Astro 321
Set 2: Thermal History

Wayne Hu



Macro vs Micro Description

e In the first set of notes, we used a macroscopic description.

e Gravity only cares about bulk properties: energy density,
momentum density, pressure, anisotropic stress — stress tensor

e Matter and radiation is composed of particles whose properties can
be described by their phase space distribution or occupation
function

e Macroscopic properties are integrals or moments of the phase
space distribution

e Particle interactions involve the evolution of the phase space
distribution

e Rapid interactions drive distribution to thermal equilibrium but
must compete with the expansion rate of universe

e Freeze out, the origin of species



Brief Thermal History
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Astro-Particle Dictionary

Astro and physics literature use different words to describe same
thing:

e Specific intensity [, <+ phase space distribution f

e Surface brightness conservation <+ Liouville equation

e Absorption, emission, scattering <+ Collision term

e Einstein relations for absorption, stimulated and spontaneous
emission <> matrix element determines strength of all
interactions of a given type

e Radiative transfer equation <+ Boltzmann equation
e Optically thin conditions < freezeout of interactions

We take physics notation but the content 1s the same as 1n other
astro courses but placed 1n an expanding universe context.



Allowed Particle States

e Counting momentum states with
momentum ¢ and de Broglie wavelength

N\ =

h:@ /m

¢ 4 T N

e In a discrete volume L3 there

1s a discrete set of states that satisfy
periodic boundary conditions

e We will hereafterset h = c =1

e As in Fourier analysis

6271’256/)\ — T 6zq(cr:—i—L) N equ —1



Fitting 1n a Box

e Periodicity yields a discrete set of allowed states

Lq = 27Tmz', m,; — 1, 2,3

2T
4i = 14

L

e In each of 3 directions

Z %/dBm

MxiMyj Mk

e The differential number of allowed momenta in the volume

7\3
d>m = (%> d>q



Density of States

e The total number of states allows for a number of internal degrees
of freedom, e.g. spin, quantified by the degeneracy factor g

e Total density of states:

4N, = I =7
V V (27)3

d?’q

e If all states were occupied by a single particle, then particle density

N 1 g
s=—=— [ dN, = d’
s =y V/ /(2@3 1




Distribution Function

e The distribution function f quantifies the occupation of the
allowed momentum states

”:%:%/deS:/(zi)?»fdgq

e f, aka phase space occupation number, also quantifies the density

of particles per unit phase space dN/(Ax)?(Aq)?

e For photons, the spin degeneracy g = 2 accounting for the 2
polarization states

e Energy E(q) = (¢* +m?*)"/?

e Momentum — frequency ¢ = 27/ = 27v = w = F (where
m=0and \v =c=1)



Bulk Properties

e Integrals over the distribution function define the bulk properties of
the collection of particles

e Number density

e Energy density

where E? = ¢ + m?
e Momentum density
d3q
(2m)°

(p+MV@J%=g/ af



Vacuum Energy

e We have assumed here that the state of zero particles has zero
energy

e In QFT, like the simple harmonic oscillator in ordinary quantum
mechanics, there 1s a zero point energy to the ground state

e For bosons, hw/2 = F(q)/2, so the most naive version of the
cosmological constant problem is that p oc M* where

M = Mp; = 1/+/8xn(G if the theory applies out to the Planck scale

e The critical energy density p. = 3HZ /877G =~ 8 x 10~*"h?*GeV* is
more than 10*2° off My, &~ 2 x 107° GeV*.

e Note that py,. = pyac/3 so this fixed momentum cutoff calculation
1s a bit too naive since we know that pyac = — pPvac



Vacuum Energy

e A Lorentz invariant renormalization scheme corrects this to

m4

S tn(m? /)

where 1 1s some renormalization scale

Pvac =

e But even if there are no mass states above the known standard
model bosons, e.g. Higgs boson of m =~ 125GeV, this 1s way off,
even though it helps by some 68 orders of magnitude!

e Caveat: fermions contribute negatively to the vacuum energy so if
supersymmetry 1s unbroken would cancel

e But supersymmetry 1s clearly broken at low energies and has yet to
be seen at LHC - so taking this as a lower limit on the scale of
supersymmetry breaking the vacuum energy m > 1TeV, m? is still
60 orders of magnitude off.



