Astro 321

Set 2: Thermal History

Wayne Hu
Macro vs Micro Description

- In the first set of notes, we used a macroscopic description.
- **Gravity** only cares about bulk properties: energy density, momentum density, pressure, anisotropic stress – stress tensor
- Matter and radiation is composed of particles whose properties can be described by their phase space distribution or occupation function
- Macroscopic properties are integrals or moments of the phase space distribution
- Particle interactions involve the evolution of the phase space distribution
- Rapid interactions drive distribution to thermal equilibrium but must compete with the expansion rate of universe
- **Freeze out**, the origin of species
Brief Thermal History
Astro-Particle Dictionary

Astro and physics literature use different words to describe same thing:

- Specific intensity $I_\nu \leftrightarrow$ phase space distribution f
- Surface brightness conservation \leftrightarrow Liouville equation
- Absorption, emission, scattering \leftrightarrow Collision term
- Einstein relations for absorption, stimulated and spontaneous emission \leftrightarrow matrix element determines strength of all interactions of a given type
- Radiative transfer equation \leftrightarrow Boltzmann equation
- Optically thin conditions \leftrightarrow freezeout of interactions

We take physics notation but the content is the same as in other astro courses but placed in an expanding universe context.
Allowed Particle States

• Counting momentum states with momentum q and de Broglie wavelength

$$\lambda = \frac{h}{q} = \frac{2\pi\hbar}{q}$$

• In a discrete volume L^3 there is a discrete set of states that satisfy periodic boundary conditions

• We will hereafter set $\hbar = c = 1$

• As in Fourier analysis

$$e^{2\pi i x / \lambda} = e^{iqx} = e^{iq(x+L)} \rightarrow e^{iql} = 1$$
Fitting in a Box

- Periodicity yields a discrete set of allowed states

\[L q = 2\pi m_i, \quad m_i = 1, 2, 3... \]

\[q_i = \frac{2\pi}{L} m_i \]

- In each of 3 directions

\[\sum_{m_x, m_y, m_z} \rightarrow \int d^3 m \]

- The differential number of allowed momenta in the volume

\[d^3 m = \left(\frac{L}{2\pi} \right)^3 d^3 q \]
Density of States

- The total number of states allows for a number of internal degrees of freedom, e.g. spin, quantified by the degeneracy factor g

- Total density of states:

$$\frac{dN_s}{V} = \frac{g}{V} d^3 m = \frac{g}{(2\pi)^3} d^3 q$$

- If all states were occupied by a single particle, then particle density

$$n_s = \frac{N_s}{V} = \frac{1}{V} \int dN_s = \int \frac{g}{(2\pi)^3} d^3 q$$
The distribution function f quantifies the occupation of the allowed momentum states

$$n = \frac{N}{V} = \frac{1}{V} \int f \, dN_s = \int \frac{g}{(2\pi)^3} f \, d^3q$$

f, aka phase space occupation number, also quantifies the density of particles per unit phase space $dN/(\Delta x)^3(\Delta q)^3$

For photons, the spin degeneracy $g = 2$ accounting for the 2 polarization states

Energy $E(q) = (q^2 + m^2)^{1/2}$

Momentum → frequency $q = 2\pi/\lambda = 2\pi\nu = \omega = E$ (where $m = 0$ and $\lambda\nu = c = 1$)
Bulk Properties

- Integrals over the distribution function define the bulk properties of the collection of particles

- Number density

\[n(x, t) \equiv \frac{N}{V} = g \int \frac{d^3q}{(2\pi)^3} f \]

- Energy density

\[\rho(x, t) = g \int \frac{d^3q}{(2\pi)^3} E(q)f \]

where \(E^2 = q^2 + m^2 \)

- Momentum density

\[(\rho + p)v(x, t) = g \int \frac{d^3q}{(2\pi)^3} q f \]
Vacuum Energy

- We have assumed here that the state of zero particles has zero energy.
- In QFT, like the simple harmonic oscillator in ordinary quantum mechanics, there is a zero point energy to the ground state.
- For bosons, $\hbar \omega/2 = E(q)/2$, so the most naive version of the cosmological constant problem is that $\rho \propto M^4$ where $M = M_{\text{Pl}} = 1/\sqrt{8\pi G}$ if the theory applies out to the Planck scale.
- The critical energy density $\rho_c = 3H_0^2/8\pi G \approx 8 \times 10^{-47}\hbar^2\text{GeV}^4$ is more than 10^{120} off $M_{\text{Pl}}^4 \approx 2 \times 10^{76}$ GeV4.
- Note that $p_{\text{vac}} \approx \rho_{\text{vac}}/3$ so this fixed momentum cutoff calculation is a bit too naive since we know that $p_{\text{vac}} = -\rho_{\text{vac}}$.
Vacuum Energy

