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Distribution Function
• The distribution functionf gives the number of particles per unit

phase spaced3xd3q whereq is the momentum (conventional to
work in physical coordinates)

• Consider a box of volumeV = L3. Periodicity implies that the
allowed momentum states are given byqi = ni2π/L so that the
density of states is

dNs = g
V

(2π)3
d3q

whereg is the degeneracy factor (spin/polarization states)

• The distribution functionf(x,q, t) describes the particle
occupancy of these states, i.e.

N =

∫
dNsf = gV

∫
d3q

(2π)3
f



Bulk Properties
• Integrals over the distribution function define the bulk properties of

the collection of particles

• Number density

n(x, t) ≡ N/V = g

∫
d3q

(2π)3
f

• Energy density

ρ(x, t) = g

∫
d3q

(2π)3
E(q)f

whereE2 = q2 + m2



Bulk Properties
• Pressure: particles bouncing off a surface of areaA in a volume

spanned byLx: per momentum state

pq =
F

A
=

Npart

A

∆q

∆t
(∆q = 2|qx|, ∆t = 2Lx/vx)

=
Npart

V
|qx||vx| = f

|q||v|
3

= f
q2

3E

so that summed over states

p(x, t) = g

∫
d3q

(2π)3

|q|2

3E(q)
f

• Likewise anisotropic stress (vanishes in the background)

πi
j(x, t) = g

∫
d3q

(2π)3

3qiqj − q2δi
j

3E(q)
f



Observable Properties
• Only get to measure luminous properties of the universe. For

photons massm = 0, g = 2 (units:J m−3)

ρ(x, t) = 2

∫
d3q

(2π)3
qf = 2

∫
dqdΩ

( q

2π

)3

f

• Spectral energy density (per unit frequency
q = hν = h̄2πν = 2πν, solid angle)

uν =
dρ

dνdΩ
= 2(2π)ν3f

• Photons travelling at speed of light so thatuν = Iν = 4πν3f the
specific intensity or brightness, energy flux across a surface, units
of W m−2 Hz−1 sr−1



Observable Properties
• Integrate over frequencies for total intensity

I =

∫
dνIν =

∫
d ln νIν

νIν often plotted since it shows peak under a log plot;I andνIν

have units of W m−2 sr−1 and is independent of choice of
frequency unit

• Flux density: integrate over the solid angle of a radiation source,
units of W m−2 Hz−1 or Jansky =10−26 W m−2 Hz−1

Sν =

∫
source

IνdΩ

a.k.a. spectral energy distribution



Observable Properties
• Flux integrate over frequency, units of W m−2

S =

∫
d ln ν νSν

• Flux in a frequency bandSb measured in terms of magnitudes
(optical), set to some standard zero point per band

mb −mnorm = 2.5 log10(Snorm/Sb) ≈ ln(Snorm/Sb)

• Luminosity: integrate over area assuming isotropic emission or
beaming factor, units of W

L = 4πd2
LS



Extragalactic Light
• Looking at background radiationνIν peaks in the microwave

mm-cm region, and has the distribution of a perfect black body
f = 1/(eq/T − 1), T = 2.725± 0.002K or nγ = 410 cm−3,
Ωγ = 2.47× 10−5h−2. This is the cosmic microwave background.

• Strong support for hot big bang – densities high enough so that
interactions can create a thermal distribution of photons that has
since redshifted into the microwave



Liouville Equation
• Liouville theorem states that the phase space distribution function

is conserved along a trajectory in the absence of particle
interactions

Df

Dt
=

[
∂

∂t
+

dq

dt

∂

∂q
+

dx

dt

∂

∂x

]
f = 0

subtlety in expanding universe is that the de Broglie wavelength of
particles changes with the expansion so that

q ∝ a−1

• Homogeneous and isotropic limit

∂f

∂t
+

dq

dt

∂f

∂q
=

∂f

∂t
−H(a)

∂f

∂ ln q
= 0



Energy Density Evolution
• Integrate Liouville equation overg

∫
d3q/(2π)3E to form

∂ρ

∂t
= H(a)g

∫
d3q

(2π)3
Eq

∂

∂q
f

= H(a)g

∫
dΩ

(2π)3

∫
dqq3E

∂

∂q
f

= −H(a)g

∫
dΩ

(2π)3

∫
dq

d(q3E)

dq
f

= −H(a)g

∫
dΩ

(2π)3

∫
dq(3q2E + q3dE

dq
)f

(
dE

dq
=

d(q2 + m2)1/2

dq
=

1

2

2q

E
=

q

E
)

