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Macro vs Micro Description
• In the first set of notes, we used a macroscopic description.

• Gravity only cares about bulk properties: energy density,
momentum density, pressure, anisotropic stress – stress tensor

• Matter and radiation is composed of particles whose properties can
be described by their phase space distribution or occupation
function

• Macroscopic properties are integrals or moments of the phase
space distribution

• Particle interactions involve the evolution of the phase space
distribution

• Rapid interactions drive distribution to thermal equilibrium but
must compete with the expansion rate of universe

• Freeze out, the origin of species



Brief Thermal History



Astro-Particle Dictionary
Astro and physics literature use different words to describe same
thing:

• Specific intensity Iν ↔ phase space distribution f

• Surface brightness conservation↔ Liouville equation

• Absorption, emission, scattering↔ Collision term

• Einstein relations for absorption, stimulated and spontaneous
emission↔ matrix element determines strength of all
interactions of a given type

• Radiative transfer equation↔ Boltzmann equation

• Optically thin conditions↔ freezeout of interactions

We take physics notation but the content is the same as in other
astro courses but placed in an expanding universe context.



Allowed Particle States
. • Counting momentum states with

momentum q and de Broglie wavelength

λ =
h

q
=

2πh̄

q

• In a discrete volume L3 there
is a discrete set of states that satisfy
periodic boundary conditions

• We will hereafter set h̄ = c = 1

• As in Fourier analysis

e2πix/λ = eiqx = eiq(x+L) → eiqL = 1



Fitting in a Box
• Periodicity yields a discrete set of allowed states

Lq = 2πmi, mi = 1, 2, 3...

qi =
2π

L
mi

• In each of 3 directions∑
mximyjmzk

→
∫
d3m

• The differential number of allowed momenta in the volume

d3m =

(
L

2π

)3

d3q



Density of States
• The total number of states allows for a number of internal degrees

of freedom, e.g. spin, quantified by the degeneracy factor g

• Total density of states:

dNs

V
=

g

V
d3m =

g

(2π)3
d3q

• If all states were occupied by a single particle, then particle density

ns =
Ns

V
=

1

V

∫
dNs =

∫
g

(2π)3
d3q



Distribution Function
• The distribution function f quantifies the occupation of the

allowed momentum states

n =
N

V
=

1

V

∫
fdNs =

∫
g

(2π)3
fd3q

• f , aka phase space occupation number, also quantifies the density
of particles per unit phase space dN/(∆x)3(∆q)3

• For photons, the spin degeneracy g = 2 accounting for the 2
polarization states

• Energy E(q) = (q2 +m2)1/2

• Momentum→ frequency q = 2π/λ = 2πν = ω = E (where
m = 0 and λν = c = 1)



Bulk Properties
• Integrals over the distribution function define the bulk properties of

the collection of particles

• Number density

n(x, t) ≡ N

V
= g

∫
d3q

(2π)3
f

• Energy density

ρ(x, t) = g

∫
d3q

(2π)3
E(q)f

where E2 = q2 +m2

• Momentum density

(ρ+ p)v(x, t) = g

∫
d3q

(2π)3
qf



Vacuum Energy
• We have assumed here that the state of zero particles has zero

energy

• In QFT, like the simple harmonic oscillator in ordinary quantum
mechanics, there is a zero point energy to the ground state

• For bosons, h̄ω/2 = E(q)/2, so the most naive version of the
cosmological constant problem is that ρ ∝M4 where
M = MPl = 1/

√
8πG if the theory applies out to the Planck scale

• The critical energy density ρc = 3H2
0/8πG ≈ 8× 10−47h2GeV4 is

more than 10120 off M4
Pl ≈ 2× 1076 GeV4.

• Note that pvac ≈ ρvac/3 so this fixed momentum cutoff calculation
is a bit too naive since we know that pvac = −ρvac



Vacuum Energy
• A Lorentz invariant renormalization scheme corrects this to

ρvac =
m4

64π2
ln(m2/µ2)

where µ is some renormalization scale

• But even if there are no mass states above the known standard
model bosons, e.g. Higgs boson of m ≈ 125GeV, this is way off,
even though it helps by some 68 orders of magnitude!

