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Horizon Problem
• The horizon in a decelerating universe scales asη ∝ a(1+3w)/2,

w > −1/3. For example in a matter dominated universe

η ∝ a1/2

• CMB decoupled ata∗ = 10−3 so subtends an angle on the sky

η∗
η0

= a1/2
∗ ≈ 0.03 ≈ 2◦

• So why is the CMB sky isotropic to10−5 in temperature if it is
composed of∼ 104 causally disconnected regions

• If smooth by fiat, why are there10−5 fluctuations correlated on
superhorizon scales



Flatness & Relic Problems
• Flatness problem: why is the radius of curvature larger than the

observable universe. (Before the CMB determinations, why is it at
least comparable to observable universe|ΩK | ∼< Ωm)

• Also phrased as a coincidence problem: sinceρK ∝ a−2 and
ρm ∝ a−3, why would they be comparable today – modern version
is dark energy coincidenceρΛ = const.

• Relic problem – why don’t relics like monopoles dominate the
energy density

• Inflation is a theory that solves all three problems at once and also
supplies a source for density perturbations



Accelerating Expansion
• In a matter or radiation dominated universe, the horizon grows as a

power law ina so that there is no way to establish causal contact
on a scale longer than the inverse Hubble length (1/aH, comoving
coordinates) at any given time: general for a decelerating universe

η =

∫
d ln a

1

aH(a)

• H2 ∝ ρ ∝ a−3(1+w), aH ∝ a−(1+3w)/2, critical value ofw = −1/3,
the division between acceleration and deceleration

• In an accelerating universe, the Hubble length shrinks in comoving
coordinates and so the horizon gets its contribution at the earliest
times, e.g. in a cosmological constant universe, the horizon
saturates to a constant value



Causal Contact
• Note confusion in nomenclature: the true horizon always grows

meaning that one always sees more and more of the universe. The
Hubble length decreases: the difference in conformal time, the
distance a photon can travel between two epochs denoted by the
scale factor decreases. Regions that were in causal contact, leave
causal contact.

• Horizon problem solved if the universe was in an acceleration
phase up toηi and the conformal time since then is shorter than the
total conformal age

η0 � η0 − ηi

total distance � distance traveled since inflation

apparent horizon



Flatness & Relic
• Comoving radius of curvature is constant and can even be small

compared to the full horizonR � η0 yet still η0 � R � η0 − ηi

• In physical coordinates, the rapid expansion of the universe makes
the current observable universe much smaller than the curvature
scale

• Likewise, the number density of relics formed before the
accelerating (or inflationary) epoch is diluted to make them rare in
the current observable volume

• Common to reference time to the end of inflationη̃ ≡ η − ηi. Here
conformal time is negative during inflation and its value (as a
difference in conformal time) reflects the comoving Hubble length
- defines leaving the horizon ask|η̃| = 1



Exponential Expansion
• If the accelerating component has equation of statew = −1, ρ =

const.,H = Hi const. so thata ∝ exp(Ht)

η̃ = −
∫ ai

a

d ln a
1

aH
=

1

aHi

∣∣∣ai

a

≈ − 1

aHi

(ai � a)

• In particular, the current horizon scaleH0η̃0 ≈ 1 exited the horizon
during inflation at

η̃0 ≈ H−1
0 =

1

aHHi

aH =
H0

Hi



Sufficient Inflation
• Current horizon scale must have exited the horizon during inflation

so that the start of inflation could not be afteraH . How long before
the end of inflation must it have began?

aH

ai

=
H0

Hiai

H0

Hi

=

√
ρc

ρi

, ai =
TCMB

Ti

• ρ
1/4
c = 3× 10−12 GeV,TCMB = 3× 10−13 GeV

aH

ai

= 3× 10−29

(
ρ

1/4
i

1014GeV

)−2(
Ti

1010GeV

)

ln
ai

aH

= 65 + 2 ln

(
ρ

1/4
i

1014GeV

)
− ln

(
Ti

1010GeV

)



Perturbation Generation
• Horizon scalẽη during inflation acts like an even horizon - things

leaving causal contact

• Particle creation similar to Hawking radiation from a black hole
with hubble length replacing the BH horizon

TH ≈ Hi

• BecauseHi remains roughly constant during inflation the result is
a scale invariant spectrum of fluctuations due to zero-point
fluctuations becoming classical

• Fluctuations in the field driving inflation (inflaton) carry the energy
density of the universe and so their zero point fluctuations are net
energy density or curvature fluctuations

• Any other light field (gravitational waves, etc...) will also carry
scale invariant perturbations but are iso-curvature fluctuations



Slow Roll Inflation
• Single minimally coupled scalar field rolling slowly in a nearly flat

potential

• Scalar field equation of motionV ′ ≡ dV/dφ

∂µ∂
µφ + V ′(φ) = 0

so that in the backgroundφ = φ0 and

φ̈0 + 2
ȧ

a
φ̇0 + a2V ′ = 0

d2φ0

dt2
+ 3H

dφ0

dt
+ V ′ = 0

• Simply the continuity equation with the associations

ρφ =
1

2
a−2φ̇2

0 + V pφ =
1

2
a−2φ̇2

0 − V



Slow Roll Parameters
• Net energy is dominated by potential energy and so acts like a

cosmological constantw → −1

• First slow roll parameter

ε =
3

2
(1 + w) =

1

16πG

(
V ′

V

)2

• Second slow roll parameterd2φ0/dt2 ≈ 0, or φ̈0 ≈ (ȧ/a)φ̇0

δ =
φ̈0

φ̇0

(
ȧ

a

)−1

− 1 = ε− 1

8πG

V ′′

V

• Slow roll conditionε, δ � 1 corresponds to a very flat potential



Perturbations
• Linearize perturbationφ = φ0 + φ1 then

φ̈1 + 2
ȧ

a
φ̇1 + k2φ1 + a2V ′′φ1 = 0

in slow roll inflationV ′′ term negligible

• Implicitly assume that the spatial metric fluctuations (curvatureζ)
vanishes, otherwise covariant derivatives pick these up – formal
justification is work in that frame and transform back.