- A Lorentz invariant renormalization scheme corrects this to

\[\rho_{\text{vac}} = \frac{m^4}{64\pi^2} \ln\left(\frac{m^2}{\mu^2}\right) \]

where \(\mu \) is some renormalization scale

- But even if there are no mass states above the known standard model bosons, e.g. Higgs boson of \(m \approx 125 \text{ GeV} \), this is way off, even though it helps by some 68 orders of magnitude!

- Caveat: fermions contribute negatively to the vacuum energy so if supersymmetry is unbroken would cancel

- But supersymmetry is clearly broken at low energies and has yet to be seen at LHC - so taking this as a lower limit on the scale of supersymmetry breaking the vacuum energy \(m > 1 \text{ TeV} \), \(m^4 \) is still 60 orders of magnitude off.
Bulk Properties

- Pressure: particles bouncing off a surface of area A in a volume spanned by L_x: per momentum state

$$p_q = \frac{F}{A} = \frac{N_{\text{part}} \Delta q}{A \Delta t}$$

($\Delta q = 2|q_x|$, $\Delta t = 2L_x/v_x$)

$$= \frac{N_{\text{part}} |q_x||v_x|}{V} = \frac{N_{\text{part}} |q||v|}{V}$$

($v = \gamma mv/\gamma m = q/E$)

$$= \frac{N_{\text{part}} q^2}{V \frac{3E}{3}}$$
Bulk Properties

- So that summed over occupied momenta states

\[p(x, t) = g \int \frac{d^3q}{(2\pi)^3} \frac{|q|^2}{3E(q)} f \]

- Pressure is just one of the quadratic in \(q \) moments, in particular the isotropic one

- The remaining 5 components are the anisotropic stress (vanishes in the background)

\[\pi^{ij}(x, t) = g \int \frac{d^3q}{(2\pi)^3} \frac{3q^iq_j - q^2\delta^i_j}{3E(q)} f \]

- We shall see that these are related to the 5 quadrupole moments of the angular distribution
Bulk Properties

- These are more generally the components of the stress-energy tensor

\[
T_{\mu \nu} = g \int \frac{d^3 q}{(2\pi)^3} \frac{q^\mu q^\nu}{E(q)} f
\]

- 0-0: energy density
- 0-\(i\): momentum density
- \(i - i\): pressure
- \(i \neq j\): anisotropic stress
- In the FRW background cosmology, isotropy requires that there be only a net energy density and pressure
Observable Properties

- Only get to measure luminous properties of the universe. For photons mass \(m = 0, g = 2 \) (units: \(J \ m^{-3} \))

\[
\rho(x, t) = 2 \int \frac{d^3q}{(2\pi)^3} q f = 2 \int dq d\Omega \left(\frac{q}{2\pi} \right)^3 f
\]

- Spectral energy density (per unit frequency \(q = h\nu = \hbar 2\pi\nu = 2\pi\nu \), solid angle)

\[
u_\nu = \frac{d\rho}{d\nu d\Omega} = 2(2\pi)\nu^3 f
\]

- Photons travelling at speed of light so that \(u_\nu = I_\nu = 4\pi\nu^3 f \) the specific intensity or brightness, energy flux across a surface, units of \(W \ m^{-2} \ Hz^{-1} \ sr^{-1} \) (SI); ergs \(s^{-1} \ cm^{-2} \ Hz^{-1} \ sr^{-1} \) (cgs)
Diffuse Extragalactic Light

- νI_ν peaks in the microwave mm-cm region: CMB black body $T = 2.725 \pm 0.002 K$ or $n_\gamma = 410 \text{ cm}^{-3}$, $\Omega_\gamma = 2.47 \times 10^{-5} h^{-2}$.
 Observable Properties

