Cosmology with Gravitational Wave Detectors

Maya Fishbach

Part I: Cosmography

Compact Binary Coalescenses are Standard Sirens

The amplitude* of a GW from a CBC is

$$\langle h \rangle = 1 \times 10^{-23} \frac{M}{M_{\odot}}^{2/3} \frac{\mu}{M_{\odot}} \frac{f}{100 \text{Hz}}^{2/3} \frac{100 \text{Mpc}}{r}$$

The timescale is

$$au = f/\dot{f} = 7.8 rac{M}{M_{\odot}}^{-2/3} rac{\mu}{M_{\odot}}^{-1} rac{f}{100 \mathrm{Hz}}^{-8/3} \mathrm{s}$$

Measuring amplitude, frequency, and chirp rate gives the distance to the CBC

$$r = 780 \frac{f}{100 \text{Hz}}^{-2} (\langle h \rangle \times 10^{23} \tau)^{-1} \text{Mpc}$$

 To correct for cosmology, multiply all masses by (1+z) and replace physical distance r by D₁

Distance Uncertainties from GW signal

- Main uncertainty is measuring the intrinsic amplitude of the signal
- Uncertainty in amplitude of detector response ~ 1/SNR
- Inferring intrinsic amplitude from detector response depends on localization error
- Microlensing

From Abbott et al., Phys. Rev. X 6, 041015 (2016)

Compact Binary Coalescenses are Standard Sirens

*In reality, the GW amplitude also depends on its inclination and sky position

$$rac{\delta L(t)}{L} = F_+(heta,\,\phi,\,\psi) h_+(t) + F_ imes(heta,\,\phi,\,\psi) h_ imes(t)$$

- The degree of elliptic polarization gives the binary inclination
- The differences in arrival times between multiple detectors gives sky position

GW signal gives D_L but not the redshift

- Scale-invariance of CBC solution means that a signal with z=2 and chirp mass M looks like signal with z=0 and chirp mass M/3
- Solutions:
 - Identify EM counterpart
 - Identify the host galaxy
 - GW signal of binary neutron star systems with known EOS

Future Ground-Based Detector Sensitivities

Identifying the Source Redshift: EM Counterpart

Associated sGRB, kilonova, afterglow for neutron star mergers

Detection rates unclear, most mergers may not have detectable sGRB

because of beaming angle

From Metzger & Berger, 2011, arxiv: 1108.6056

Identifying the Source Redshift: Host Galaxy

- Cross correlation with galaxy surveys, take into account incompleteness
- Targeted follow up of localization region for well-localized events

Network	$\mathrm{Mass}(M_{\odot})$	Median (deg ²)	$< 1 \text{ deg}^2 (\%)$	$< 1 \text{ deg}^2 (\langle N_{\text{event}} \rangle)$	$< 10 \text{ deg}^2 (\%)$	$< 10 \text{ deg}^2 (\langle N_{\text{event}} \rangle)$
HLV O3	(1.4, 1.4)	23	0.6	[0.00033, 0.033, 0.33]	20.4	[0.011, 1.1, 11]
HLV O3	(10, 10)	57	0.2	[0.012, 0.058, 0.23]	7.1	[0.43, 2.1, 8.6]
HLV O3	(30, 30)	242	0.1	[0.021, 0.070, 0.21]	1.6	[0.68, 2.3, 6.8]
HLV design	(1.4, 1.4)	9	2.0	[0.0065, 0.65, 6.5]	52.5	[0.17, 17, 170]
HLV design	(10, 10)	47	0.3	[0.12, 0.59, 2.3]	7.5	[2.8, 14, 55]
HLV design	(30, 30)	228	0.0	[0.089, 0.30, 0.89]	1.2	[2.6, 8.7, 26]
HLVJI design	(1.4, 1.4)	4	7.8	[0.052, 5.2, 52]	90.2	[0.60, 60, 597]
HLVJI design	(10, 10)	17	1.1	[0.83, 4.1, 17]	27.5	[20, 101, 403]
HLVJI design	(30, 30)	72	0.2	[0.99, 3.3, 9.9]	4.9	[21, 71, 212]

From Chen & Holz 2016, arxiv:1612.01471

Identifying the Source Redshift: Neutron Star EOS

- Expect to detect 10⁴- 10⁷ BNS systems per year with Einstein Telescope
- GW signal is modified for neutron stars with tidal deformability
- Tidal deformability is a function of EOS and rest mass
- It is expected that the EOS will be well-constrained after O(30) BNS detections (del Pozzo et al. 2013, arxiv:1307.8338)

Part II: Stochastic Gravitational Wave Background

Cosmological versus Astrophysical GW Background

- Cosmological background:
 - Emitted ~10⁻²⁴ seconds after the Big Bang
 - Test inflationary models
 - Topological phase transitions and cosmic strings
 - String theory
- Astrophysical background:
 - Compact binaries
 - Pulsars
 - Core-collapse supernovae

The GW Energy Density Spectrum

Energy density spectrum defined as:

$$\Omega_{
m gw} := rac{d
ho_{
m gw}/
ho_c}{d\ln f}$$

The resulting strain spectral noise density in the detector:

$$S_{\mathrm{gw}}(f) = \frac{3H_0^2}{10\pi^2} f^{-3} \; \Omega_{\mathrm{gw}}(f)$$

- If there are enough sources, this will look like Gaussian noise
 - Need to understand detector noise very well
 - Cross-correlation between detectors, for co-located detectors:

$$\Omega_{\rm gw}^{1/2} h_{100} = \left(\frac{S_h^{1/2}}{3.1 \times 10^{-18} \,{\rm Hz}^{-1/2}}\right) \left(\frac{f}{10 \,{\rm Hz}}\right)^{5/4} \left(\frac{T}{3 \,{\rm yrs}}\right)^{-1/4}$$

The Shape of the GW Energy Spectrum

- It is not a blackbody spectrum like the CMB unless gravity was in thermal equilibrium with other matter and radiation (but if it were, the temperature would be 0.9K)
- CBC background would have power law dependence with index ²/₃
- Higher frequencies carry information about earlier times

The Shape of the GW Energy Spectrum

- Inflation would lead to a flat spectrum assuming nearly constant H(t)
- Networks of cosmic strings scale with the Hubble length, produce flat spectrum in frequencies accessible to ground-based detectors
- Bubble collisions from first-order phase transitions produce a strongly peaked spectrum at frequency = 1/time of phase transition

The Astrophysical Background is Likely to Dominate

- LIGO's first detection suggests a higher coalescence rate of massive BBHs than expected
- LIGO is likely to detect a stochastic astrophysical background, but this will dominate the primordial background
- Third generation detectors will be able to detect & resolve most of these sources, enabling a reduction in the astrophysical background (Regimbau et al., arxiv:1611.08943)

Sensitivity to Stochastic Background

From radiation dominated era, most optimistic $\Omega_{\rm Gw} \sim 10^{-10}$, usually $O(10^{-12})$ -- see Giblin & Thrane, arxiv:1410.4779

Summary

- Gravitational-wave standard sirens are a promising tool for cosmography
- We may or may not detect a stochastic gravitational wave background of primordial origin