Bulk Properties

e Pressure: particles bouncing
off a surface of area A in a volume
spanned by L,: per momentum state

L F o Npart Aq

Pa = 4 = T4 A
(Aq = 2|q.|, At=2L,/v,,)

_ Npart _ Npart |q|[v]
(v="mv/ym = q/F)
Npart q2

V 3k




Bulk Properties

e So that summed over occupied momenta states

d°q |qf?
w0 =9 | s

e Pressure 1s just one of the quadratic in ¢ moments, in particular the
1sotropic one

e The remaining 5 components are the anisotropic stress (vanishes in
the background)

. d*q 3q¢'q; — q°0",
i (x 1) —
w060 g/(zw)B 3B(q)

e We shall see that these are related to the 5 quadrupole moments of
the angular distribution



Bulk Properties

These are more generally the components of the stress-energy
tensor

L °q q¢"q,
T”‘9/<2w>3E<q>f

0-0: energy density

0-2: momentum density
1 — 1. pressure

© # J: anisotropic stress

In the FRW background cosmology, 1sotropy requires that there be
only a net energy density and pressure



Observable Properties

e Only get to measure luminous properties of the universe. For
photons mass m = 0, ¢ = 2 (units: J m )

p(x,1) :2/ (;l:‘)zgqf:2/dqd(2 (%)Sf

e Spectral energy density (per unit frequency

q = hv = h2mv = 27v, solid angle)

_ dp
 dvdQ)

e Photons travelling at speed of light so that v, = I,, = 4mwv° f the

202m)° f

Uy

specific intensity or brightness, energy flux across a surface, units
of Wm™2Hz ! sr=! (SI); ergs st cm™2 Hz ! sr™! (cgs)



Diffuse Extragalactic Light

e [, peaks in the microwave mm-cm region: CMB black body
T =2.725+0.002K orn, = 410 cm 2, Q, = 2.47 x 107°h™2.
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Observable Properties

e Integrate over frequencies for total intensity

[:/dyl,,:/dlnyul,,

v 1, often plotted since it shows peak under a log plot; [ and v/,
have units of W m~2 sr~! and is independent of choice of

frequency unit

e Flux density (specific flux): integrate over the solid angle of a
radiation source, units of W m~2 Hz~! or Jansky = 10726 W m 2

Hz!

= 1

a.k.a. spectral energy distribution



Observable Properties

e Flux integrate over frequency, units of W m™?

F:/dlnuyFy

e Flux in a frequency band S, measured in terms of magnitudes
(optical), set to some standard zero point per band

My — Mporm — 2.5 loglo(Fnorm/Fb) ~ 1I1(}7n01"m/1?b)

e Luminosity: integrate over area assuming 1sotropic emission or
beaming factor, units of W

L = 4rd; F



Liouville Equation

e In absence R
of interactions and changes to the —

momentum, particle conservation

implies that the phase
space distribution is invariant
along the trajectory of the particles

e Follow an element in Ax with spread Aq. For example for non
relativistic particles a spread in velocity of Av = Ag/m.

e After a time o0t the low velocity tail will lag the high velocity tail
by dx = Avdt = Aqdt/m

e For ultrarelativistic particles v = ¢ = 1 and Av = 0, so obviously
true



Liouville Equation

e The phase space element can shear but preserves area AxAq

e This remains true under Lorentz and even a general coordinate
transform

e Therefore df /dt = 0 or f is conserved when evaluated along the
path of the particles

e Liouville Equation: f oc I,/v° and ds = cdt

if frequency 1s also conserved on the path



Liouville Equation

e In general, expand out the total derivative

df of dz; 0f dg; 0f \
dt +Z<dt@xz dt@qi)_o

e The spatial gradient terms are responsible for flow of particles in
and out of a fixed volume

e The momentum amplitude derivative terms are responsible for
redshift effects

e The momentum direction derivative terms are responsible for
gravitational lensing



Liouville Equation

e Liouville theorem states that the phase space distribution function
1s conserved along a trajectory in the absence of particle
interactions

df [0  dqd  dx 0

i |ot T dtoq " dtox /=0

subtlety 1in expanding universe 1s that the de Broglie wavelength of
particles changes with the expansion so that

qoca_1

e Homogeneous and isotropic limit

(0

of _dg of
ot  dt Oq ot

Olngq -

0



Energy Density Evolution

e Integrate Liouville equation over ¢ [ d°q/(27)*E to form

op d3q 9,

= H(a)g/ (;7?)3 /dqq?’Ea%f

= —H(a)g / (57?)3 / dqd(qu)f

= —H(a)g/ (53)3 /dq(3q2E+q3fl—§)f

d(E* = ¢* + m?) — EdE = qdg

2

— sty [ G+ L) = 3@+ )