- Integrate over frequencies for total intensity

\[I = \int d\nu I_\nu = \int d\ln \nu \nu I_\nu \]

\(\nu I_\nu \) often plotted since it shows peak under a log plot; \(I \) and \(\nu I_\nu \) have units of \(\text{W m}^{-2} \text{ sr}^{-1} \) and is independent of choice of frequency unit

- Flux density (specific flux): integrate over the solid angle of a radiation source, units of \(\text{W m}^{-2} \text{ Hz}^{-1} \) or Jansky = \(10^{-26} \text{ W m}^{-2} \text{ Hz}^{-1} \)

\[F_\nu = \int_{\text{source}} I_\nu d\Omega \]

a.k.a. spectral energy distribution
Observable Properties

- Flux integrate over frequency, units of W m$^{-2}$

\[F = \int d\ln \nu \nu F_\nu \]

- Flux in a frequency band S_b measured in terms of magnitudes (optical), set to some standard zero point per band

\[m_b - m_{\text{norm}} = 2.5 \log_{10}(F_{\text{norm}}/F_b) \approx \ln(F_{\text{norm}}/F_b) \]

- Luminosity: integrate over area assuming isotropic emission or beaming factor, units of W

\[L = 4\pi d_L^2 F \]
The Liouville Equation

- In absence of interactions and changes to the momentum, particle conservation implies that the phase space distribution is invariant along the trajectory of the particles.

- Follow an element in Δx with spread Δq. For example, for non-relativistic particles a spread in velocity of $\Delta v = \Delta q/m$.

- After a time δt the low velocity tail will lag the high velocity tail by $\delta x = \Delta v \delta t = \Delta q \delta t/m$.

- For ultrarelativistic particles $v = c = 1$ and $\Delta v = 0$, so obviously true.
Liouville Equation

- The phase space element can shear but preserves area $\Delta x \Delta q$
- This remains true under Lorentz and even a general coordinate transform
- Therefore $df/dt = 0$ or f is conserved when evaluated along the path of the particles
- Liouville Equation: $f \propto I_\nu / \nu^3$ and $ds = cdt$

$$\frac{df}{dt} = 0 \rightarrow \frac{dI_\nu}{ds} = 0$$

if frequency is also conserved on the path
Liouville Equation

- In general, expand out the total derivative

\[
\frac{df}{dt} = \frac{\partial f}{\partial t} + \sum_i \left(\frac{dx_i}{dt} \frac{\partial f}{\partial x_i} + \frac{dq_i}{dt} \frac{\partial f}{\partial q_i} \right) = 0
\]

- The spatial gradient terms are responsible for flow of particles in and out of a fixed volume

- The momentum amplitude derivative terms are responsible for redshift effects

- The momentum direction derivative terms are responsible for gravitational lensing
Liouville Equation

- Liouville theorem states that the phase space distribution function is conserved along a trajectory in the absence of particle interactions

\[
\frac{df}{dt} = \left[\frac{\partial}{\partial t} + \frac{dq}{dt} \frac{\partial}{\partial q} + \frac{dx}{dt} \frac{\partial}{\partial x} \right] f = 0
\]

- Subtlety in expanding universe is that the de Broglie wavelength of particles changes with the expansion so that

\[q \propto a^{-1} \]

- Homogeneous and isotropic limit

\[
\frac{\partial f}{\partial t} + \frac{dq}{dt} \frac{\partial f}{\partial q} = \frac{\partial f}{\partial t} - H(a) \frac{\partial f}{\partial \ln q} = 0
\]
Energy Density Evolution

- Integrate Liouville equation over $g \int d^3q/(2\pi)^3 E$ to form

\[
\frac{\partial \rho}{\partial t} = H(a)g \int \frac{d^3q}{(2\pi)^3} E q \frac{\partial}{\partial q} f
\]

\[
= H(a)g \int \frac{d\Omega}{(2\pi)^3} \int dq d^3q E \frac{\partial}{\partial q} f
\]

\[
= -H(a)g \int \frac{d\Omega}{(2\pi)^3} \int dq \frac{d(q^3E)}{dq} f
\]

\[
= -H(a)g \int \frac{d\Omega}{(2\pi)^3} \int dq (3q^2 E + q^3 \frac{dE}{dq}) f
\]

\[
d(E^2 = q^2 + m^2) \rightarrow EdE = q dq
\]

\[
= -3H(a)g \int \frac{d^3q}{(2\pi)^3} (E + \frac{q^2}{3E}) f = -3H(a)(\rho + p)
\]

as derived previously from energy conservation
Boltzmann Equation

• Boltzmann equation says that Liouville theorem must be modified to account for collisions

\[
\frac{Df}{Dt} = C[f]
\]