• Caveat: fermions contribute negatively to the vacuum energy so if
supersymmetry is unbroken would cancel

• But supersymmetry is clearly broken at low energies and has yet to
be seen at LHC - so taking this as a lower limit on the scale of
supersymmetry breaking the vacuum energy m > 1TeV, m4 is still
60 orders of magnitude off.



Bulk Properties
.

Lx

v
vx

• Pressure: particles bouncing
off a surface of area A in a volume
spanned by Lx: per momentum state

pq =
F

A
=
Npart

A

∆q

∆t
(∆q = 2|qx|, ∆t = 2Lx/vx, )

=
Npart

V
|qx||vx| =

Npart

V

|q||v|
3

(v = γmv/γm = q/E)

=
Npart

V

q2

3E



Bulk Properties
• So that summed over occupied momenta states

p(x, t) = g

∫
d3q

(2π)3

|q|2

3E(q)
f

• Pressure is just one of the quadratic in q moments, in particular the
isotropic one

• The remaining 5 components are the anisotropic stress (vanishes in
the background)

πij(x, t) = g

∫
d3q

(2π)3

3qiqj − q2δij
3E(q)

f

• We shall see that these are related to the 5 quadrupole moments of
the angular distribution



Bulk Properties
• These are more generally the components of the stress-energy

tensor

T µν = g

∫
d3q

(2π)3

qµqν
E(q)

f

• 0-0: energy density

• 0-i: momentum density

• i− i: pressure

• i 6= j: anisotropic stress

• In the FRW background cosmology, isotropy requires that there be
only a net energy density and pressure



Observable Properties
• Only get to measure luminous properties of the universe. For

photons mass m = 0, g = 2 (units: J m−3)

ρ(x, t) = 2

∫
d3q

(2π)3
qf = 2

∫
dqdΩ

( q

2π

)3

f

• Spectral energy density (per unit frequency
q = hν = h̄2πν = 2πν, solid angle)

uν =
dρ

dνdΩ
= 2(2π)ν3f

• Photons travelling at speed of light so that uν = Iν = 4πν3f the
specific intensity or brightness, energy flux across a surface, units
of W m−2 Hz−1 sr−1 (SI); ergs s−1 cm−2 Hz−1 sr−1 (cgs)



Diffuse Extragalactic Light
• νIν peaks in the microwave mm-cm region: CMB black body
T = 2.725± 0.002K or nγ = 410 cm−3, Ωγ = 2.47× 10−5h−2.

Figure 1. A compilation of recent constraints on extragalactic dif-
fuse background radiation. In terms of total energy the CMB domi-
nates, with the Far-Infrared and Optical Backgrounds about a factor
of 100 lower. These data are based upon the older compilation of
Ressell & Turner (1990), supplemented with more recent data from:
Smoot (1997) for the CMB; Lagache et al. (1999) and Hauser et
al. (1998) for the FIB; Leinert et al. (1998) for a near-IR to near-
UV compilation; Dwek & Arendt (1998) for the near-IR; Pozzetti et
al. (1998) and Madau & Pozzetti (1999) for the optical; Miyaji et
al. (1998) and Gendreau et al. (1995) for the X-ray; and Sreekumar
et al. (1998), Kappadath et al. (1999), Weidenspointner et al. (1999)
and Watanabe et al. (1997) for the γ-ray.
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Observable Properties
• Integrate over frequencies for total intensity

I =

∫
dνIν =

∫
d ln ννIν

νIν often plotted since it shows peak under a log plot; I and νIν
have units of W m−2 sr−1 and is independent of choice of
frequency unit

• Flux density (specific flux): integrate over the solid angle of a
radiation source, units of W m−2 Hz−1 or Jansky = 10−26 W m−2

Hz−1

Fν =

∫
source

IνdΩ

a.k.a. spectral energy distribution



Observable Properties
• Flux integrate over frequency, units of W m−2

F =

∫
d ln ν νFν

• Flux in a frequency band Sb measured in terms of magnitudes
(optical), set to some standard zero point per band

mb −mnorm = 2.5 log10(Fnorm/Fb) ≈ ln(Fnorm/Fb)

• Luminosity: integrate over area assuming isotropic emission or
beaming factor, units of W

L = 4πd2
LF



Liouville Equation
.

t1

∆x ∆q

∆q(t1-t2)/m

t2• In absence
of interactions and changes to the
momentum, particle conservation
implies that the phase
space distribution is invariant
along the trajectory of the particles

• Follow an element in ∆x with spread ∆q. For example for non
relativistic particles a spread in velocity of ∆v = ∆q/m.