SE

as derived previously from energy conservation



Boltzmann Equation

e Boltzmann equation says that Liouville theorem must be modified
to account for collisions

Df _

o =Clf

e Heuristically

C'|f] = particle sources - sinks

e Collision term: integrate over phase space of incoming particles,
connect to outgoing state with some interaction strength



Boltzmann Equation

Clf] == / d(phase space)|energy-momentum conservation|
x | M|?[emission — absorption]

e Matrix element M, assumed T [or CP] invariant

e (Lorentz invariant) phase space element

i d*q;
/ d(phase space) = 11, (23?)3 / 5 gz

e Energy conservation: (27)*6™ (¢, + g2 + ...)




Boltzmann Equation

Emission - absorption term involves the particle occupation of the
various states

For concreteness: take f to be the photon distribution function

Interaction (y + > ¢ <> Y  u); sums are over all incoming and
outgoing other particles

absorption emission

photon photon
u i
M th tat th tat M
f other | states  other U states f
[emission-absorption] + = boson; — = fermion

HiHufu(l + fz)(l + f) — HiHu(l + fu)fzf



Boltzmann Equation
e Photon Emission: f,(1 £ f;)(1 + f)
/,.: proportional to number of emitters

(1 & f;): if final state is occupied and a fermion, process blocked;
if boson the process enhanced

(1 + f): final state factor for photons: “1”: spontaneous emission
(remains if f = 0); “+ f”’: stimulated and proportional to the
occupation of final photon

e Photon Absorption: —(1 + f,)f:f

(1 £ f,): if final state is occupied and fermion, process blocked; if
boson the process enhanced

f;: proportional to number of absorbers

f: proportional to incoming photons



Boltzmann Equation

e If interactions are rapid they will establish an equilibrium
distribution where the distribution functions no longer change

C[feq] =0
e Solve by inspection
o Try f, = (eFa/T 1) ' sothat (1 £ f,) = e Fa/T(eFa/T £ 1)1

o~ S(EAE)/T _ o~ S EJT _

and energy conservation says £ + Y E; = ) FE,, so identity is
satisfied 1f the constant 7" 1s the same for all species, 1.e. are in
thermal equilibrium



Boltzmann Equation

e If the interaction does not create or destroy particles then the
distribution

feg = (51T 1)

also solves the equilibrium equation: e.g. a scattering type reaction

Ye +1 = Ve )

where 2 and j represent the same collection of particles but with
different energies after the scattering

Y (Bi— )+ (E—p)=>» (B — )+ (E' — p)

since [; = [1; for each particle

e Not surprisingly, this is the Fermi-Dirac distribution for fermions
and the Bose-Einstein distribution for bosons



Boltzmann Equation

e More generally, equilibrium 1s satisfied if the sum of the chemical
potentials on both sides of the interaction are equal, v + 1 <> v

1.e. the law of mass action 1s satisfied

e If interactions that create or destroy particles are in equilibrium
then this law says that the chemical potential will vanish: e.g.

vy+e —2y+e”
pe + 10 = phe + 210 = pp =10

so that the chemical potential 1s driven to zero if particle number 1s
not conserved 1n interaction



Maxwell Boltzmann Distribution

e For the nonrelativistic limit £ = m + %q2 /m, nondegenerate limit
(2 — u)/T > 1 so both distributions go to the
Maxwell-Boltzmann distribution

feq = exp[—(m — p) /T exp(—q*/2mT)

e Here it 1s even clearer that the chemical potential u 1s the
normalization parameter for the number density of particles whose

number 1s conserved.

e 1, and n can be used interchangably



Poor Man’s Boltzmann Equation

e Non expanding medium

Ji
=T (f = fuo

where ' 1s some rate for collisions

e Add in expansion in a homogeneous medium

8f dq@f
ot dt@ (f_feQ)
1 1eg _ lda _
(g oca “qdt adt = H)
of af
E_Hamq_r(f_feOI)

e So equilibrium will be maintained 1if collision rate exceeds
expansion rate I' > H