= −3H(a)g

∫
d3q

(2π)3
(E +

q2

3E
)f = −3H(a)(ρ + p)

as derived previously from energy conservation



Boltzmann Equation
• Boltzmann equation says that Liouville theorem must be modified

to account for collisions

Df

Dt
= C[f ]

• If collisions are sufficiently rapid, distribution will tend to thermal
equilibrium form



Kompaneets Example
• Collision term for photons under Compton scattering with free

electronsγ′ + e−′ → γ + e−

C[f ] =
1

2E(q)

∫
DqeDq′

eDq′(2π)4δ(4)(q + qe − q′ − q′
e)

[fe(q′
e)f(q′)(1 + f(q))− fe(qe)f(q)(1 + f(q′))]|M |2

where stimulated emission included, Pauli blocking neglected,
Lorentz invariant phase space element

Dq =
d3q

(2π)3

1

2E(q)

and the matrix element for scattering through an angleβ in the
electron rest frame, averaged over polarization states, is

|M |2 = 2(4π)2α2

[
q′

q
+

q

q′
− sin2 β

]



Kompaneets Example
• Thermalization of photons in the presence of a “bath” of electrons

at temperatureTe (Maxwell-Boltzmann distributed electrons)

C[f ] =
dτ

dt

1

meq2

∂

∂q

[
q4

(
Te

∂f

∂q
+ f(1 + f)

)]
where the scattering rate is given by

dτ

dt
= xeneσT σT =

8πα2

3m2
e

= 6.65× 10−25cm−2

• From∂f/∂t = C[f ], can check that particle number is conserved:
∂n/∂t = 0

• SettingC[feq] = 0 returns a diff. eq. solved by the (equilbrium or
Bose-Einstein) distribution

feq =
1

e(q−µ)/Te − 1



Kompaneets Example
• Verify

∂feq

∂q/Te

= − e(q−µ)/Te

[e(q−µ)/Te − 1]2

= −feq
e(q−µ)/Te

e(q−µ)/Te − 1
= −feq(1 + feq)

• µ is the chemical potential; from number density integral we see
that it represents a way of changing number density at equilibrium
- i.e. unavoidable if particle number is conserved in the collisional
process

• The equilibrium distribution comes about through general
considerations of statistical equilibrium.



Poor Man’s Boltzmann Equation
• Non expanding medium

∂f

∂t
= Γ (f − feq)

whereΓ is some rate for collisions

• Add in expansion in a homogeneous medium

∂f

∂t
+

dq

dt

∂f

∂q
= Γ (f − feq)

(q ∝ a−1 → 1

q

dq

dt
= −1

a

da

dt
= H)

∂f

∂t
−H

∂f

∂ ln q
= Γ (f − feq)

• So equilibrium will be maintained if collision rate exceeds
expansion rateΓ > H



Thermodynamic Equilibrium
• Consider a gas of particles in thermal and diffusive contact with a

reservoir of temperatureT . Then the relative probability of being
in a state with energyEi and particle numberNi is given by the
Gibbs factor (µ= chemical potential, non-vanishing even in
equilibrium if collisions do not change particle number)

P (Ei, Ni) ∝ exp[−(Ei − µNi)/T ]

• The mean occupation of the state defines the distribution function

f ≡
∑

NiP (Ei, Ni)∑
P (Ei, Ni)

• The energy, allowing for a zero point, isEi = (Ni + 1/2)E where
E is the particle energy.



Bose-Einstein / Fermi-Dirac
• For fermions, occupation is either 0 or 1

f =
exp[−(E − µ)/T ]

1 + exp[−(E − µ)/T ]
=

1

exp[(E − µ)/T ] + 1

• For bosons, infinite sum gives

f =
1

exp[(E − µ)/T ]− 1

• For the nonrelativistic limitE = m + 1
2
q2/m, E/T � 1 so both

distributions go to the Maxwell-Boltzmann distribution

f = exp[−(m− µ)/T ] exp(−q2/2mT )



Non-Relativistic Bulk Properties
• Number density

n = ge−(m−µ)/T 4π

(2π)3

∫ ∞

0

q2dq exp(−q2/2mT )

= ge−(m−µ)/T 23/2

2π2
(mT )3/2

∫ ∞

0

x2dx exp(−x2)

= g(
mT

2π
)3/2e−(m−µ)/T

• Energy densityE = m → ρ = mn

• Pressureq2/3E = q2/3m → p = nT , ideal gas law



Ultra-Relativistic Bulk Properties
• Chemical potentialµ = 0, ζ(3) ≈ 1.202

• Number density

nboson = gT 3 ζ(3)

π2
ζ(n + 1) ≡ 1

n!

