Astro 321: Problem Set 1 Due Jan 14

1 Problem 1: Units

Convert the following quantitites by inserting the appropriate factors of c, \hbar , k_B and unit conversions. You may find Peacock chapter 9 helpful.

- $H_0 = 100h \text{km s}^{-1} \text{ Mpc}^{-1}$ into (a) eV, (b) Mpc⁻¹, (c) Gyr⁻¹. [Corresponds to upper limit on the mass of a dark energy particle, the inverse Hubble length, inverse approximate age of Universe.]
- $\rho_{\rm crit} = 3H_0^2/8\pi G$ into (a) g cm⁻³, (b) GeV⁴, (c) eV cm⁻³, (d) protons cm⁻³, (e) M_{\odot} Mpc⁻³. If the cosmological constant, has $\rho_{\Lambda} = 2\rho_{\rm crit}/3$, what is its energy scale in eV (i.e. $\rho_{\Lambda}^{1/4}$). Compare that to the Planck mass; that these numbers are so different is the cosmological constant problem.
- $T_{\rm CMB} = 2.728 {\rm K}$ to (a) eV. Assuming a black body distribution, convert this to number density n_{γ} in photons cm⁻³ and energy density ρ_{γ} in (a) eV cm⁻³ (b) g cm⁻³, and $\Omega_{\gamma} = \rho_{\gamma}/\rho_{\rm crit}$.
- $T_{\nu} = (4/11)^{1/3} T_{\text{CMB}}$. Use this to express n_{ν} , ρ_{ν} and Ω_{ν} in the above units assuming that the neutrinos are relativistic (and fermions and have three species!).
- With the above relic number density, now consider the case where one out of three neutrino species has a mass of 1 eV and the rest are massless. What is the density of relic neutrinos in units of the critical density $\Omega_{\nu,\text{massive}}$. For what mass is the density at the critical value.

2 Problem 2: Conformal Time

- Assume the universe today is flat with both matter (Ω_m) and a cosmological constant (Ω_Λ) . (a) Compute the conformal age or horizon of the universe and plot your result for $H_0\eta_0$ as a function of Ω_m . (b) What is the current horizon size for a universe with $\Omega_m = 1/3$ and $h = 1/\sqrt{2}$? (c) What is the mass contained within the current horizon in solar masses. If all objects were $10^{13}h^{-1} M_{\odot}$ in mass, how many are in the observable universe.
- Evaluate the conformal age as a function of the scale factor in the above cosmology. What happens when $a \to \infty$. Comment on the implications for establishing causal contact between observers currently separated by much more than a Hubble length.