Astro 321

Set 7: Spherical Collapse & Halo Model

Wayne Hu
Closed Universe

• **Friedmann equation** in a closed universe

\[
\frac{1}{a} \frac{da}{dt} = H_0 \left(\Omega_m a^{-3} + (1 - \Omega_m) a^{-2} \right)^{1/2}
\]

• Parametric solution in terms of a **development angle**

\[
\theta = H_0 \eta (\Omega_m - 1)^{1/2}, \text{ scaled conformal time } \eta
\]

\[
r(\theta) = A(1 - \cos \theta)
\]

\[
t(\theta) = B(\theta - \sin \theta)
\]

where

\[A = r_0 \Omega_m / 2(\Omega_m - 1), \quad B = H_0^{-1} \Omega_m / 2(\Omega_m - 1)^{3/2}.
\]

• Turn around at \(\theta = \pi, \ r = 2A, \ t = B\pi\).

• Collapse at \(\theta = 2\pi, \ r \to 0, \ t = 2\pi B\).
Spherical Collapse

- Parametric Solution:
Correspondence

• Eliminate cosmological correspondence in A and B in terms of enclosed mass M

$$M = \frac{4\pi}{3} r_0^3 \Omega_m \rho_c = \frac{4\pi}{3} r_0^3 \Omega_m \frac{3H_0^2}{8\pi G}$$

• Related as $A^3 = GM B^2$, and to initial perturbation

$$\lim_{\theta \to 0} r(\theta) = A \left(\frac{1}{2} \theta^2 - \frac{1}{24} \theta^4 \right)$$

$$\lim_{\theta \to 0} t(\theta) = B \left(\frac{1}{6} \theta^3 - \frac{1}{120} \theta^5 \right)$$

• Leading Order: $r = A\theta^2/2$, $t = B\theta^3/6$

$$r = \frac{A}{2} \left(\frac{6t}{B} \right)^{2/3}$$
Next Order

- Leading order is unperturbed matter dominated expansion
 \[r \propto a \propto t^{2/3} \]

- Iterate \(r \) and \(t \) solutions

\[
\lim_{\theta \to 0} t(\theta) = \frac{\theta^3}{6} B \left[1 - \frac{1}{20} \left(\frac{6t}{B} \right)^{2/3} \right]
\]

\[
\theta \approx \left(\frac{6t}{B} \right)^{1/3} \left[1 + \frac{1}{60} \left(\frac{6t}{B} \right)^{2/3} \right]
\]
Next Order

• Substitute back into $r(\theta)$

\[
r(\theta) = A \frac{\theta^2}{2} \left(1 - \frac{\theta^2}{12}\right)
\]

\[
= \frac{A}{2} \left(\frac{6t}{B}\right)^{2/3} \left[1 - \frac{1}{20} \left(\frac{6t}{B}\right)^{2/3}\right]
\]

\[
= \frac{1}{2} (6t)^{2/3} (GM)^{1/3} \left[1 - \frac{1}{20} \left(\frac{6t}{B}\right)^{2/3}\right]
\]
Density Correspondence

• Density

\[
\rho_m = \frac{M}{\frac{4}{3} \pi r^3} = \frac{1}{6\pi t^2 G} \left[1 + \frac{3}{20} \left(\frac{6t}{B} \right)^{2/3} \right]
\]

• Density perturbation

\[
\delta \equiv \frac{\rho_m - \bar{\rho}_m}{\bar{\rho}_m} \approx \frac{3}{20} \left(\frac{6t}{B} \right)^{2/3}
\]
Density Correspondence

- Time → scale factor

\[t = \frac{2}{3H_0\Omega_m^{1/2}}a^{3/2} \]

\[\delta = \frac{3}{20}a \left(\frac{4/BH_0\Omega_m^{1/2}}{20}\right)^{2/3} \]

- \(A \) and \(B \) constants → initial cond.

\[B = \frac{1}{2H_0\Omega_m^{1/2}} \left(\frac{3 a_i}{5 \delta_i}\right)^{3/2} \]

\[A = \frac{3 r_i}{10 \delta_i} \]
Spherical Collapse Relations

• Scale factor $a \propto t^{2/3}$

$$a = \left(\frac{3}{4} \right)^{2/3} \left(\frac{3}{5} \frac{a_i}{\delta_i} \right) (\theta - \sin \theta)^{2/3}$$