• Heuristically

\[
C[f] = \text{particle sources} - \text{sinks}
\]

• Collision term: integrate over phase space of incoming particles, connect to outgoing state with some interaction strength
Boltzmann Equation

- Form:

\[C[f] = \frac{1}{E} \int d(\text{phase space}) [\text{energy-momentum conservation}] \times |M|^2 [\text{emission} - \text{absorption}] \]

- Matrix element \(M \), assumed T [or CP] invariant

- (Lorentz invariant) phase space element

\[\int d(\text{phase space}) = \prod_{i} \frac{g_i}{(2\pi)^3} \int \frac{d^3 q_i}{2E_i} \]

- Energy conservation: \((2\pi)^4 \delta^{(4)}(q_1 + q_2 + \ldots)\)
Boltzmann Equation

- Emission - absorption term involves the particle occupation of the various states

- For concreteness: take f to be the photon distribution function

- Interaction ($\gamma + \sum i \leftrightarrow \sum \mu$); sums are over all incoming and outgoing other particles

- [emission-absorption] $+$ $=$ boson; $-$ $=$ fermion

$$\Pi_i \Pi_\mu f_\mu (1 \pm f_i)(1 \pm f) - \Pi_i \Pi_\mu (1 \pm f_\mu) f_i f$$
Boltzmann Equation

- **Photon Emission:** \(f_\mu (1 \pm f_i)(1 + f) \)
 - \(f_\mu \): proportional to number of emitters
 - \((1 \pm f_i) \): if final state is occupied and a fermion, process blocked; if boson the process enhanced
 - \((1 + f) \): final state factor for photons: “1”: spontaneous emission (remains if \(f = 0 \)); “+f”: stimulated and proportional to the occupation of final photon

- **Photon Absorption:** \(-(1 \pm f_\mu)f_if \)
 - \((1 \pm f_\mu) \): if final state is occupied and fermion, process blocked; if boson the process enhanced
 - \(f_i \): proportional to number of absorbers
 - \(f \): proportional to incoming photons
Boltzmann Equation

• If interactions are rapid they will establish an equilibrium distribution where the distribution functions no longer change
\[C[f_{eq}] = 0 \]

• Solve by inspection
\[\Pi_i \Pi_{\mu} f_\mu (1 \pm f_i)(1 \pm f) - \Pi_i \Pi_{\mu}(1 \pm f_\mu)f_i f = 0 \]

• Try \(f_a = (e^{E_a/T} \mp 1)^{-1} \) so that \(1 \pm f_a = e^{-E_a/T}(e^{E_a/T} \mp 1)^{-1} \)
\[e^{-\sum(E_i+E)/T} - e^{-\sum E_\mu/T} = 0 \]

and energy conservation says \(E + \sum E_i = \sum E_\mu \), so identity is satisfied if the constant \(T \) is the same for all species, i.e. are in thermal equilibrium
Boltzmann Equation

- If the interaction does not create or destroy particles then the distribution

\[f_{eq} = \left(e^{(E-\mu)/T} \mp 1 \right)^{-1} \]

also solves the equilibrium equation: e.g. a scattering type reaction

\[\gamma_E + i \rightarrow \gamma_{E'} + j \]

where \(i \) and \(j \) represent the same collection of particles but with different energies after the scattering

\[\sum (E_i - \mu_i) + (E - \mu) = \sum (E_j - \mu_j) + (E' - \mu) \]

since \(\mu_i = \mu_j \) for each particle

- Not surprisingly, this is the Fermi-Dirac distribution for fermions and the Bose-Einstein distribution for bosons
Boltzmann Equation