• After a time δt the low velocity tail will lag the high velocity tail
by δx = ∆vδt = ∆qδt/m

• For ultrarelativistic particles v = c = 1 and ∆v = 0, so obviously
true



Liouville Equation
• The phase space element can shear but preserves area ∆x∆q

• This remains true under Lorentz and even a general coordinate
transform

• Therefore df/dt = 0 or f is conserved when evaluated along the
path of the particles

• Liouville Equation: f ∝ Iν/ν
3 and ds = cdt

df

dt
= 0→ dI

ds
= 0

if frequency is also conserved on the path



Liouville Equation
• In general, expand out the total derivative

df

dt
=
∂f

∂t
+
∑
i

(
dxi
dt

∂f

∂xi
+
dqi
dt

∂f

∂qi

)
= 0

• The spatial gradient terms are responsible for flow of particles in
and out of a fixed volume

• The momentum amplitude derivative terms are responsible for
redshift effects

• The momentum direction derivative terms are responsible for
gravitational lensing



Liouville Equation
• Liouville theorem states that the phase space distribution function

is conserved along a trajectory in the absence of particle
interactions

df

dt
=

[
∂

∂t
+
dq

dt

∂

∂q
+
dx

dt

∂

∂x

]
f = 0

subtlety in expanding universe is that the de Broglie wavelength of
particles changes with the expansion so that

q ∝ a−1

• Homogeneous and isotropic limit

∂f

∂t
+
dq

dt

∂f

∂q
=
∂f

∂t
−H(a)

∂f

∂ ln q
= 0



Energy Density Evolution
• Integrate Liouville equation over g

∫
d3q/(2π)3E to form

∂ρ

∂t
= H(a)g

∫
d3q

(2π)3
Eq

∂

∂q
f

= H(a)g

∫
dΩ

(2π)3

∫
dqq3E

∂

∂q
f

= −H(a)g

∫
dΩ

(2π)3

∫
dq
d(q3E)

dq
f

= −H(a)g

∫
dΩ

(2π)3

∫
dq(3q2E + q3dE

dq
)f

d(E2 = q2 +m2)→ EdE = qdq

= −3H(a)g

∫
d3q

(2π)3
(E +

q2

3E
)f = −3H(a)(ρ+ p)

as derived previously from energy conservation



Boltzmann Equation
• Boltzmann equation says that Liouville theorem must be modified

to account for collisions

Df

Dt
= C[f ]

• Heuristically

C[f ] = particle sources - sinks

• Collision term: integrate over phase space of incoming particles,
connect to outgoing state with some interaction strength



Boltzmann Equation
• Form:

C[f ] =
1

E

∫
d(phase space)[energy-momentum conservation]

× |M |2[emission− absorption]

• Matrix element M , assumed T [or CP] invariant

• (Lorentz invariant) phase space element∫
d(phase space) = Πi

gi
(2π)3

∫
d3qi
2Ei

• Energy conservation: (2π)4δ(4)(q1 + q2 + ...)



Boltzmann Equation
• Emission - absorption term involves the particle occupation of the

various states

• For concreteness: take f to be the photon distribution function

• Interaction (γ +
∑
i↔

∑
µ); sums are over all incoming and

outgoing other particles

photon

other i states

other µ states other µ states

f

fi

photon

other i states

f

fi

fµ fµ

γ + i        µ

M M

absorption emission

• [emission-absorption] + = boson; − = fermion

ΠiΠµfµ(1± fi)(1± f)− ΠiΠµ(1± fµ)fif



Boltzmann Equation
• Photon Emission: fµ(1± fi)(1 + f)

fµ: proportional to number of emitters

(1± fi): if final state is occupied and a fermion, process blocked;
if boson the process enhanced

(1 + f): final state factor for photons: “1”: spontaneous emission
(remains if f = 0); “+f”: stimulated and proportional to the
occupation of final photon

