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Thomson Scattering

e Thomson scatteringf photons off of free electrons is the most
Important CMB process with a cross section (averaged over
polarization states) of

7

o = — 6.65 x 10" *°cm?

~ 3m?
e Density of free electrons in a fully ionized = 1 universe
ne = (1-Y,/2)xzeny = 107°Qh%(1 + 2)’cm ™3,

whereY, ~ 0.24 is the Helium mass fraction, creates a high
(comoving) Thomsompacity

T = N.OTa

where dots are conformal time= [ dt/a derivatives and is the
optical depth.



Tight Coupling Approximation
e Nearrecombinatiorr ~ 10° andQ),h?* ~ 0.02, the (comoving)

mean free patiof a photon

1
Ao = — ~ 2.5Mpc
T

small by cosmological standards!

e On scales\ > )\ photons areightly coupledto the electrons by
Thomson scattering which in turn are tightly coupled to the
baryons by Coulomb interactions

e Specifically, their bulk velocities are defined bgiagle fluid
velocity v, = v, and the photons carrmyo anisotropyn the rest
frame of the baryons

e — No heat conductiomr viscosity(anisotropic stress) in fluid



Zeroth Order Approximation

e Momentum densityf a fluid is(p + p)v, wherep is the pressure

e Neglectthe momentum density of tH®ryons

(o +Dpo)ve — po+po  3pp

(Py + Dy)vy B P~y + Dy B 4py
0 2
~ 0.6 ph ( - )
0.02 103
sincep.,  T* is fixed by the CMB temperaturE = 2.73(1 + 2)K
— OK substantiallyoefore recombination

R

e Neglectradiationin theexpansion

2
P _ 36 (Sl ( a )
Or 0.15 10—3

e Neglect gravity




Fluid Equations

e Densityp, « T* so definemperature fluctuatio®

0T

e Real spaceontinuity equation

57 = —(1 +w,)kv,
1

@ = —gk?}7

e Euler equation (neglecting gravity)

. a kc?
U,y = —(1 — 3w7)av -+ m57

3
Vy = kciz% = 3c’k©



Osclllator: Take One

e Combine these to form th@mple harmonic oscillatogquation
O+ A2k =0
where the sound speed is adiabatic

2> _ P _ Dy
S 0p Py

herec? = 1/3 since we are photon-dominated

C

e General solution:

O(0)
kc,

where thesound horizoris defined as = [ c.dn

O(n) = 6(0) cos(ks) + sin(ks)



Harmonic Extrema

e All modes ardrozenin at recombination (denoted with a subscript
x) yielding temperature perturbationsdaifferent amplituddor
different modes. For the adiabatic (curvature mogé)) = 0

O(n.) = O(0) cos(ks.)

e Modes caught in thextremaof their oscillation will have
enhanced fluctuations

k.S, = nmw

yielding afundamental scaler frequency, related to the inverse
sound horizon

]{A:ﬂ'/s*

and aharmonic relationshipo the other extrema ds: 2 : 3...



Peak Location

e The fundmentaphysical scales translated into a fundamental
angular scalby simple projection according to the angular
diameter distanc® 4

0a = Aa/Day
la = FkaDy

e In a flat universe, the distance is simghy = D = ng — 1, = 1),
the horizon distance, and, = /s, = v/37/n, SO

(914%&
o

o In amatter-dominatedniversen o a'/? s0f4 ~ 1/30 ~ 2° or

gA ~ 200



Curvature

e |n acurved universgthe apparent aangular diameter distance
no longer the conformal distande, = Rsin(D/R) # D

e Objects in eclosed universarefurtherthan they appear!
gravitationallensingof the background...

e Curvature scale of the universe must be substantiiter than
current horizon

e Flat universandicates critical density and implies missing energy
given local measures of the matter denstfprk energy

e D also depends onark energy densit{2pr andequation of state
W = pDE/PDE-

e EXpansion rate at recombinationmiatter-radiation rati@nters
Into calculation ofk 4.