• At collapse $\theta = 2\pi$

$$a_{col} = \left(\frac{3}{4} \right)^{2/3} \left(\frac{3}{5} \frac{a_i}{\delta_i} \right) (2\pi)^{2/3} \approx 1.686 \frac{a_i}{\delta_i}$$

• Perturbation collapses when linear theory predicts $\delta_c \equiv 1.686$
Virialization

- A real density perturbation is neither spherical nor homogeneous
- **Shell crossing** if δ_i doesn’t monotonically decrease
- Collapse does not proceed to a point but reaches **virial equilibrium**

\[
U = -2K, \quad E = U + K = U(r_{\text{max}}) = \frac{1}{2}U(r_{\text{vir}}) \quad (1)
\]

\[
r_{\text{vir}} = \frac{1}{2}r_{\text{max}} \quad \text{since} \quad U \propto r^{-1}. \quad \text{Thus} \quad \theta_{\text{vir}} = \frac{3}{2}\pi
\]

- **Overdensity** at virialization

\[
\frac{\rho_m(\theta = 3\pi/2)}{\bar{\rho}_m(\theta = 2\pi)} = 18\pi^2 \approx 178
\]

- **Threshold** $\Delta_v = 178$ often used to define a **collapsed object**

- Equivalently relation between virial mass, radius, overdensity:

\[
M_v = \frac{4\pi}{3} r_v^3 \rho_m \Delta_v
\]
Virialization

Schematic Picture:

- r/A
- $t/πB$
- Virialization
- Turn around
Generalization Beyond Matter

- In a universe with smooth components like dark energy driving the expansion but not participating in collapse we cannot consider spherical collapse to be a separate universe.

- Go back to the continuity and Euler equation to derive the general equation:

\[
\begin{align*}
\frac{\partial \delta}{\partial t} + \frac{1}{a} \nabla \cdot (1 + \delta)v &= 0 \\
\frac{\partial v}{\partial t} + \frac{1}{a} (v \cdot \nabla)v + Hv &= -\frac{1}{a} \nabla \Psi
\end{align*}
\]

which is true for any type of dark energy or even metric modified gravity.
Generalization Beyond Matter

• For a tophat density perturbation $v = A(t)r$ interior given the continuity equation and so

$$\frac{d^2 \delta}{dt^2} - \frac{4}{3} \frac{1}{1 + \delta} \left(\frac{d\delta}{dt} \right)^2 + 2H \frac{d\delta}{dt} = \frac{(1 + \delta)}{a^2} \nabla^2 \Psi$$

• Under ordinary gravity $\nabla^2 \Psi = 4\pi G a^2 \bar{\rho}_m \delta$ and so a tophat remains a tophat

• Thus use conservation of the dark matter mass

$$M = \frac{(4\pi/3)}{1 + \delta} a^3 \bar{\rho}_m (1 + \delta)$$

to trade the density for the tophat radius $\delta \rightarrow R$
Generalization Beyond Matter

- Using the Friedmann equations for the evolution of the background

\[H^2 = \frac{8\pi G}{3} (\bar{\rho}_m + \bar{\rho}_{\text{eff}}) \]

we obtain using the Poisson equation

\[\frac{1}{r} \frac{d^2r}{dt^2} = H^2 + \dot{H} - \frac{1}{3} \nabla^2 \Psi \]

\[= -\frac{4\pi G}{3} [\rho_m + (1 + 3w_{\text{eff}})\bar{\rho}_{\text{eff}}] \]

where \(\rho_m = \bar{\rho}_m(1 + \delta) \) includes the tophat fluctuation whereas \(\bar{\rho}_{\text{eff}} \) is a smooth background contribution to the Friedmann equation

- In other words \(H^2 + \dot{H} \) carries the acceleration effect of background total density but \(\Psi \) carries only that of the collapsing component - alters the collapse relations
Generalization Beyond Matter

- Similarly, virial equilibrium altered to include smooth contribution to acceleration or effective potential

\[U = -2K \]

where

\[U = -\frac{3}{5} \frac{GM^2}{R} - \frac{4\pi G}{5} (1 + 3w_{\text{eff}}) \bar{\rho}_{\text{eff}} MR^2 \]

- Note that virial equilibrium is defined in terms of the trace of the potential tensor and is a statement of force balance

\[U \equiv -\int d^3x \rho_m \mathbf{x} \cdot \nabla \Psi_{\text{tot}} \]
Generalization Beyond Matter

- Hence U is well defined even in cases where energy is not conserved in the usual manner (though still convariantly conserved), e.g. if ρ_{eff} is not constant during collapse.