- More generally, equilibrium is satisfied if the sum of the chemical potentials on both sides of the interaction are equal, $\gamma + i \leftrightarrow \nu$

$$\sum \mu_i + \mu = \sum \mu_{\nu}$$

i.e. the law of mass action is satisfied

- If interactions that create or destroy particles are in equilibrium then this law says that the chemical potential will vanish: e.g. $\gamma + e^- \rightarrow 2\gamma + e^-$

$$\mu_e + \mu = \mu_e + 2\mu \rightarrow \mu = 0$$

so that the chemical potential is driven to zero if particle number is not conserved in interaction
Maxwell Boltzmann Distribution

- For the nonrelativistic limit $E = m + \frac{1}{2}q^2/m$, nondegenerate limit $(E - \mu)/T \gg 1$ so both distributions go to the Maxwell-Boltzmann distribution

$$f_{eq} = \exp[-(m - \mu)/T] \exp(-q^2/2mT)$$

- Here it is even clearer that the chemical potential μ is the normalization parameter for the number density of particles whose number is conserved.

- μ and n can be used interchangably
Poor Man’s Boltzmann Equation

- Non expanding medium

\[\frac{\partial f}{\partial t} = \Gamma (f - f_{eq}) \]

where \(\Gamma \) is some rate for collisions

- Add in expansion in a homogeneous medium

\[\frac{\partial f}{\partial t} + \frac{dq}{dt} \frac{\partial f}{\partial q} = \Gamma (f - f_{eq}) \]

\[(q \propto a^{-1} \rightarrow \frac{1}{q} \frac{dq}{dt} = -\frac{1}{a} \frac{da}{dt} = H) \]

\[\frac{\partial f}{\partial t} - H \frac{\partial f}{\partial \ln q} = \Gamma (f - f_{eq}) \]

- So equilibrium will be maintained if collision rate exceeds expansion rate \(\Gamma > H \)
Non-Relativistic Bulk Properties

- **Number density**

\[n = g e^{-\frac{(m-\mu)}{T}} \frac{4\pi}{(2\pi)^3} \int_0^\infty q^2 dq \exp\left(-\frac{q^2}{2mT}\right) \]

\[= g e^{-\frac{(m-\mu)}{T}} \frac{2^{3/2}}{2\pi^2} (mT)^{3/2} \int_0^\infty x^2 dx \exp(-x^2) \]

\[= g \left(\frac{mT}{2\pi}\right)^{3/2} e^{-\frac{(m-\mu)}{T}} \]

- **Energy density** \(E = m \rightarrow \rho = mn \)

- **Pressure** \(\frac{q^2}{3E} = \frac{q^2}{3m} \rightarrow p = nT \), ideal gas law
Ultra-Relativistic Bulk Properties

- Chemical potential $\mu = 0, \zeta(3) \approx 1.202$

- Number density

$$n_{\text{boson}} = gT^3 \frac{\zeta(3)}{\pi^2} \quad \zeta(n + 1) \equiv \frac{1}{n!} \int_0^{\infty} \frac{x^n}{e^x - 1} dx$$

$$n_{\text{fermion}} = \frac{3}{4} gT^3 \frac{\zeta(3)}{\pi^2}$$

- Energy density

$$\rho_{\text{boson}} = gT^4 \frac{3}{\pi^2} \zeta(4) = gT^4 \frac{\pi^2}{30}$$

$$\rho_{\text{fermion}} = \frac{7}{8} gT^4 \frac{3}{\pi^2} \zeta(4) = \frac{7}{8} gT^4 \frac{\pi^2}{30}$$

- Pressure $q^2/3E = E/3 \rightarrow p = \rho/3, \ w_r = 1/3$
Entropy Density

- First law of thermodynamics

\[dS = \frac{1}{T}(d\rho(T)V + p(T)dV) \]

so that

\[\left. \frac{\partial S}{\partial V} \right|_T = \frac{1}{T}[\rho(T) + p(T)] \]
\[\left. \frac{\partial S}{\partial T} \right|_V = \frac{V}{T} \frac{d\rho}{dT} \]

- Since \(S(V, T) \propto V \) is extensive

\[S = \frac{V}{T}[\rho(T) + p(T)] \]
\[\sigma = S/V = \frac{1}{T}[\rho(T) + p(T)] \]
Entropy Density

- Integrability condition \(dS/dVdT = dS/dTdV \) relates the evolution of entropy density.

\[
\frac{d\sigma}{dT} = \frac{1}{T} \frac{d\rho}{dT}
\]

\[
\frac{d\sigma}{dt} = \frac{1}{T} \frac{d\rho}{dt} = \frac{1}{T} \left[-3(\rho + p) \right] \frac{d\ln a}{dt}
\]

\[
\frac{d\ln \sigma}{dt} = -3 \frac{d\ln a}{dt}
\]

- Comoving entropy density is conserved in thermal equilibrium.