Doppler Effect

e Bulk motionof fluid changes the observed temperature via

Doppler shifts
(AT) -
— —f.-Vv
1 dop !

e Averaged over directions
(AT> Uy
T rms \/§

- —ﬁ@ = —3ch O(0)sin(ks)

V3 k k
= O(0)sin(ks)

e Acoustic solution



Doppler Peaks?

e Doppler effectfor the photon dominated system isaxfual
amplitudeandr /2 out of phaseextrema of temperature are
turning points of velocity

e Effects add imquadrature

T

e No peakan k spectrum! However the Doppler effect carries an
angular dependence that changegitgectionon the sky
n-v,xn-k

<£> = 07(0)[cos*(ks) + sin®(ks)] = ©%(0)

e Coordinates wherg || k

Y10Y£0 — YEilO

recouplingj;Y,y: no peaks in Doppler effect



Restoring Gravity

e Take a simplehoton dominategystemwith gravity

e Continuityaltered since a gravitational potential represents a
stretchingof the spatial fabriadhat dilutes number densities —
formally a spatiaturvature perturbation

e Think of this as a perturbation to tlseale facton — a(1 + @) so
that the cosmogical redshift is generalized to
a a

a a

so that thecontinuity equatiorbecomes

. 1 .
@: —gkvv—q)



Restoring Gravity

e Gravitational forcan momentum conservatidll = —mVV
generalized to momentum density modifies Eheger equationo

0 = k(O + 0)

e General relativity says that andW are the relativistic analogues
of the Newtonian potentiaand thatd ~ —W.

e |n our matter-dominated approximatioh represents matter
density fluctuations through the cosmologiPalisson equation

k*® = 4nGa’p,\,,

where the difference comes from the useofmoving coordinates
for k (a* factor), the removal of thbackground densitinto the
background expansigpA,,) and finally acoordinate subtletthat
enters into the definition af,,



Constant Potentials

e |n the matter dominated epoglotentials are constabecause
Infall generates velocitiessv,,, ~ kn¥

e \elocity divergence generates dengagrturbations as
A, ~ —knu,, ~ —(kn)*¥
e And density perturbations generate poterflia¢tuations as
d ~ A,,/(kn)* ~ —¥, keeping them constant. Note that because
of the expansion, density perturbations myistw to keep
potentials constant.

e Here we have used tii&iedman equatiofi/? = 87Gp,, /3 and
n= [dna/(aH)~1/(aH)

e More generally, ifstress perturbatiorare negligible compared
with density perturbationEdp < dp ) then potential will remain

roughly constant — more specifically a variant calledBlaedeen
Oor comoving curvaturé Is constant



Oscillator: Take Two

e Combine these to form thr@mple harmonic oscillatcgquation

. L2 .
@+éﬁ@:—§m—¢

e In aCDM dominatedexpansiond = ¥ = (. Also for photon
dominationc? = 1/3 so the oscillator equation becomes

O+ U+ Ak2(O + W) =0
e Solution is just arpffset versiorof the original
O+ VUl(n) =[O + V](0) cos(ks)

e O + VU is also theobserved temperature fluctuatisimce photons
lose energy climbing out afravitational potentialat
recombination



Effective Temperature

e Photons climb out of potential wells at last scattering
e Lose energy to gravitational redshifts

e Observed oeffective temperature

O+ WV
o Effective temperature oscillates aroursrowith amplitude given
by theinitial conditions

e Note: initial conditions are set when the perturbationusside of
horizon need inflation or other modification to matter-radiation
FRW universe.

e GR says thamitial temperaturas given byinitial potential



Sachs-Wolfe Effect and the Magic 1/3

e A gravitational potentiails a perturbation to the temporal
coordinate [formally ayjauge transformatign

0t
=V
t

e Convert this to a perturbation in tlseale factar

A 3(1-+w)/2
a ap1/2

wherew = p/p so that duringnatter domination

oa 20t
a 3t
o CMB temperature isoolingas? o a™! so

5T 5 1
O+l="qu=—240=_1
I a 3



Baryon Loading

e Baryons add extrenassto the photon-baryon fluid
e Controlling parameter is th@omentum density ratio
R = Do+ Py %SOQth( a3>
D~y + Pry 10—
of orderunity at recombination

e Momentum density of th@int systemis conserved

(py + Py) vy + (o6 + Do) vs = (Py + Dy + po + py) 0y
— (1 + R)(Pv -|—p7)?f7b

where the controlling parameter is theomentum density ratio

R = pb+;0b QSOQth( a )
Py + Py 10-3

of orderunity at recombination




New Euler Equation

e Momentum density ratio enters as

(14 R)vyp] =kO + (1 4+ R)kEV
e Photon continuityremains the same

. 3 |
© = —g?},yb—q)

e Modification ofoscillator equation

[(1+ R)O] + %/@2@ = —%/8(1 + R — [(1 4 R)D]



