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FRW Cosmology

e FRW cosmology = homogeneous and isotropic on large scales

e Universe observed to be nearly isotropic (e.g. CMB, radio point
sources, galaxy surveys)

e Copernican principle: must be isotropic to all observers (all
locations)

e Implies homogeneity; also galaxy redshift surveys (LCRS, 2dF,
SDSS) have seen the “end of greatness”, large scale homogeneit
directly

e FRW cosmology (homogeneity, isotropy & Einstein equations)
generically implies the expansion of the universe, except for
special unstable cases



FRW Geometry

e Spatial geometry is that of a constant curvature (positive, negative
zero) surface

e Metric tells us how to measure distances on this surface

e Consider the closed geometry of a sphere of radi@nd suppress
on dimension




Angular Diameter Distance

e Spatial distance: restore 3rd dimension with the usual spherical
polar angles

d¥? = dD? + D%da?
= dD? + D% (d6? + sin® 0d¢?)
e D, Is called the angular diameter distance singgio
corresponds to the transverse separation or size as opposed to tf

EuclideanDda;, I.e. Is the apparent distance to an object through
the gravitational lens of the background geometry

e |In a positively curved geometr®p , < D and objects are further
than they appear

e In a negatively curved univerde is imaginary and
Rsin(D/R) = i|R|sin(D/i|R|) = |R|sinh(D/|R|) — and
D4 > D objects are closer than they appear



Volume Element

e Metric also defines the volume element

dV = (dD)(DAdQ)(DA sin qub)
= D%dDdS)

e Most of classical cosmology boils down to these three quantities,
(comoving) distance, (comoving) angular diameter distance, and

volume element

e For example, distance to a high redshift supernova, angular size c
the horizon at last scattering, number density of clusters...



Comoving Coordinates

e Remaining degree of freedom (preserving homogeneity and
Isotropy) is an overall scale factor that relates the geometry (fixed
by the radius of curvatur®) to physical coordinates — a function
of time only

do® = a*(t)dX%?
our conventions are that the scale factor todéy) = 1

e Similarly physical distances are given t) = a(t)D,
dA(t) = a(t)DA.
e Distances in capital case artemoving.e. they comove with the

expansion and do not change with time — simplest coordinates to
work out geometrical effects



Time and Conformal Time

e Proper time

dr* = dt* — do*
= dt* — a*(t)dX?
= a*(t) (dn* — d¥?)
e Taking out the scale factor in the time coordindte= dt/a

definesconformal time- useful in that photons travelling radially
from observer then obey

AD = An = @

a

so that time and distance may be interchanged



Horizon

e Distance travelled by a photon in the whole lifetime of the universe
defines thénorizon

e By dr = 0, the horizon is simply the conformal time elapsed

t dt/
Dhorizon(t) — - = U(t)
0 a

e Since the horizon always grows with time, there is always a point
In time before which two observers separated by a distdhce
could not have been in causal contact

e Horizon problem: why is the universe homogeneous and isotropic
on large scales, near the current horizon — problem deepens for
objects seen at early times, e.g. CMB



FRW Metric

o Proper time defines the metyg,

dr* = g, datdx”

signature follows Peacock’s convention. Caveat reader: this is
opposite to what I'm used to sanlill occasionally mess up the sign

e Usually we will use comoving coordinates and conformal time as
the “z” 's unless otherwise specified — metric for other choices are
related bya(t)

e We will generally skirt around real General Relativity but
rudimentary knowledge will be useful



Hubble Parameter

e Useful to define the expansion rate or Hubble parameter

1 da
H(t) = ——
() a dit

since dynamics (Einstein equations) will give this directly as
H(a) = H(t(a))

e TiIme becomes

t= | dt =

e Conformal time becomes

o= an
= a’H(a




Redshift

e Wavelength of light “stretches” with the scale factor, so that it is
convenient to define a shift-to-the-red or redshift as the scale factt
INcreases

AMa) = a(t)A
MO 1,
@) - =(1+2)
oA v
D

e Given known frequency of emissiaria), redshift can be precisely
measured (modulo Doppler shifts from peculiar velocities) —
Interpreting the redshift as a Doppler shift, objects receed in an
expanding universe

e Given a measure of distancB{z) = D(z(a)) can be measured



Distance-Redshift Relation

e All distance redshift relations are based on the comoving distance

D(2)
/ 1D — / i

—(1+2)%dz = —anz)