• Photon Absorption: −(1± fµ)fif

(1± fµ): if final state is occupied and fermion, process blocked; if
boson the process enhanced

fi: proportional to number of absorbers

f : proportional to incoming photons



Boltzmann Equation
• If interactions are rapid they will establish an equilibrium

distribution where the distribution functions no longer change
C[feq] = 0

• Solve by inspection

ΠiΠµfµ(1± fi)(1± f)− ΠiΠµ(1± fµ)fif = 0

• Try fa = (eEa/T ∓ 1)−1 so that (1± fa) = e−Ea/T (eEa/T ∓ 1)−1

e−
∑

(Ei+E)/T − e−
∑
Eµ/T = 0

and energy conservation says E +
∑
Ei =

∑
Eµ, so identity is

satisfied if the constant T is the same for all species, i.e. are in
thermal equilibrium



Boltzmann Equation
• If the interaction does not create or destroy particles then the

distribution

feq = (e(E−µ)/T ∓ 1)−1

also solves the equilibrium equation: e.g. a scattering type reaction

γE + i→ γE′ + j

where i and j represent the same collection of particles but with
different energies after the scattering∑

(Ei − µi) + (E − µ) =
∑

(Ej − µj) + (E ′ − µ)

since µi = µj for each particle

• Not surprisingly, this is the Fermi-Dirac distribution for fermions
and the Bose-Einstein distribution for bosons



Boltzmann Equation
• More generally, equilibrium is satisfied if the sum of the chemical

potentials on both sides of the interaction are equal, γ + i↔ ν∑
µi + µ =

∑
µν

i.e. the law of mass action is satisfied

• If interactions that create or destroy particles are in equilibrium
then this law says that the chemical potential will vanish: e.g.
γ + e− → 2γ + e−

µe + µ = µe + 2µ→ µ = 0

so that the chemical potential is driven to zero if particle number is
not conserved in interaction



Maxwell Boltzmann Distribution
• For the nonrelativistic limit E = m+ 1

2
q2/m, nondegenerate limit

(E − µ)/T � 1 so both distributions go to the
Maxwell-Boltzmann distribution

feq = exp[−(m− µ)/T ] exp(−q2/2mT )

• Here it is even clearer that the chemical potential µ is the
normalization parameter for the number density of particles whose
number is conserved.

• µ and n can be used interchangably



Poor Man’s Boltzmann Equation
• Non expanding medium

∂f

∂t
= Γ (f − feq)

where Γ is some rate for collisions

• Add in expansion in a homogeneous medium

∂f

∂t
+
dq

dt

∂f

∂q
= Γ (f − feq)

(q ∝ a−1 → 1

q

dq

dt
= −1

a

da

dt
= H)

∂f

∂t
−H ∂f

∂ ln q
= Γ (f − feq)

• So equilibrium will be maintained if collision rate exceeds
expansion rate Γ > H



Non-Relativistic Bulk Properties
• Number density

n = ge−(m−µ)/T 4π

(2π)3

∫ ∞
0

q2dq exp(−q2/2mT )

= ge−(m−µ)/T 23/2

2π2
(mT )3/2

∫ ∞
0

x2dx exp(−x2)

= g(
mT

2π
)3/2e−(m−µ)/T

• Energy density E = m→ ρ = mn

• Pressure q2/3E = q2/3m→ p = nT , ideal gas law



Ultra-Relativistic Bulk Properties
• Chemical potential µ = 0, ζ(3) ≈ 1.202

• Number density

nboson = gT 3 ζ(3)

π2
ζ(n+ 1) ≡ 1

n!

