Monte Carlo Markov Chains: A Brief Introduction and Implementation

Jennifer Helsby
Astro 321
What are MCMC: Markov Chain Monte Carlo Methods?

- Set of algorithms that generate posterior distributions by sampling likelihood function in a representative way in parameter space

- Why does anybody do this?
 - Scales linearly with the number of parameters considered; thus, much more efficient than other methods
1. Begin at a location in parameter space, \(\vec{p} = (\Omega_{M,i}, \Omega_{\Lambda,i}, w_i) \)
2. Compute likelihood at this point, \(\mathcal{L}(\vec{p}) \)
3. Jump function proposes new location, \(\vec{n} = (\Omega_{M,j}, \Omega_{\Lambda,j}, w_j) \)
4. Compute likelihood at this point, \(\mathcal{L}(\vec{n}) \)
5. An algorithm determines whether to move there (if jump rejected, repeat steps 3-4 until accepted)
1. Begin at a location in parameter space, \(\vec{p} = (\Omega_{M,i}, \Omega_{\Lambda,i}, w_i) \)
2. Compute likelihood at this point, \(\mathcal{L}_p \)
3. Jump function proposes new location, \(\vec{n} = (\Omega_{M,j}, \Omega_{\Lambda,j}, w_j) \)
4. Compute likelihood at this point, \(\mathcal{L}_n \)
5. An algorithm determines whether to move there (if jump rejected, repeat steps 3-4 until accepted)
Burning in

- Beginning the Markov chain at any point in the parameter space should result in convergence.
- First ~5-10% steps thrown away: “burn in” process.
- Reduces dependence of reconstructed distribution on the initial position.

Parameter space for 2 chains:
The Decider: Metropolis-Hastings Algorithm

• Metropolis-Hastings is the algorithm that determines whether to reject or accept the proposed jump

 Current location: \(\vec{p} = (\Omega_{M,i}, \Omega_{\Lambda,i}, w_i) \)

 Proposed jump: \(\vec{n} = (\Omega_{M,j}, \Omega_{\Lambda,j}, w_j) \)

• Calculate ratio of likelihoods (becomes more complicated if proposal density is not symmetric):

 \[\alpha = \frac{L_{\vec{n}}}{L_{\vec{p}}} \]

• Acceptance criteria:

 \(\alpha \geq 1 \) Always accept
 \(\alpha < 1 \) Accept with probability \(\alpha \)
Art of the MCMC

- Variable parameters:
 - selection of jump function
 - length of chain (typical: ~1000-10000)
 - number of Markov chains (typical: ~5)
 - length of burn-in (typical: ~5-10%)
 - simulated annealing
Jump Function

Current location: $\vec{p} = (\Omega_{M,i}, \Omega_{\Lambda,i}, w_i)$
Proposed jump: $\vec{n} = (\Omega_{M,j}, \Omega_{\Lambda,j}, w_j)$

- Simple jump function that takes a Gaussian with mean zero and variance σ^2 and adds it to the current location:
 $$\vec{n} = \vec{p} + \text{Gaussian}(\sigma^2)$$
- Adjust the variance of the Gaussian term based on the acceptance rate

- High acceptance rate: Proposed jumps are very close to current location, increase the variance
- Low acceptance rate: Many rejections means an inefficient chain (wasted computation time), decrease the variance
- Ideal acceptance rate: $\sim23\%$
Simulated Annealing

- Algorithm used during the burn-in process

- Gives the chain a “Temperature” which slowly cools during burn in to a final temperature which then remains constant through the rest of the Markov chain
 - High temperature: allows Metropolis-Hastings to accept “bad” jumps in order to travel across a large region of parameter space
 - Effectively flattens the likelihood, allows more rapid movement across the parameter space during burn-in
Simulated Annealing

\[\Omega_M \]
The Dataset: Supernovae

- Supernovae dataset consists of 288 SNe combined from several surveys (SDSS-II first year supernovae + ESSENCE + SNLS + HST + LOWZ) (Kessler et al. 2009)

- Computed χ^2 between luminosity distance calculated for the parameter values at that point in space and the luminosity distance from the measured distance modulus:

$$\chi^2 = -2 \ln \mathcal{L}$$
Visualizing the Parameter Space

\begin{align*}
\Omega_M & \quad [\text{km/s/Mpc}] \\
H_0 & \quad [\text{km/s/Mpc}] \\
\omega\Lambda & \quad [\text{km/s/Mpc}]
\end{align*}
Reconstructed Distributions

\(\Omega_M \), \(\Omega_\Lambda \), \(H_0 \), and \(w_\Lambda \) distributions.
Summary

• Markov Chain Monte Carlo is a powerful method for determining parameters and their posterior distributions, especially for a parameter space with many parameters.

• Selection of jump function critical in improving the efficiency of the chain, i.e. reducing computation time.

• A simple MCMC is able to recover the posterior distribution of several cosmological parameters by sampling from the likelihood function computed based on supernovae data.