S “ o dY
D — — p—
D==) 5w~ ) "5

e Note limiting case Is the Hubble law

lim D(z) = 2/H(z =0) = z/Hy

z—(0

e Hubble constant usually quoted g = 100k km s~ Mpc™!,
observationally: ~ 0.7; in natural unitsH, = (2997.9)"'h Mpc™!
defines an inverse length scale



Distance-Redshift Relation

e Example: object of known physical si2ze= a(t)A (“standard
ruler”) subtending an (observed) angle on the sky

Y A A
- Dy(z) aRsin(D(z)/R)
= A (14 2) = A
Rsin(D(z)/R) - da(z)

e Example: object of known luminosity (“standard candle”) with a
measured flux. Comoving surface arear D%, frequency/energy
(1 4 z), time-dilation or arrival rate of photons (crest3$)+ z):

L 1
-~ 4rD? (14 2)?

L
47Td2 (dL = (1 -+ Z)DA = (1 -+ Z)2dA)
L

S




Absolute calibration

e If absolute calibration of standards unknown, then Hubble constat
not measured

e Still measures evolution of Hubble parametéfz)/ Hy:

dA,L(Z) Ho

= —d
darp(0z) 0z AL (2)

o Alternately, distances & curvature are measured in unifs of
Mpc.

e Fundamental dependence (aside fridm- z) factors)

HoyDy(z) = HyRsin(D(z)/R)

— Rsin(HyD(2)/R), R = HyR

%Mﬂz/géa




Evolution of Scale Factor
e FRW cosmology is fully specified if the functiarit) is given

e General relativity relates the scale factor with the matter content c
universe.

o Build the Einstein tensatr,,,, out of the metric and use Einstein
equation

. SN2
Gi.:_i 2%_(%) _|_i 575j




Einstein Equations
e |sotropy demands that the stress-energy tensor take the form
T%h=p
Tij = _p(Sij
wherep is the energy density andis the pressure

e So Einstein equations become

Q 2+1 A C
— - - a
a R? 3 P

. . 2
a a 1
i <_) TR —8nGa’p

. . 2
4
or L (E> = — 7TGCL2(,0+3p)

a a 3




Friedman Equations

e More usual to see Einstein equations expressed in time not
conformal time

dal da
—_— = — = H
dna  dt aH{a)

i (a\® _d (a\ _ d(dd\  d*a
a a) dn\a ~Ya\ar ) T Yae

e Friedmann equations:

a
a

1 ST
H” = ——
(@) + a? R? 3 g
1 d%a 4G
oA 3

e Convenient fiction to describe curvature as an energy density
componenpy = —3/(87Ga*R?) x a™*



Critical Density

e Friedmann equation fal then reads

G G

H*(a) = T(p‘|—pK) =3 P

defining a critical density today, in terms of the expansion rate

e |n particular, its value today is given by the Hubble constant as

pe(z =0) = 3H3/87G = 1.8788 x 10~ *h*gcm

e Energy density today Is given as a fraction of critical
Q) = p/p.|.—0. Radius of curvature then given & = H3(Q2 — 1)

o If Q= 1, p~p,thenpx < p.or HyR < 1, universe is flat
across the Hubble distance.< 1 negatively curveds) > 1
positively curved



Newtonian Interpretation

e Consider a test particle of massin expanding spherical region of
radiusr and total masd/. Energy conservation

E = 1mv2 — GMm — const
2 r
1 /dr\* GM
5 (£> = const
1 /1dr\* GM _ const
2 (FE) o3 g2

o, 8mGp  const
3 a?
e Constant determines whether the system is bound and in the
Friedmann equation is associated with curvature — not general
since neglects pressure

H




Conservation Law

e Second Friedmann equation, or acceleration equation, simply
expresses energy conservation (why: stress energy Is automatica
conserved in GR via Bianchi identity)

dpV + pdV =0
dpa® + pda® = 0

pa’ + 3g,0a3 + BEpa?’ =0
a a

p, a
- =—-3(1 — =
p (+w)a w=p/p

e If w = const. then the energy density depends on the scale factor

asp oc g 30+w),



Multicomponent Universe

e The total energy density can be composed of a sum of componen
with differing equations of state

p(CL) — Z IOZ(CL) — ZIOZ(a — 1)a_3(1+wi)7 Qz = pi/pc’azl

e Important cases: nonrelativistic matief = mn,,, o< a™?,
w,, = 0; relativistic radiatiorp, = En, = vn, oc a™*, w, = 1/3;
“curvature” px < a?, wg = —1/3; constant energy density or
cosmological constanty, o a’, wy = —1

e Or generally withw. = p./p. = (0 + px)/(p + pK)
pu(a) = pela = 1)) Anassueio)
H2(CL) _ ng—fdlna?)(l—i—wc(a))