∫ ∞
0

xn

ex − 1
dx

nfermion =
3

4
gT 3 ζ(3)

π2

• Energy density

ρboson = gT 4 3

π2
ζ(4) = gT 4π

2

30

ρfermion =
7

8
gT 4 3

π2
ζ(4) =

7

8
gT 4π

2

30

• Pressure q2/3E = E/3→ p = ρ/3, wr = 1/3



Entropy Density
• First law of thermodynamics

dS =
1

T
(dρ(T )V + p(T )dV )

so that

∂S

∂V

∣∣∣
T

=
1

T
[ρ(T ) + p(T )]

∂S

∂T

∣∣∣
V

=
V

T

dρ

dT

• Since S(V, T ) ∝ V is extensive

S =
V

T
[ρ(T ) + p(T )] σ = S/V =

1

T
[ρ(T ) + p(T )]



Entropy Density
• Integrability condition dS/dV dT = dS/dTdV relates the

evolution of entropy density

dσ

dT
=

1

T

dρ

dT
dσ

dt
=

1

T

dρ

dt
=

1

T
[−3(ρ+ p)]

d ln a

dt
d lnσ

dt
= −3

d ln a

dt
σ ∝ a−3

comoving entropy density is conserved in thermal equilibrium

• For ultra relativisitic bosons sboson = 3.602nboson; for fermions
factor of 7/8 from energy density.

g∗ =
∑

bosons

gb +
7

8

∑
gf



Neutrino Freezeout
• Neutrino equilibrium maintained by weak interactions, e.g.
e+ + e− ↔ ν + ν̄

• Weak interaction cross section T10 = T/1010K ∼ T/1MeV

σw ∼ G2
FE

2
ν ≈ 4× 10−44 T 2

10cm2

• Rate Γ = nνσw = H at T10 ∼ 3 or t ∼ 0.2s

• After neutrino freezeout, electrons and positrons annihilate
dumping their entropy into the photons

• Before g∗: γ, e+, e− = 2 + 7
8
(2 + 2) = 11

2

• After g∗: γ = 2; so conservation of entropy gives

g∗T
3
∣∣∣
initial

= g∗T
3
∣∣∣
final

Tν =

(
4

11

)1/3

Tγ



Relic Neutrinos
• Relic number density (zero chemical potential; now required by

oscillations & BBN)

nν = nγ
3

4

4

11
= 112cm−3

• Relic energy density assuming one species with finite mν :
ρν = mνnν

ρν = 112
mν

eV
eV cm−3 ρc = 1.05× 104h2 eVcm−3

Ωνh
2 =

mν

93.7eV

• Candidate for dark matter? an eV mass neutrino goes non
relativistic around z ∼ 1000 and retains a substantial velocity
dispersion σν .



Hot Dark Matter
• Momenta for a nonrelativistic species redshifts like temperature

for a relativistic one, so average momentum is still given by

〈q〉 = 3Tν = mσν

σν = 3
( mν

1eV

)−1
(
Tν

1eV

)
= 3

( mν

1eV

)−1
(

Tν
104K

)
= 6× 10−4

( mν

1eV

)−1

= 200km/s
( mν

1eV

)−1

• Of order the rotation velocity of galactic halos and higher at higher
redshift - small objects can’t form: top down structure formation –
not observed – must not constitute the bulk of the dark matter



Cold Dark Matter
. • Problem with

neutrinos is they decouple
while relativistic and hence
have a comparable number
density to photons - for
a reasonable energy density,
the mass must be small

• The equilibrium distribution for a non-relativistic species declines
exponentially beyond the mass threshold

n = g(
mT

2π
)3/2e−m/T

• Exponential will eventually win soon after T < m, suppressing
annihilation rates



WIMP Miracle
• Freezeout when annihilation rate equal expansion rate Γ ∝ σA,

increasing annihilation cross section decreases abundance

Γ = n〈σAv〉 = H

H ∝ T 2 ∼ m2

ρfreeze = mn ∝ m3

〈σAv〉

ρc = ρfreeze(T/T0)−3 ∝ 1

〈σAv〉
independently of the mass of the CDM particle

• Plug in some typical numbers for supersymmetric candidates or
WIMPs (weakly interacting massive particles) of 〈σAv〉 ≈ 10−36

cm2 and restore the proportionality constant Ωch
2 is of the right

order of magnitude (∼ 0.1)!



Axions
• Alternate solution: keep light particle but not created in thermal

equilibrium

• Example: axion dark matter - particle that solves the strong CP
problem

• Inflation sets initial conditions, fluctuation from potential
minimum

• Once Hubble scale smaller than the mass scale, field unfreezes

• Coherent oscillations of the axion field - condensate state. Can be
very light m� 1eV and yet remain cold.