Non-Relativistic Bulk Properties

e Number density

47
(27)°

23/2 00
= ge (Mm=m/TZ_( T)3/2/ v dx exp(—x?)
0

n = ge(m=m/T

/ ¢*dgexp(—q°/2mT)
0

2772

ML 32 =tm=1o)/T
2T

e Energy density /' =m — p = mn

= g(

e Pressure ¢°/3E = ¢*/3m — p = nT, ideal gas law



Ultra-Relativistic Bulk Properties
e Chemical potential ;x = 0, ((3) = 1.202
e Number density

n

((3) 1 /OO T
oson — TS— 1) = — d
b I Cn+1) n! J, e*—1 !
3 36(3)
ermion — T3

e Energy density

3 T2
Pboson — 9T4§C(4) — 9T4_

30
7 3 7 2

ermion — & T4_ 4) = — T4—
o1 9T 3¢ = g9 55

e Pressure ¢°/3E =FE/3 = p=p/3,w, =1/3



Entropy Density

e First law of thermodynamics

1

dS 7 (dp(T)V + p(T)dV)
SO that
0S 1
EAR T[P(T) + p(T)]
0S| _Vdp
orlv  TdT

e Since S(V,T) x V is extensive

S:

N[ <

P(T)+p(T)] o=25/V=Zp(T)+p(T)



Entropy Density

e Integrability condition d.S/dV dT = dS/dT'dV relates the
evolution of entropy density

dr _1dp
dT  TdT
do 1dp 1 dlna
T T T T[—3(P+p)} g
dlna__gdlna _3
i dt o

comoving entropy density is conserved in thermal equilibrium

e For ultra relativisitic bosons Syqson = 3.602N 050 fOr fermions
factor of 7/8 from energy density.

go= Yy gﬁgzgf

bosons



Neutrino Freezeout

e Neutrino equilibrium maintained by weak interactions, e.g.
et +e o v+D

e Weak interaction cross section Tyg = T/10'YK ~ T'/1MeV

Ow ~ GHE? ~ 4 x 107" Tf cm?
e Ratel'=n,0, = H at g ~3ort ~ 0.25

e After neutrino freezeout, electrons and positrons annihilate
dumping their entropy into the photons

o Before g, v, et e” =24+ 1(2+2) =%

e After g,: v = 2; so conservation of entropy gives

T3 T, = 4 1/3T
9~ final v 11 K

initial




Relic Neutrinos

e Relic number density (zero chemical potential; now required by
oscillations & BBN)

34
My =My = 112cm™?

e Relic energy density assuming one species with finite m,,:

Pr = My

Py = 112m—\; eVem ™ pe = 1.05 x 10*h* eVem ™
e

my

93.7eV

e Candidate for dark matter? an eV mass neutrino goes non

QO h* =

relativistic around z ~ 1000 and retains a substantial velocity
dispersion o,,.



Hot Dark Matter

e Momenta for a nonrelativistic species redshifts like temperature
for a relativistic one, so average momentum 1is still given by

<Q> — STI/ — Moy
_S(my)—l 1, _g(my)—l 1,
Ov = leV leV /) leV 104K

-1 m. N —1
=610 (457) = 200km/s (155)
6 x 10 oV 00km /s N

e Of order the rotation velocity of galactic halos and higher at higher

redshift - small objects can’t form: top down structure formation —
not observed — must not constitute the bulk of the dark matter



Cold Dark Matter
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e The equilibrium distribution for a non-relativistic species declines
exponentially beyond the mass threshold

mT)3/2 —m/T
2T

e Exponential will eventually win soon after 7" < m, suppressing

n = g(

annihilation rates



WIMP Miracle

e Freezeout when annihilation rate equal expansion rate 1" o< o 4,
increasing annihilation cross section decreases abundance

['=n(oqv) = H

H o T? ~ m?

3

m
Plreeze — TN X
(0av)
— pirecse T/ To) ™ ox —
Pc = Pfreeze 0 <O'A?}>

independently of the mass of the CDM particle

e Plug in some typical numbers for supersymmetric candidates or
WIMPs (weakly interacting massive particles) of (o 4v) =~ 107
cm? and restore the proportionality constant 2.4 is of the right
order of magnitude (~ 0.1)!