Oscillator: Take Three

e Combine these to form the not-quite-sople harmonic oscillator
equation

d : k? d :
ng—n(cs_Q@) -+ C?kz@ — —g\p — ng—n(cs_zq))

wherec? = p.y/p

, 101
C, = ———
* T 31+R

e In aCDM dominatedexpansiond = ¥ = 0 and theadiabatic
approximation? /R < w = ke,

O+ (1+ R)V|(n) =04+ (14 R)¥](0)cos(ks)



Baryon Peak Phenomenology

e Photon-baryon ratio enters three ways

e Overall largeramplitude

0 + (14 R)T)(0) = %(1 +3R)T(0)

e Even-odd peaknodulationof effective temperature

O + Vlpears = [£(1 +31R) — 3R] é‘If(O)

© 4+ 0]y~ [0+ W], = [-6R);¥(0)

e Shifting of thesound horizordown or/ 4 up

lyxV1I+ R

e Actual effectssmallersincel? evolves



Photon Baryon Ratio Evolution

e Oscillator equation has timevolving mass

d
2 —2@ 2]€2@:O
2 (670) ¢

o Effective massisisi.s = 3c.? = (1+ R)

e Adiabatic invariant

E 1 1
— = §meﬁwA2 = 5308_2/@(33142 o A*(1 + R)1/2 = const.
W

o Amplitude of oscillation4 (1 + R)~'/* decays adiabaticallgs
the photon-baryon ratio changes



Osclllator: Take Three and a Half

e The not-quite-s@imple harmonic oscillatogquation is dorced
harmonic oscillator
d : k2 d
2 —2 27.2 2 _9
o © kO = —— WU — ¢ — o

CS dn (CS ) _I_ CS 3 CS dn (CS )
changes in thgravitational potentialalter the form of the
acoustic oscillations

e |f the forcing term has &emporal structuréhat is related to the
frequencyof the oscillation, this becomestaiven harmonic
oscillator

e Term involvingV is the ordinarygravitational force

e Term involving® involves thed term in thecontinuity equatioras
a (curvature) perturbation to tiseale factor



Potential Decay

e Matter-to-radiation ratio

P 24th2( a )
Pr 103

of orderunity at recombination in a low,,, universe

e Radiation is not stress free andisgedeghe growth of structure

20 = 4nGa’p, A\,

A, ~ 40 oscillatesaround a constant valug, o« a~* so the
Netwoniancurvature decays

e General rule: potential decays if the dominant energy component
has substantial stress fluctuations, i.e. below the generalized sou
horizon or Jeans scale



Radiation Driving

e Decay is timed precisely torive the oscillator - close to fully
coherent

0+ W](n) = [© + U)(0) + AT — AD
_ %xp(@) _20(0) = gxp(())

e 5x the amplitude of the Sachs-Wolfe effect!

e Coherent approximation sxactfor a photon-baryon fluid but
reality is reduced te- 4 x because oheutrino contributiorto
radiation

e Actualinitial conditionsare® + ¥ = ¥ /2 for radiation
domination but comparison to matter dominated SW correct



Damping
e Tight coupling equations assum@arfect fluid noviscosity, no

heat conduction

e Fluid imperfections are related to theean free path of the
photons in the baryons

' where 7 =n.ora

Ao =T
IS the conformal opacity tdhompson scattering

e Dissipation is related to thaiffusion length random walk
approximation

Ap = VNI = 1/ e Ao = V1o

thegeometric meabetween the horizon and mean free path

e \p/n. ~ few %, so expect thpeaks > 3 to be affected by
dissipation



Equations of Motion

e Continuity

@:—§U7—®, 5[9:—/62}5—3(1)

where the photon equation remains unchanged and the baryons
follow number conservation with, = myn,

e Euler
. k .
v, = k(@4 V) — 6™~ T(vy — Vp)
vy = —gvb—kk\lf#—%(vv — )/ R

where the photons gain an anisotropic stress terfnom radiation
viscosityand amomentum exchangerm with the baryons and
are compensated by tla@posite termn the baryon Euler equation