∫ ∞

0

xn

ex − 1

nfermion =
3

4
gT 3 ζ(3)

π2

• Energy density

ρboson = gT 4 3

π2
ζ(4) = gT 4π2

30

ρfermion =
7

8
gT 4 3

π2
ζ(4) =

7

8
gT 4π2

30

• Pressureq2/3E = E/3 → p = ρ/3, wr = 1/3



Entropy Density
• First law of thermodynamics

dS =
1

T
(dρ(T )V + p(T )dV )

so that

∂S

∂V

∣∣∣
T

=
1

T
[ρ(T ) + p(T )]

∂S

∂T

∣∣∣
V

=
V

T

dρ

dT

• SinceS(V, T ) ∝ V is extensive

S =
V

T
[ρ(T ) + p(T )] σ = S/V =

1

T
[ρ(T ) + p(T )]



Entropy Density
• Integrability conditiondS/dV dT = dS/dTdV relates the

evolution of entropy density

dσ

dT
=

1

T

dρ

dT
dσ

dt
=

1

T

dρ

dt
=

1

T
[−3(ρ + p)]

d ln a

dt
d ln σ

dt
= −3

d ln a

dt
σ ∝ a−3

comoving entropy density is conserved in thermal equilibrium

• For ultra relativisitic bosonssboson = 3.602nboson; for fermions
factor of7/8 from energy density.

g∗ =
∑

bosons

gb +
7

8

∑
gf



Neutrino Freezeout
• Neutrino equilibrium maintained by weak interactions, e.g.

e+ + e− ↔ ν + ν̄

• Weak interaction cross sectionT10 = T/1010K ∼ T/1MeV

σw ∼ G2
F E2

ν ≈ 4× 10−44 T 2
10cm

2

• RateΓ = nνσw = H atT10 ∼ 3 or t ∼ 0.2s

• After neutrino freezeout, electrons and positrons annihilate
dumping their entropy into the photons

• Beforeg∗: γ, e+, e− = 2 + 7
8
(2 + 2) = 11

2

• After g∗: γ = 2; so conservation of entropy gives

g∗T
3
∣∣∣
initial

= g∗T
3
∣∣∣
final

Tν =

(
4

11

)1/3

Tγ



Relic Neutrinos
• Relic number density (zero chemical potential; now required by

oscillations & BBN)

nν = nγ
3

4

4

11
= 112cm−3

• Relic energy density assuming one species with finitemν :
ρν = mνnν

ρν = 112
mν

eV
eV cm−3 ρc = 1.05× 104h2 eVcm−3

Ωνh
2 =

mν

93.7eV

• Candidate for dark matter? an eV mass neutrino goes non
relativistic aroundz ∼ 1000 and retains a substantial velocity
dispersionσν .



Hot Dark Matter
• Momenta for a nonrelativistic species redshifts like temperature

for a relativistic one, so average momentum is still given by

〈q〉 = 3Tν = mσν

σν = 3
( mν

1eV

)−1
(

Tν

1eV

)
= 3

( mν

1eV

)−1
(

Tν

104K

)
= 6× 10−4

( mν

1eV

)−1

= 200km/s
( mν

1eV

)−1

• on order the rotation velocity of galactic halos and higher at higher
redshift - small objects can’t form: top down structure formation –
not observed – must not constitute the bulk of the dark matter



Cold Dark Matter
• Problem with neutrinos is they decouple while relativistic and

hence have a comparable number density to photons - for a
reasonable energy density, the mass must be small

• The equilibrium distribution for a non-relativistic species declines
exponentially beyond the mass threshold

n = g(
mT

2π
)3/2e−m/T

• Freezeout when annihilation rate equal expansion rateΓ ∝ σA,
increasing annihilation cross section decreases abundance

• Appropriate candidates supplied by supersymmetry

• Alternate solution: keep light particle but not created in thermal
equilibrium, axion dark matter