- In general keep track of the kinetic energy during collapse and finding the virial radius as the point at which

$$U(r_{\text{vir}}) = -2K(r_{\text{vir}})$$

- Rather than using energy conservation (important if $w_{\text{eff}} \neq -1$)
The Mass Function

- **Spherical collapse** predicts the end state as virialized *halos* given an initial density perturbation

- Initial density perturbation is a *Gaussian random field*

- Compare the variance in the linear density field to threshold $\delta_c = 1.686$ to determine collapse fraction

- Combine to form the **mass function**, the number density of halos in a range dM around M.

- Halo density defined entirely by linear theory

- **Fudge the result** to get the right answer compared with simulations (a la Press-Schechter)!
Press-Schechter Formalism

- **Smooth** linear density field on mass scale M with tophat

$$R = \left(\frac{3M}{4\pi} \right)^{1/3}$$

- Result is a Gaussian random field with variance $\sigma^2(M)$

- Fluctuations above the threshold δ_c correspond to **collapsed regions**. The fraction in halos $> M$ becomes

$$\frac{1}{\sqrt{2\pi}\sigma(M)} \int_{\delta_c}^{\infty} d\delta \exp \left(- \frac{\delta^2}{2\sigma^2(M)} \right) = \frac{1}{2} \text{erfc} \left(\frac{\nu}{\sqrt{2}} \right)$$

where $\nu \equiv \delta_c / \sigma(M)$

- **Problem:** even as $\sigma(M) \to \infty$, $\nu \to 0$, collapse fraction $\to 1/2$ – only **overdense regions** participate in spherical collapse.

- Multiply by an ad hoc factor of 2!
Press-Schechter Mass Function

- Differentiate in M to find fraction in range dM and multiply by ρ_m/M the number density of halos if all of the mass were composed of such halos → differential number density of halos

$$\frac{dn}{d \ln M} = \frac{\rho_m}{M} \frac{d}{d \ln M} \text{erfc} \left(\frac{\nu}{\sqrt{2}} \right)$$

$$= \sqrt{\frac{2}{\pi}} \frac{\rho_m}{M} \frac{d \ln \sigma^{-1}}{d \ln M} \nu \exp(-\nu^2/2)$$

- High mass: exponential cut off above M_* where $\sigma(M_*) = \delta_c$

$$M_* \sim 10^{13} h^{-1} M_\odot \quad \text{today}$$

- Low mass divergence: (too many for the observations?)

$$\frac{dn}{d \ln M} \propto \sim M^{-1}$$
Extended Press-Schechter Formalism

- A region that is underdense when smoothed on the scale M may be overdense on a scale of a larger M

- If smoothing is a tophat in k-space, independence of k-modes implies fluctuation executes a random walk

![Diagram showing the Press-Schechter prescription with collapsed and uncollapsed regions]
Extended Press-Schechter Formalism

- For each trajectory that lies above threshold at M_2, there is an equivalent trajectory that is its mirror image reflected around δ_c
- Press-Schechter ignored this branch. It supplies the missing factor of 2
Conditional Mass Function

• Extended Press-Schechter also gives the **conditional mass function**, useful for **merger histories**.

• Given a halo of mass M_1 exists at z_1, what is the probability that it was part of a halo of mass M_2 at z_2.

$$P(M_1 | M_2) = \frac{R(M_2)}{R(M_1)}$$

\[
\delta \quad (1+z_2)\delta_c \\
\delta \quad (1+z_1)\delta_c \\
M_2 \quad M_1 \\
R(M)
\]
Conditional Mass Function

- Same as before but with the origin translated.
- Conditional mass function is mass function with δ_c and $\sigma^2(M)$ shifted

\[
(1+z_1)\delta_c \quad (1+z_2)\delta_c
\]
Magic “2” resolved?

• Spherical collapse is defined for a real-space not k-space smoothing. Random walk is only a qualitative explanation.