• Same reason a quintessence dark energy candidate must be lighter
than the Hubble scale today



Big Bang Nucleosynthesis
• Integrating the Boltzmann equation for nuclear processes during

first few minutes leads to synthesis and freezeout of light elements



Big Bang Nucleosynthesis
• Most of light element synthesis can be understood through nuclear

statistical equilibrium and reaction rates

• Equilibrium abundance of species with mass number A and charge
Z (Z protons and A− Z neutrons)

nA = gA(
mAT

2π
)3/2e(µA−mA)/T

• In chemical equilibrium with protons and neutrons

µA = Zµp + (A− Z)µn

nA = gA(
mAT

2π
)3/2e−mA/T e(Zµp+(A−Z)µn)/T



Big Bang Nucleosynthesis
• Eliminate chemical potentials with np, nn

eµp/T =
np
gp

(
2π

mpT

)3/2

emp/T

eµn/T =
nn
gn

(
2π

mnT

)3/2

emn/T

nA = gAg
−Z
p gZ−An (

mAT

2π
)3/2

(
2π

mpT

)3Z/2(
2π

mnT

)3(A−Z)/2

× e−mA/T e(Zµp+(A−Z)µn)/TnZp n
A−Z
n

(gp = gn = 2;mp ≈ mn = mb = mA/A)

(BA = Zmp + (A− Z)mn −mA)

= gA2−A
(

2π

mbT

)3(A−1)/2

A3/2nZp n
A−Z
n eBA/T



Big Bang Nucleosynthesis
• Convenient to define abundance fraction

XA ≡ A
nA
nb

= AgA2−A
(

2π

mbT

)3(A−1)/2

A3/2nZp n
A−Z
n n−1

b eBA/T

= AgA2−A

(
2πn

2/3
b

mbT

)3(A−1)/2

A3/2eBA/TXZ
p X

A−Z
n

(nγ =
2

π2
T 3ζ(3) ηbγ ≡ nb/nγ)

= A5/2gA2−A

[(
2πT

mb

)3/2
2ζ(3)ηbγ
π2

]A−1

eBA/TXZ
p X

A−Z
n



Deuterium
• Deuterium A = 2, Z = 1, g2 = 3, B2 = 2.225 MeV

X2 =
3

π2

(
4πT

mb

)3/2

ηbγζ(3)eB2/TXpXn

. • Deuterium
“bottleneck” is mainly
due to the low baryon-photon
number of the universe
ηbγ ∼ 10−9, secondarily due
to the low binding energy B2



Deuterium
• X2/XpXn ≈ O(1) at T ≈ 100keV or 109 K, much lower than the

binding energy B2

• Most of the deuterium formed then goes through to helium via
D + D→ 3He + p, 3He + D→ 4He + n

• Deuterium freezes out as number abundance becomes too small to
maintain reactions nD = const. independent of nb

• The deuterium freezeout fraction nD/nb ∝ η−1
bγ ∝ (Ωbh

2)−1 and so
is fairly sensitive to the baryon density.

• Observations of the ratio in quasar absorption systems give
Ωbh

2 ≈ 0.02



Helium
. • Essentially all neutrons

around during nucleosynthesis
end up in Helium

• In equilibrium,
the neutron-to-proton
ratio is determined
by the mass difference
Q = mn −mp = 1.293 MeV

nn
np

= exp[−Q/T ]



Helium
• Equilibrium is maintained through weak interactions, e.g.
n↔ p+ e− + ν̄, ν + n↔ p+ e−, e+ + n↔ p+ ν̄ with rate

Γ

H
≈ T

0.8MeV

• Freezeout fraction
nn
np

= exp[−1.293/0.8] ≈ 0.2

• Finite lifetime of neutrons brings this to ∼ 1/7 by 109K

• Helium mass fraction

YHe =
4nHe
nb

=
4(nn/2)

nn + np

=
2nn/np

1 + nn/np
≈ 2/7

8/7
≈ 1

4



Helium
• Depends mainly on the expansion rate during BBN - measure

number of relativistic species

• Traces of 7Li as well. Measured abundances in reasonable
agreement with deuterium measure Ωbh

2 = 0.02 but the detailed
interpretation is still up for debate



Light Elements

Burles, Nollett, Turner (1999)



Baryogenesis
• What explains the small, but non-zero, baryon-to-photon ratio?