AXx1i0ns

e Alternate solution: keep light particle but not created in thermal
equilibrium

e Example: axion dark matter - particle that solves the strong CP
problem

e Inflation sets initial conditions, fluctuation from potential
minimum

e Once Hubble scale smaller than the mass scale, field unfreezes

e Coherent oscillations of the axion field - condensate state. Can be
very light m < 1eV and yet remain cold.

e Same reason a quintessence dark energy candidate must be lighter
than the Hubble scale today



Big Bang Nucleosynthesis

e Integrating the Boltzmann equation for nuclear processes during
first few minutes leads to synthesis and freezeout of light elements

Di ] I[llT_Li i I

palg em™)

N/ Ny




Big Bang Nucleosynthesis

e Most of light element synthesis can be understood through nuclear
statistical equilibrium and reaction rates

e Equilibrium abundance of species with mass number A and charge
Z (Z protons and A — Z neutrons)

MAL \3/2 g (ua=ma)/T
2T

e In chemical equilibrium with protons and neutrons

na = gal

pa = Zpy + (A= 2)py

77;AT )3/2e—mA/Te(Z,UJp-F(A_Z),UJn)/T
T

na = ga(



Big Bang Nucleosynthesis

e Eliminate chemical potentials with n,, n,

3/2
eﬂp/T — "p ( 2 ) emp/T

gp \Mpl’
3/2
Q'UJ”/T: g ( 2T ) / emn/T

Gn \Mpd’
. y Z_A(mAT)3/2 or \32/2 / o N\ 3(A-2)/2
AT 9% In ATon m, T mnT

w o~ mA/T o(Zpp+(A=Z)pn) /T ) Z ) A=Z
p''n

(Gp =gn=2ymp =My, =mp =my/A)
(Ba=Z2Zm,+ (A—Z)m, —my)

9 \ 3(A-1)/2
= ga2~" ( T) A3/2ngnf_ZeBA/T
my



e Convenient to define abundance fraction

Big Bang Nucleosynthesis

— n—A — AgAQ_A (
T
2/3
— Aga2~4
ga ( T
2 3
(n, = 5T°¢(3)
:A5/29 2—A 27TT
myp

mbT

)

Moy = N/ My)

3/ ZC(3>771W

ﬂ-2

A-1

3(A—1)/2
) A3/2n5nf—2nb—1€BA/T

9 3(A-1)/2
Ty, > A3/2€BA/TXPZX;;{—Z

BA/T v Z v A—Z
e Xp X



Deuterium
e Deuterium A =2, 7 =1, g = 3, By = 2.225 MeV

2

3 4T\ >/?
A2 = ( ) anC(S)GBQ/TXan

7 Ty
e Deuterium E e
“bottleneck” 1s mainly 5
due to the low baryon-photon & -1o[
. ) E H
number of the universe g _F

Mo ~ 1077, secondarily due

-20 —

to the low binding energy B, - e

-25 | | 1 1 ]



Deuterium

o X0/X, X, ~O(1)atT ~ 100keV or 10° K, much lower than the
binding energy B,

e Most of the deuterium formed then goes through to helium via
D4+ D — 3He +p,*He+D — ‘He +n

e Deuterium freezes out as number abundance becomes too small to
maintain reactions np = const. independent of n,

o The deuterium freezeout fraction np /n, o 1;," o< (2,7%)~" and so
1s fairly sensitive to the baryon density.

e Observations of the ratio in quasar absorption systems give
Qph? ~ 0.02



Helium

1_ I lillll]l T IIIIII!I T I TTTTTE]

e Essentially all neutrons
around during nucleosynthesis
end up in Helium

e In equilibrium,

EQUILIBRIUM

NEUTRON-PROTON RATIO

l!llll

the neutron-to-proton

] L 1 118l

01 1 1 10
T(MeV)

ratio 1s determined

by the mass difference
Q) = m, —m, = 1.293 MeV

™~ exp[—Q/T]

Ty



Helium

e Equilibrium is maintained through weak interactions, e.g.
n<pte +v,v+n<pte,et +n < p+ v withrate

I' T

"~ 0.8MeV

e Freezeout fraction

I — exp[—1.293/0.8] ~ 0.2

Mp
e Finite lifetime of neutrons brings this to ~ 1/7 by 10°K

e Helium mass fraction

Ange  4(ny/2)

YHe p— p—
g Ty, + Ny

2nn/ny  2/T 1

- 1+n,/n, 8/7 4




Helium

e Depends mainly on the expansion rate during BBN - measure
number of relativistic species

e Traces of "Li as well. Measured abundances in reasonable
agreement with deuterium measure Q7% = 0.02 but the detailed
interpretation 1s still up for debate



Light Elements

Fraction of critical density
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Baryogenesis

e What explains the small, but non-zero, baryon-to-photon ratio?