• Modern approach: think of spherical collapse as motivating a fitting form for the mass function

\[
\nu \exp(-\nu^2/2) \rightarrow A[1 + (a\nu^2)^{-p}]\sqrt{a\nu^2} \exp(-a\nu^2/2)
\]

Sheth-Torman 1999, $a = 0.75$, $p = 0.3$. or a completely empirical fitting

\[
\frac{dn}{d\ln M} = 0.301 \frac{\rho_m}{M} \frac{d\ln \sigma^{-1}}{d\ln M} \exp[-|\ln \sigma^{-1} + 0.64|^{3.82}]
\]

Jenkins et al 2001. Choice is tied up with the question: what is the mass of a halo?
Numerical Mass Function

- Example of difference in mass definition (from Hu & Kravstov 2002)

\[\Omega_m = \Gamma = 0.15; \text{ flat; } h = 0.65; \sigma_8 = 1.07 \]
Halo Bias

- If halos are formed without regard to the underlying density fluctuation and move under the gravitational field then their number density is an unbiased tracer of the dark matter density fluctuation

\[\left(\frac{\delta n}{n} \right)_{\text{halo}} = \left(\frac{\delta \rho}{\rho} \right) \]

- However, spherical collapse says the probability of forming a halo depends on the initial density field

- Large scale density field acts as “background” enhancement of probability of forming a halo or “peak”

- Peak-Background Split (Efstathiou 1998; Cole & Kaiser 1989; Mo & White 1997)
Peak-Background Split

- Schematic Picture:
Perturbed Mass Function

- Density fluctuation split

\[\delta = \delta_b + \delta_p \]

- Lowers the threshold for collapse

\[\delta_{cp} = \delta_c - \delta_b \]

so that \(\nu = \delta_{cp}/\sigma \)

- Taylor expand number density \(n_M \equiv \frac{dn}{d \ln M} \)

\[n_M + \frac{d n_M}{d \nu} \frac{d \nu}{d \delta_b} \delta_b \ldots = n_M \left[1 + \frac{\nu^2 - 1}{\sigma \nu} \right] \]

if mass function is given by Press-Schechter

\[n_M \propto \nu \exp(-\nu^2/2) \]
Halo Bias

- Halos are biased tracers of the “background” dark matter field with a bias $b(M)$ that is given by spherical collapse and the form of the mass function.

- Combine the enhancement with the original unbiased expectation

\[
\frac{\delta n_M}{n_M} = b(M) \delta
\]

- For Press-Schechter

\[
b(M) = 1 + \frac{\nu^2 - 1}{\delta_c}
\]

- Improved by the Sheth-Torman mass function

\[
b(M) = 1 + \frac{a\nu^2 - 1}{\delta_c} + \frac{2p}{\delta_c[1 + (a\nu^2)^p]}
\]

with $a = 0.75$ and $p = 0.3$ to match simulations.
Numerical Bias

- Example of halo bias from a simulation (from Hu & Kravstov 2002)
What is a Halo?

- Mass function and halo bias depend on the definition of mass of a halo.
- Agreement with simulations depend on how halos are identified.
- Other observables (associated galaxies, X-ray, SZ) depend on the details of the density profile.
- Fortunately, simulations have shown that halos take on a near universal form in their density profile at least on large scales.
NFW Profile

- Density profile well-described by (Navarro, Frenk & White 1997)

\[\rho(r) = \frac{\rho_s}{(r/r_s)(1 + r/r_s)^2} \]
Einasto Profile

- Current best simulations find that the inner slope runs rather than asymptotes to a cuspy constant
- This form is better fit by the Einasto profile (c.f. Sersic profile)

\[
\ln \frac{\rho(r)}{\rho_s} = -\frac{2}{\alpha} \left[\left(\frac{r}{r_s} \right)^\alpha - 1 \right]
\]

- The local slope is given by

\[
\frac{d \ln \rho}{d \ln r} = -2 \left(\frac{r}{r_s} \right)^\alpha
\]

and continues to decrease as \(r/r_s \to 0 \)
Whence Universal Profile?

- Recent investigations by Dalal, Lithwick, Kuhlen (2010) suggests that the universal halo profile arises generically from peaks in a Gaussian random field

- Outer r^{-3} profile predicted from slow accretion of material at low initial overdensity compared with peak

- Inner profile comes from adiabatic contraction (i.e. preserving adiabatic invariants during collapse) and depends on the initial density profile of peak

- Dynamical friction implies that the centroid of the initial density peak will settle to the center of the final halo
Transforming the Masses

- NFW profile gives a way of transforming different mass definitions

![Graph showing mass distribution](image-url)
Lack of Concentration?