• Curvature represents a warping of the scale factora → (1 + ζ)a or
δa/a = ζ

ζ =
δa

a
=

ȧ

a
δη =

ȧ

a

φ1

φ̇0

a change in the field valueφ1 defines a change in the epoch that
inflation ends, imprinting a curvature fluctuation



Slow-Roll Evolution
• Rewrite inu ≡ aφ to remove expansion damping

ü + [k2 − 2

(
ȧ

a

)2

]u = 0

• or for conformal time measured from the end of inflation

η̃ = η − ηend

η̃ =

∫ a

aend

da

Ha2
≈ − 1

aH

• Compact, slow-roll equation:

ü + [k2 − 2

η̃2
]u = 0



Slow Roll Limit
• Slow roll equation has the exact solution:

u = A(k ± i

η̃
)e∓ikη̃

• For |kη̃| � 1 (early times, inside Hubble length) behaves as free
oscillator

lim
|kη̃|→∞

u = Ake∓ikη̃

• NormalizationA will be set by origin in quantum fluctuations of
free field



Slow Roll Limit
• For |kη̃| � 1 (late times,� Hubble length) fluctuation freezes in

lim
|kη̃|→0

u = ± i

η̃
A = ±iHaA

φ1 = ±iHA

ζ = ∓iHA

(
ȧ

a

)
1

φ̇0

• Slow roll replacement(
ȧ

a

)2
1

φ̇2
0

=
8πGa2V

3

3

2a2V ε
=

4πG

ε
=

4π

εm2
pl

• Bardeen curvature power spectrum

∆2
ζ ≡

k3|ζ|2

2π2
=

2k3

π

H2

εm2
pl

A2



Quantum Fluctuations
• Simple harmonic oscillator� Hubble length

ü + k2u = 0

• Quantize the simple harmonic oscillator

û = u(k, η)â + u∗(k, η)â†

whereu(k, η) satisfies classical equation of motion and the
creation and annihilation operators satisfy

[a, a†] = 1, a|0〉 = 0

• Normalize wavefunction[û, dû/dη] = i

u(k, η) =
1√
2k

e−ikη̃



Quantum Fluctuations
• Zero point fluctuations of ground state

〈u2〉 = 〈0|u†u|0〉

= 〈0|(u∗â† + uâ)(uâ + u∗â†)|0〉

= 〈0|ââ†|0〉|u(k, η̃)|2

= 〈0|[â, â†] + â†â|0〉|u(k, η̃)|2

= |u(k, η̃)|2 =
1

2k

• Classical equation of motion take this quantum fluctuation outside
horizon where it freezes in. Slow roll equation

• SoA = (2k3)1/2 and curvature power spectrum

∆2
ζ ≡

1

π

H2

εm2
pl



Tilt
• Curvature power spectrum is scale invariant to the extent thatH is

constant

• Scalar spectral index

d ln ∆2
ζ

d ln k
≡ nS − 1

= 2
d ln H

d ln k
− d ln ε

d ln k

• Evaluate at horizon crossing where fluctuation freezes

d ln H

d ln k

∣∣
−kη̃=1

=
k

H

dH

dη̃

∣∣
−kη̃=1

dη̃

dk

∣∣
−kη̃=1

=
k

H
(−aH2ε)

∣∣
−kη̃=1

1

k2
= −ε

whereaH = −1/η̃ = k



Tilt
• Evolution ofε

d ln ε

d ln k
= − d ln ε

d ln η̃
= −2(δ + ε)

ȧ

a
η̃ = 2(δ + ε)

• Tilt in the slow-roll approximation

nS = 1− 4ε− 2δ



Gravitational Waves
• Gravitational wave amplitude satisfies Klein-Gordon equation

(K = 0), same as scalar field

Ḧ
(±2)
T + 2

ȧ

a
Ḣ

(±2)
T + k2H

(±2)
T = 0 .

• Acquires quantum fluctuations in same manner asφ. Lagrangian
sets the normalization

φ1 → H
(±2)
T

√
3

16πG

• Scale-invariant gravitational wave amplitude (each component:
NB more traditional notationH(±2)

T = (h+ ± ih×)/
√

6)

∆2
H =

16πG

3 · 2π2

H2

2
=

4

3π

H2

m2
pl



Gravitational Waves
• Gravitational wave power∝ H2 ∝ V ∝ E4

i whereEi is the energy
scale of inflation

• Tensor tilt:

d ln ∆2
H

d ln k
≡ nT = 2

d ln H

d ln k
= −2ε

• Consistency relation between tensor-scalar ratio and tensor tilt

∆2
H

∆2
ζ

=
4

3
ε = −2

3
ε

• Measurement of scalar tilt and gravitational wave amplitude
constrains inflationary model in the slow roll context

• Comparision of tensor-scalar ratio and tensor tilt tests the idea of
slow roll itself