Big Bang Nucleosynthesis
• Most of light element synthesis can be understood through nuclear

statistical equilibrium and reaction rates

• Equilibrium abundance of species with mass numberA and charge
Z (Z protons andA− Z neutrons)

nA = gA(
mAT

2π
)3/2e(µA−mA)/T

• In chemical equilibrium with protons and neutrons

µA = Zµp + (A− Z)µn

nA = gA(
mAT

2π
)3/2e−mA/T e(Zµp+(A−Z)µn)/T



Big Bang Nucleosynthesis
• Eliminate chemical potentials withnp, nn

eµp/T =
np

gp

(
2π

mpT

)3/2

emp/T

eµn/T =
nn

gn

(
2π

mnT

)3/2

emn/T

nA = gAg−Z
p gZ−A

n (
mAT

2π
)3/2

(
2π

mpT

)3Z/2(
2π

mnT

)3(A−Z)/2

× e−mA/T e(Zµp+(A−Z)µn)/T nZ
p nA−Z

n

(gp = gn = 2; mp ≈ mn = mb = mA/A)

(BA = Zmp + (A− Z)mn −mA

= gA2−A

(
2π

mbT

)3(A−1)/2

A3/2nZ
p nA−Z

n eBA/T



Big Bang Nucleosynthesis
• Convenient to define abundance fraction

XA ≡ A
nA

nb

= AgA2−A

(
2π

mbT

)3(A−1)/2

A3/2nZ
p nA−Z

n n−1
b eBA/T

= AgA2−A

(
2πn

2/3
b

mbT

)3(A−1)/2

A3/2eBA/T XZ
p XA−Z

n

(nγ =
2

π2
T 3ζ(3) ηbγ ≡ nb/nγ)

= A5/2gA2−A

[(
2πT

mb

)3/2
2ζ(3)ηbγ

π2

]A−1

eBA/T XZ
p XA−Z

n

• DeuteriumA = 2, Z = 1, g2 = 3, B2 = 2.225 MeV

X2 =
3

π2

(
4πT

mb

)3/2

ηbγζ(3)eB2/T XpXn



Deuterium
• Deuterium “bottleneck” is mainly due to the low baryon-photon

number of the universeηbγ ∼ 10−9, secondarily due to the low
binding energyB2

• X2/XpXn ≈ O(1) atT ≈ 100keV or109 K, much lower than the
binding energyB2

• Most of the deuterium formed then goes through to helium via
D + D → 3He + p, 3He + D → 4He + n

• Deuterium freezes out as number abundance becomes too small to
maintain reactionsnD = const. The deuterium freezeout fraction
nD/nb ∝ η−1

bγ ∝ (Ωbh
2)−1 and so is fairly sensitive to the baryon

density.

• Observations of the ratio in quasar absorption systems give
Ωbh

2 ≈ 0.02



Helium
• Essentially all neutrons around during nucleosynthesis end up in

Helium

• In equilibrium, the neutron-to-proton ratio is determined by the
mass differenceQ = mn −mp = 1.293 MeV

nn

np

= exp[−Q/T ]

• Equilibrium is maintained through weak interactions, e.g.
n ↔ p + e− + ν̄ with rate

Γ

H
≈ T

0.8MeV

• Freezeout fraction

nn

np

= exp[−1.293/0.8] ≈ 0.2



Helium
• Finite lifetime of neutrons brings this to∼ 1/7 by 109K

• Helium mass fraction

YHe =
4nHe

nb

=
4(nn/2)

nn + np

=
2nn/np

1 + nn/np

≈ 2/7

8/7
≈ 1

4

• Depends mainly on the expansion rate during BBN - measure
number of relativistic species

• Traces of7Li as well. Measured abundances in reasonable
agreement with deuterium measureΩbh

2 = 0.02



Recombination
• Statistical equilibrium says that neutral hydrogen will form

sometime after the temperature drops below the binding energy of
hydrogen

• Apply equiliburium distribution

ni = gi

(
miT

2π

)3/2

e−mi/T

to thee− + p ↔ H system:Saha Equation

nenp

nHnb

=
x2

e

1− xe

=
1

nb

(
meT

2π

)3/2

e−B/T

whereB = me + mp −mH = 13.6eV



Recombination
• But again thephoton-baryon ratiois very low

ηbγ ≡ nb/nγ ≈ 3× 10−8Ωbh
2

• Eliminatein favor ofηbγ andB/T through

nγ = 0.244T 3 ,
me

B
= 3.76× 104

• Big coefficient

xe
2

1− xe

= 3.16× 1015

(
B

T

)3/2

e−B/T

T = 1/3eV → xe = 0.7, T = 0.3eV → xe = 0.2

• Further delayedby inability to maintain equilibrium since net is
through2γ process and redshifting out of line