- NFW parameters may be recast into M_v, the mass of a halo out to the virial radius r_v where the overdensity wrt mean reaches $\Delta_v = 180$.
- Concentration parameter

\[
c \equiv \frac{r_v}{r_s}
\]
- CDM predicts $c \sim 10$ for M_* halos. Too centrally concentrated for galactic rotation curves?
- Possible discrepancy has lead to the exploration of dark matter alternatives: warm ($m \sim$keV) dark matter, self-interacting dark-matter, annihilating dark matter, ultra-light “fuzzy” dark matter, . . .
The Halo Model

- NFW halos, of abundance n_M given by mass function, clustered according to the halo bias $b(M)$ and the linear theory $P(k)$

- Power spectrum example:
Non-Linear Power Spectrum

- Non-linear power spectrum is composed of dark matter halos that are clustered according to the halo bias + the clustering due to the halo density profile

\[P_{\text{nl}}(k, z) = I_2^2(k, z)P(k, z) + I_1(k, z) \]

where

\[I_2(k, z) = \int d\ln M \left(\frac{M}{\rho_m(z = 0)} \right) \frac{dn}{d\ln M} b(M)y(k, M) \]

\[I_1(k, z) = \int d\ln M \left(\frac{M}{\rho_m(z = 0)} \right)^2 \frac{dn}{d\ln M} y^2(k, M) \]

and \(y \) is the Fourier transform of the halo profile with \(y(0, M) = 1 \)

\[y(k, M) = \frac{1}{M} \int_0^{r_h} dr 4\pi r^2 \rho(r, M) \frac{\sin(kr)}{kr} \]
Galaxy Power Spectrum

• For galaxies, one defines a halo occupation distribution which determines the number of galaxies (satisfying a certain observational criteria) that can occupy a halo of mass \(M \).

• Take a simple example of a mass selection on the galaxies, then

\[
N(M) = 0 \quad \text{for} \quad M < M_{\text{th}} \quad \text{and above threshold}
\]

\[
N(M) = C + S(M) \quad \text{where} \quad C = 1 \quad \text{accounts for the central galaxy and satellite galaxies follow a poisson distribution with mean}
\]

\[
S(M) \approx M/30M_{\text{th}}
\]
Galaxy Power Spectrum

- Then assuming that satellites are distributed according to the mass profile

\[P_{\text{gal}}(k, z) = I_2^2(k, z)P(k, z) + I_1(k, z) \]

where

\[I_2(k, z) = \frac{1}{n_{\text{gal}}} \int d\ln M \frac{dn}{d\ln M} b(M)[C + y(k, M)S(M)] \]

\[I_1(k, z) = \frac{1}{n_{\text{gal}}^2} \int d\ln M \frac{dn}{d\ln M} [S^2(M)y^2(k, M) + 2CS(M)y(k, M)] \]

- Break between the one and two halo regime first seen by SDSS
Galaxy Power Spectrum

- Example (Seljak 2001)

- An explanation of the nearly power law galaxy spectrum
Incredible, Extensible Halo Model

- An industry developed to build semi-analytic models for a wide variety of cosmological observables based on the halo model.
- Idea: associate an observable (galaxies, gas, ...) with dark matter halos.
- Let the halo model describe the statistics of the observable.
- The overextended halo model?
Halo Temperature

- Motivate with isothermal distribution, correct from simulations

\[\rho(r) = \frac{\sigma^2}{2\pi Gr^2} \]

- Express in terms of virial mass \(M_v \) enclosed at virial radius \(r_v \)

\[M_v = \frac{4\pi}{3} r_v^3 \rho_m \Delta_v = \frac{2}{G} r_v \sigma^2 \]

- Eliminate \(r_v \), temperature \(T \propto \sigma^2 \) velocity dispersion

- Then \(T \propto M_v^{2/3} (\rho_m \Delta_v)^{1/3} \) or

\[
\left(\frac{M_v}{10^{15} h^{-1} M_\odot} \right) = \left[\frac{f}{(1 + z) (\Omega_m \Delta_v)^{1/3}} \frac{T}{1 \text{keV}} \right]^{3/2}
\]

- Theory (X-ray weighted): \(f \sim 0.75 \); observations \(f \sim 0.54 \). Difference is crucial in determining cosmology from cluster counts!
Summary

- Dark matter simulations well-understood and can be modelled with dark matter halos

- Halo formation modelled by spherical collapse, two magic numbers $\delta_c = 1.686$ and $\Delta_v = 178$

- Halo abundance described by a mass function with exponential high mass cutoff – rare clusters extremely sensitive to power spectrum amplitude and growth rate \rightarrow dark energy

 Possibly too many small halos or sub-structure?

- Halo clustering modelled with peak-background split leading to halo bias

- Halo profile described by NFW halos

 Possibly too high central concentration

- Associate an observable with a halo \rightarrow a halo model