ηbγ = nb/nγ ≈ 3× 10−8Ωbh
2 ≈ 6× 10−10

• Must be a slight excess of baryons b to anti-baryons b̄ that remains
after annihilation

• Sakharov conditions

• Baryon number violation: some process must change the net
baryon number

• CP violation: process which produces b and b̄ must differ in rate

• Out of equilibrium: else equilibrium distribution with vanishing
chemical potential (processes exist which change baryon
number) gives equal numbers for b and b̄

• Expanding universe provides 3; physics must provide 1,2



Baryogenesis
• Example: out of equilibrium decay of some heavy boson X , X̄

• Suppose X decays through 2 channels with baryon number b1 and
b2 with branching ratio r and 1− r leading to a change in the
baryon number per decay of

rb1 + (1− r)b2

• And X̄ to −b1 and −b2 with ratio r̄ and 1− r̄

−r̄b1 − (1− r̄)b2

• Net production

∆b = (r − r̄)(b1 − b2)



Baryogenesis
• Condition 1: b1 6= 0, b2 6= 0

• Condition 2: r̄ 6= r

• Condition 3: out of equilibrium decay

• GUT and electroweak (instanton) baryogenesis mechanisms exist

• Active subject of research



Black Body Formation
.
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• After z ∼ 106, photon creating
processes γ + e− ↔ 2γ + e−

and bremmstrahlung
e− + p↔ e− + p+ γ

drop out of equilibrium
for photon energies E ∼ T .

• Compton scattering remains
effective in redistributing energy via exchange with electrons

• Out of equilibrium processes like decays leave residual photon
chemical potential imprint

• Observed black body spectrum places tight constraints on any that
might dump energy into the CMB



Recombination
• Maxwell-Boltzmann distribution determines the equilibrium

distribution for reactions, e.g. big-bang nucleosynthesis,
recombination:

p+ e− ↔ H + γ

npne
nH
≈ e−B/T

(
meT

2π

)3/2

e(µp+µe−µH)/T

where B = mp +me −mH = 13.6eV is the binding energy,
gp = ge = 1

2
gH = 2, and µp + µe = µH in equilibrium

• Define ionization fraction

np = ne = xenb

nH = nb − np = (1− xe)nb



Recombination
• Saha Equation

nenp
nHnb

=
x2
e

1− xe

=
1

nb

(
meT

2π

)3/2

e−B/T

• Naive guess of T∗ = B wrong due to the low baryon-photon ratio
– T∗ ≈ 0.3eV so recombination at z∗ ≈ 1000

• But the photon-baryon ratio is very low

ηbγ ≡ nb/nγ ≈ 3× 10−8Ωbh
2



Recombination
• Eliminate in favor of ηbγ and B/T through

nγ = 0.244T 3 ,
me

B
= 3.76× 104

• Big coefficient

xe
2

1− xe
= 3.16× 1015

(
B

T

)3/2

e−B/T

T = 1/3eV→ xe = 0.7, T = 0.3eV→ xe = 0.2

• Further delayed by inability to maintain equilibrium since net is
through 2γ process and redshifting out of line

• Free electrons freezeout as recombination rate drops below Hubble
- low ionization tail has observable impact on CMB power
spectrum and is used to constrain energy injection from dark
matter annihilation, primordial black holes, etc.



Recombination
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Inhomogeneous Universe
• Boltzmann equation defines how particles propagate and interact

in the spacetime metric: “geometry tells matter how to move”

• Beyond the background FRW metric, fluctuations in the metric are
inhomogeneous and anisotropic (but statistically homogeneous
and isotropic in ensemble average)

• Particle numbers are still conserved in the absence of collisions if
the spacetime metric is fluctuating adiabatically: generalize
df/dt = 0 to changes in the momentum due to gravitational forces,
redshift and lensing

• Matter tells spacetime how to curve: perturbed stress energy or
low order moments of f determine the geometry and its evolution
– joint solution

• Solve for the low order moments with the Boltzmann equation or
an “equation of state” closure condition for the moment hierarchy



Inhomogeneous Universe
• To be continued with relativistic perturbation theory defining the

joint evolution...