Viscosity

e Viscosityis generated from radiatisgtreamingrom hot to cold
regions

e EXxpect

k
T~ N~ VA
Y 77_

generated by streaming, suppresseddaiteringn a wavelength
of the fluctuation Radiative transfesays
k

whereA, = 16/15

k k
’l.}fy — k(@ —|— \If) — §AU—,U7

T



Oscillator: Penultimate Take

e Adiabatic approximatiolfw > a/a)
k

@ ~ —g’Ufy
e Oscillator equation contains@ damping term
d : ket . k* d :
(%0 SA,0 + K20 = —— U — EA— (¢ 2D
CS d,r] (CS ) _I_ 7_ —I_ CS 3 CS dT] (CS )

o Heat conductioterm similar in that it is proportional to, and is
suppressed by scattering7. Expansion otuler equation$o
leading order in:7 gives

R2
T 14+R

since the effects are only significant if the baryons are dynamicall
Important

Ap



Oscillator: Final Take

e Final oscillator equation

d : k2 c? : k? d :
—(c;%0 (A, + A0 + k2O = —— T — 2—(c?D
g (€70) + AL+ A6 + KGO =~ — o ()

e Solve in theadiabatic approximation
O x exp(i/wdn)
k?c?
—w® A 2 (A, + Ap)iw + ke =0 (1)




Dispersion Relation

e Solve
S = k2 [1 + z‘f,(A,,, + Ah)}

1 W
— t+ke, [1+=-—(A, + A
W C _ —|—27_( + h)]

= fke, |1+ %k,CS (A, + Ah)]

+

e EXxponentiate

1 2
exp(i/wdn) = T ex Xp —kQ/dU§CT.S(Av + Ap)]

= " exp[—(k/kp)] (2)

e Damping isexponentiaunder the scalé,



Diffusion Scale

e Diffusion wavenumber

k2]/d 11 16 R
b= YR R\ T 1+ R)

e Limiting forms

116 [ 1

lim k) = = — [ di~

A N
1 [ 1

lim kp2 == [ di-

R D 60/ e

e Geometric mean between horizon and mean free path as expecte
from arandom walk

2T 2T
Ap = =5~ ()2

kp /6



Thomson Scattering

e Polarization state of radiation in directiandescribed by the
intensity matrix( £;(n) £ (n)), wherekE is the electric field vector
and the brackets denote time averaging.

e Differential cross section

do B
aa
whereo = 87a?/3m, is the Thomson cross sectids, andE

denote the incoming and outgoing directions of the electric field o
polarization vector.

3 . .
S—W]E’ -El%or,

e Summed over angle and incoming polarization

d
Z /dﬁ,d—g — OT

i=1,2



Polarization Generation

Heuristic: incoming radiation shakes an electron in direction of
electric field vectoi’

Radiates photon with polarization also in directigh

But photon cannot be longitudinally polarized so that scattering
Into 90° can only pass one polarization

Linearly polarized radiation like polarization by reflection
Unlike reflection of sunlight, incoming radiation is nearly isotropic

Missing linear polarization supplied by scattering from direction
orthogonal to original incoming direction

Only quadrupole anisotropy generates polarization by Thomson
scattering



Acoustic Polarization

e Break down of tight-coupling leads to quadrupole anisotropy of

K

Ty = Uy

e Scalingkp = (7/n.)Y? — 7 = k%,
e Know: kps, ~ kpn, =~ 10

e SO:



Acoustic Polarization

e Gradient of velocity is along direction of wavevector, so
polarization Is purg~-mode

e Velocity is90° out of phase with temperature — turning points of
oscillator are zero points of velocity:

© + VU  cos(ks); v, o sin(ks)

e Polarization peaks are at troughs of temperature power



Cross Correlation

Cross correlation of temperature and polarization

(© 4+ ¥)(v,) x cos(ks)sin(ks) o sin(2ks)
Oscillation at twice the frequency

Correlation: radial or tangential around hot spots

Partial correlation: easier to measure if polarization data is noisy,
harder to measure if polarization data is highV or if bands do
not resolve oscillations

Good check for systematics and foregrounds

Comparison of temperature and polarization is proof against
features in initial conditions mimicking acoustic features