Acceleration Equation

e Time derivative of (first) Friedman equation

o~ 0] = s+ wond
%% — —?[(1 + 3w,)pel
_ _g(p + pr + 3p + 3pK)
— _g(l + 3w)p

e Acceleration equation says that universe deceleratesif—1/3



Expansion Required

e Friedmann equations “predict” the expansion of the universe.
Non-expanding conditionga /dt = 0 andd?a/dt* = 0 require

p=—px  p=—3
l.e. a positive curvature and a total equation of state
w=p/p=-1/3
e Since matter is known to exist, one can in principle achieve this
with

P =Pm T Pr = —Px = —3p = 3pa
1 2

PA = _ng Pm = —§,0K

Einstein introduce@, for exactly this reason — “biggest blunder”;
but note that this balance is unstabbe; can be perturbed but,, a
true constant cannot



Dark Energy
e Distance redshift relation depends on energy density components
da HO
HoD(z) = / a’ H(a)
. /@efdlnag(l—i—wc(a))

a2

e Distant supernova la as standard candles implydhat —1/3 so
that the expansion is accelerating

e Consistent with a cosmological constant that is
Qa = pa/peis= 2/3 0Of the total energy density

e Coincidence problem: different components of matter scale
differently with a. Why are (at least) two components comparable
today? — Anthropic?



Dark Matter

e Since Zwicky in the 1930’s non-luminous or dark matter has been
known to dominate over luminous matter in stars (and hot gas)

e Arguments are basically from a balance of gravitational force
against “pressure” from internal motions: rotation velocity In
galactic disks, velocity dispersion of galaxies in clusters, gas
pressure in clusters, radiation pressure in CMB

e Assuming that the object is somehow typical in its non-luminous
to luminous density, these measures are converted to an overall
dark matter density through a “mass-to-light ratio”

e From galaxy surveys the luminosity density in solar units Is

pr, =2+0.7 x 108h Lo Mpc ™3

(h's: distances irh ! Mpc; luminosity inferred from flux
L o< Sd* o< h™%; inverse volumex h?)



Dark Matter

o Critical density in solar units is. = 2.7754 x 10"'h? My Mpc ™
so that the critical mass-to-light ratio in solar units is

M
— ) ~ 1400h
(%)

e Flat rotation curvesG M /r? ~ v?/r — M =~ v*r/G, so the
observed flat rotation curve impliédd o r out to 30~ kpc,
beyond the light. Implied//L > 30h and perhaps more — closure
If flat out to~ 1 Mpc.

e Similar argument holds in clusters of galaxies where velocity
dispersion replaces circular velocity and centripetal force is
replaced by a “pressure gradiefit/m = ¢* and
p = pT'/m = po?— generalization of hydrostatic equilibrium:
Zwicky got M /L = 300h.



Hydrostatic Equilibrium

e Evidence for dark matter iIX -ray clusters also comes from direct
hydrostatic equilibrium inference from the gas: balance radial
pressure gradient with gravitational potential gradient

e Infinitesimal volume of ared A and thicknesgr at radius- and
interior massV/ (r): pressure difference supports the gas

GmM  Gp,M
py(r) = py(r + dr))dA = == = 2P ay
dpy B d_CID
dr Pg dr

with p, = p,T,/m becomes

GM _ 1y (dlnp, N dInT,
dinr dinr

o p, from X-ray luminosity;7,, sometimes taken as isothermal

T m



Gravitational Lensing

e Mass can be directly measured in the gravitational lensing of
sources behind the cluster

e Strong lensing (giant arcs) probes central region of clusters

e Weak lensing (1-10% ) elliptical distortion to galaxy image probes
outer regions of cluster and total mass

e All technigues agree on the necessity of dark matter and are
roughly consistent with a dark matter dendity, ~ 0.2 — 0.4

o (2, + Qx ~ 1from matter density + dark energy

e CMB provides a test oD 4 # D through the standard rulers of the
acoustic peaks and shows that the universe is close tQ fatl

e Consistency has lead to the standard model for the cosmological
matter budget



