pi G}{3}[-3(1+w_{c})\rho_{c}]$$

$$\frac{1}{a}\frac{d^{2}a}{dt^{2}} = -\frac{4\pi G}{3}[(1+3w_{c})\rho_{c}]$$

$$= -\frac{4\pi G}{3}(\rho + \rho_{K} + 3\rho + 3\rho_{K})$$

$$= -\frac{4\pi G}{3}(1+3w)\rho$$

• Acceleration equation says that universe decelerates if w > -1/3

Expansion Required

• Friedmann equations "predict" the expansion of the universe. Non-expanding conditions da/dt=0 and $d^2a/dt^2=0$ require

$$\rho = -\rho_K \qquad \rho = -3p$$

i.e. a positive curvature and a total equation of state $w \equiv p/\rho = -1/3$

Since matter is known to exist, one can in principle achieve this with

$$\rho = \rho_m + \rho_{\Lambda} = -\rho_K = -3p = 3\rho_{\Lambda}$$

$$\rho_{\Lambda} = -\frac{1}{3}\rho_K \quad \rho_m = -\frac{2}{3}\rho_K$$

Einstein introduced ρ_{Λ} for exactly this reason – "biggest blunder"; but note that this balance is unstable: ρ_m can be perturbed but ρ_{Λ} , a true constant cannot

Dark Energy

• Distance redshift relation depends on energy density components

$$H_0 D(z) = \int \frac{da}{a^2} \frac{H_0}{H(a)}$$

$$= \int \frac{da}{a^2} e^{\int d \ln a \frac{3}{2} (1 + w_c(a))}$$

- Distant supernova Ia as standard candles imply that $w_c < -1/3$ so that the expansion is accelerating
- Consistent with a cosmological constant that is $\Omega_{\Lambda} = \rho_{\Lambda}/\rho_{\rm crit} = 2/3$ of the total energy density
- Coincidence problem: different components of matter scale differently with a. Why are (at least) two components comparable today? Anthropic?

Dark Matter

- Since Zwicky in the 1930's non-luminous or dark matter has been known to dominate over luminous matter in stars (and hot gas)
- Arguments are basically from a balance of gravitational force against "pressure" from internal motions: rotation velocity in galactic disks, velocity dispersion of galaxies in clusters, gas pressure in clusters, radiation pressure in CMB
- Assuming that the object is somehow typical in its non-luminous to luminous density, these measures are converted to an overall dark matter density through a "mass-to-light ratio"
- From galaxy surveys the luminosity density in solar units is

$$\rho_L = 2 \pm 0.7 \times 10^8 h \, L_{\odot} \rm Mpc^{-3}$$

(h's: distances in h^{-1} Mpc; luminosity inferred from flux $L \propto Sd^2 \propto h^{-2}$; inverse volume $\propto h^3$)

Dark Matter

• Critical density in solar units is $\rho_c = 2.7754 \times 10^{11} h^2 \, M_{\odot} \rm Mpc^{-3}$ so that the critical mass-to-light ratio in solar units is

$$\left(\frac{M}{L}\right) \approx 1400h$$

- Flat rotation curves: $GM/r^2 \approx v^2/r \to M \approx v^2r/G$, so the observed flat rotation curve implies $M \propto r$ out to $30h^{-1}$ kpc, beyond the light. Implies M/L > 30h and perhaps more closure if flat out to ~ 1 Mpc.
- Similar argument holds in clusters of galaxies where velocity dispersion replaces circular velocity and centripetal force is replaced by a "pressure gradient" $T/m = \sigma^2$ and $p = \rho T/m = \rho \sigma^2$ generalization of hydrostatic equilibrium: Zwicky got $M/L \approx 300$ h.

Hydrostatic Equilibrium

- Evidence for dark matter in X-ray clusters also comes from direct hydrostatic equilibrium inference from the gas: balance radial pressure gradient with gravitational potential gradient
- Infinitesimal volume of area dA and thickness dr at radius r and interior mass M(r): pressure difference supports the gas

$$[p_g(r) - p_g(r + dr)]dA = \frac{GmM}{r^2} = \frac{G\rho_g M}{r^2} dV$$

$$\frac{dp_g}{dr} = -\rho_g \frac{d\Phi}{dr}$$

with $p_g = \rho_g T_g/m$ becomes

$$\frac{GM}{r} = -\frac{T_g}{m} \left(\frac{d \ln \rho_g}{d \ln r} + \frac{d \ln T_g}{d \ln r} \right)$$

• ρ_g from X-ray luminosity; T_g sometimes taken as isothermal

Gravitational Lensing

- Mass can be directly measured in the gravitational lensing of sources behind the cluster
- Strong lensing (giant arcs) probes central region of clusters
- Weak lensing (1-10%) elliptical distortion to galaxy image probes outer regions of cluster and total mass
- All techniques agree on the necessity of dark matter and are roughly consistent with a dark matter density $\Omega_m \sim 0.2 0.4$
- $\Omega_m + \Omega_{\Lambda} \approx 1$ from matter density + dark energy
- CMB provides a test of $D_A \neq D$ through the standard rulers of the acoustic peaks and shows that the universe is close to flat $\Omega \approx 1$
- Consistency has lead to the standard model for the cosmological matter budget