- For ultra relativisitc bosons \(s_{\text{boson}} = 3.602n_{\text{boson}} \); for fermions factor of \(7/8 \) from energy density.

\[
g_* = \sum_{\text{bosons}} g_b + \frac{7}{8} \sum g_f
\]
Neutrino Freezeout

- Neutrino equilibrium maintained by weak interactions, e.g.
 \[e^+ + e^- \leftrightarrow \nu + \bar{\nu} \]

- Weak interaction cross section
 \[T_{10} = \frac{T}{10^{10} K} \sim \frac{T}{1 \text{MeV}} \]

- Weak interaction cross section
 \[\sigma_w \sim G_F^2 E^2_\nu \approx 4 \times 10^{-44} T_{10}^2 \text{cm}^2 \]

- Rate
 \[\Gamma = n_\nu \sigma_w = H \quad \text{at} \quad T_{10} \sim 3 \quad \text{or} \quad t \sim 0.2 \text{s} \]

- After neutrino freezeout, electrons and positrons annihilate dumping their entropy into the photons

- Before \(g_* \): \(\gamma, e^+, e^- = 2 + \frac{7}{8} (2 + 2) = \frac{11}{2} \)

- After \(g_* \): \(\gamma = 2 \); so conservation of entropy gives

\[g_* T^3 \bigg|_{\text{initial}} = g_* T^3 \bigg|_{\text{final}} \quad T_\nu = \left(\frac{4}{11} \right)^{1/3} T_\gamma \]
Relic Neutrinos

- Relic number density (zero chemical potential; now required by oscillations & BBN)

\[n_\nu = n_\gamma \frac{3}{4} \frac{4}{11} = 112 \text{cm}^{-3} \]

- Relic energy density assuming one species with finite \(m_\nu \):

\[\rho_\nu = m_\nu n_\nu \]

\[\rho_\nu = 112 \frac{m_\nu}{\text{eV}} \text{ eV cm}^{-3} \quad \rho_c = 1.05 \times 10^4 h^2 \text{ eV cm}^{-3} \]

\[\Omega_\nu h^2 = \frac{m_\nu}{93.7 \text{eV}} \]

- Candidate for dark matter? an eV mass neutrino goes non relativistic around \(z \sim 1000 \) and retains a substantial velocity dispersion \(\sigma_\nu \).
Hot Dark Matter

- Momenta for a nonrelativistic species redshifts like temperature for a relativistic one, so average momentum is still given by

\[\langle q \rangle = 3T_\nu = m\sigma_\nu \]

\[\sigma_\nu = 3 \left(\frac{m_\nu}{1\text{eV}} \right)^{-1} \left(\frac{T_\nu}{1\text{eV}} \right) = 3 \left(\frac{m_\nu}{1\text{eV}} \right)^{-1} \left(\frac{T_\nu}{10^4\text{K}} \right) \]

\[= 6 \times 10^{-4} \left(\frac{m_\nu}{1\text{eV}} \right)^{-1} = 200\text{km/s} \left(\frac{m_\nu}{1\text{eV}} \right)^{-1} \]

- Of order the rotation velocity of galactic halos and higher at higher redshift - small objects can’t form: top down structure formation – not observed – must not constitute the bulk of the dark matter
• Problem with neutrinos is they decouple while relativistic and hence have a comparable number density to photons - for a reasonable energy density, the mass must be small

• The equilibrium distribution for a non-relativistic species declines exponentially beyond the mass threshold

\[n = g \left(\frac{mT}{2\pi} \right)^{3/2} e^{-m/T} \]

• Exponential will eventually win soon after \(T < m \), suppressing annihilation rates
WIMP Miracle