Myy = Np/Ny 2 3 X 107°Q0° ~ 6 x 1071

e Must be a slight excess of baryons b to anti-baryons b that remains
after annihilation
e Sakharov conditions

e Baryon number violation: some process must change the net
baryon number

o CP violation: process which produces b and b must differ in rate

e QOut of equilibrium: else equilibrium distribution with vanishing
chemical potential (processes exist which change baryon
number) gives equal numbers for b and b

e Expanding universe provides 3; physics must provide 1,2



Baryogenesis

e Example: out of equilibrium decay of some heavy boson X, X

e Suppose X decays through 2 channels with baryon number b; and
b, with branching ratio » and 1 — r leading to a change in the
baryon number per decay of

rby + (1 — 1)bs

e And X to —b; and —b, withratio7 and 1 — 7
—7by — (1 — 7)bs

e Net production

Ab= (r — 7)(by — by)



Baryogenesis
e Condition 1: by # 0, by #£ 0
e Condition 2: 7 # r
e Condition 3: out of equilibrium decay
e GUT and electroweak (instanton) baryogenesis mechanisms exist

e Active subject of research



Black Body Formation

o After z ~ 106 photon creating . bla'c'kb;d-y------- Y

processes v + e~ > 2y + e

005

and bremmstrahlung

&
e”+pre +Fptoy S b L ]
[ ~| u-distortion ]
drop out of equilibrium :
0.151 53 5 7
. /10°=3.
for photon energies £/ ~ T'. )
. . .1.6_5 P ..i.(.;_4 P ."1.6_3 P ..i..o.l_2 P ."1.6_1 P ......Il P ....II() P
e Compton scattering remains pIT:

effective 1n redistributing energy via exchange with electrons

e Out of equilibrium processes like decays leave residual photon
chemical potential imprint

e Observed black body spectrum places tight constraints on any that
might dump energy into the CMB



Recombination

e Maxwell-Boltzmann distribution determines the equilibrium
distribution for reactions, e.g. big-bang nucleosynthesis,
recombination:

p+e < H+7y

3/2
Mple =57 ((Mel N7 Guptpie—yuan) /7
ng 27

where B = m, + m. — myg = 13.6eV 1is the binding energy,
9p = 9ge = 39m = 2, and pi, + p. = pp in equilibrium

e Define 10nization fraction

Np = Ne = TNy

ng =mny —n, = (1 —z)ny



Recombination

e Saha Equation

2

NeMyp X

NN 1 — e

1 T 3/2
wla)
Ny 2T

e Naive guess of 7, = 5 wrong due to the low baryon-photon ratio

— T, =~ 0.3eV so recombination at z, ~ 1000

e But the photon-baryon ratio 1s very low

My = /1y ~ 3 x 107°Qh°



Recombination
e Eliminate in favor of 7, and B/T through
n, = 0.244T° % — 3.76 x 10
e Big coefficient

2

3/2
Te 316 x 10%® (E) e~ BIT

1 — 2, T
T=1/3eV —2,=0.7,T=0.3eV — 2z, = 0.2
e Further delayed by inability to maintain equilibrium since net 1s

through 2+ process and redshifting out of line

e Free electrons freezeout as recombination rate drops below Hubble
- low 10nization tail has observable impact on CMB power
spectrum and is used to constrain energy injection from dark
matter annihilation, primordial black holes, etc.



Recombination

redshift z
104 103 102
a— |
=
S
D 10-1
gé 10
=
.g Saha
,§ 102
=
.
2-level
103
] ] ] 1 1 111 l ] ] ] 1 1 1L 11
104 10-3 102

scale factor a



Inhomogeneous Universe

e Boltzmann equation defines how particles propagate and interact
in the spacetime metric: “geometry tells matter how to move”

e Beyond the background FRW metric, fluctuations in the metric are
inhomogeneous and anisotropic (but statistically homogeneous
and 1sotropic in ensemble average)

e Particle numbers are still conserved 1n the absence of collisions if
the spacetime metric 1s fluctuating adiabatically: generalize
df /dt = 0 to changes in the momentum due to gravitational forces,
redshift and lensing

e Matter tells spacetime how to curve: perturbed stress energy or
low order moments of f determine the geometry and its evolution
— joint solution

e Solve for the low order moments with the Boltzmann equation or
an “equation of state” closure condition for the moment hierarchy



Inhomogeneous Universe

e To be continued with relativistic perturbation theory defining the
joint evolution...