• Freezeout when annihilation rate equal expansion rate $\Gamma \propto \sigma_A$, increasing annihilation cross section decreases abundance

$$\Gamma = n\langle \sigma_A v \rangle = H$$

$$H \propto T^2 \sim m^2$$

$$\rho_{\text{freeze}} = mn \propto \frac{m^3}{\langle \sigma_A v \rangle}$$

$$\rho_c = \rho_{\text{freeze}}(T/T_0)^{-3} \propto \frac{1}{\langle \sigma_A v \rangle}$$

independently of the mass of the CDM particle

• Plug in some typical numbers for supersymmetric candidates or WIMPs (weakly interacting massive particles) of $\langle \sigma_A v \rangle \approx 10^{-36}$ cm2 and restore the proportionality constant $\Omega_c h^2$ is of the right order of magnitude (~ 0.1)!
Axions

- Alternate solution: keep light particle but not created in thermal equilibrium
- Example: axion dark matter - particle that solves the strong CP problem
- Inflation sets initial conditions, fluctuation from potential minimum
- Once Hubble scale smaller than the mass scale, field unfreezes
- Coherent oscillations of the axion field - condensate state. Can be very light $m \ll 1\text{eV}$ and yet remain cold.
- Same reason a quintessence dark energy candidate must be lighter than the Hubble scale today
Big Bang Nucleosynthesis

- Integrating the Boltzmann equation for nuclear processes during first few minutes leads to synthesis and freezeout of light elements
Big Bang Nucleosynthesis

- Most of light element synthesis can be understood through nuclear statistical equilibrium and reaction rates.

- Equilibrium abundance of species with mass number A and charge Z (Z protons and $A - Z$ neutrons)

$$n_A = g_A \left(\frac{m_A T}{2\pi} \right)^{3/2} e^{\frac{(\mu_A - m_A)}{T}}$$

- In chemical equilibrium with protons and neutrons

$$\mu_A = Z\mu_p + (A - Z)\mu_n$$

$$n_A = g_A \left(\frac{m_A T}{2\pi} \right)^{3/2} e^{-m_A/T} e^{(Z\mu_p + (A - Z)\mu_n)/T}$$
Big Bang Nucleosynthesis

- Eliminate chemical potentials with n_p, n_n

$$e^{\mu_p/T} = \frac{n_p}{g_p} \left(\frac{2\pi}{m_p T} \right)^{3/2} e^{m_p/T}$$

$$e^{\mu_n/T} = \frac{n_n}{g_n} \left(\frac{2\pi}{m_n T} \right)^{3/2} e^{m_n/T}$$

$$n_A = g_A g_p^{-Z} g_n^{Z-A} \left(\frac{m_A T}{2\pi} \right)^{3/2} \left(\frac{2\pi}{m_p T} \right)^{3Z/2} \left(\frac{2\pi}{m_n T} \right)^{3(A-Z)/2}$$

$$\times e^{-m_A/T} e^{(Z\mu_p + (A-Z)\mu_n)/T} n_p^Z n_n^{A-Z}$$

$$(g_p = g_n = 2; m_p \approx m_n = m_b = m_A/A)$$

$$(B_A = Zm_p + (A - Z)m_n - m_A)$$

$$= g_A 2^{-A} \left(\frac{2\pi}{m_b T} \right)^{3(A-1)/2} A^{3/2} n_p^Z n_n^{A-Z} e^{B_A/T}$$
Big Bang Nucleosynthesis

- Convenient to define abundance fraction

\[X_A \equiv A \frac{n_A}{n_b} = A g_A 2^{-A} \left(\frac{2\pi}{m_b T} \right)^{3(A-1)/2} A^{3/2} n_p n_n^{A-Z} n_b^{-1} e^{B_A/T} \]

\[= A g_A 2^{-A} \left(\frac{2\pi n_b^{2/3}}{m_b T} \right)^{3(A-1)/2} A^{3/2} e^{B_A/T} X_p X_n^{A-Z} \]

\[(n_\gamma = \frac{2}{\pi^2} T^3 \zeta(3)) \quad \eta_{b\gamma} \equiv n_b/n_\gamma \]

\[= A^{5/2} g_A 2^{-A} \left[\left(\frac{2\pi T}{m_b} \right)^{3/2} \frac{2\zeta(3)\eta_{b\gamma}}{\pi^2} \right]^{A-1} X_p X_n^{A-Z} \]
Deuterium

- Deuterium $A = 2, Z = 1, g_2 = 3, B_2 = 2.225 \text{ MeV}$

$$X_2 = \frac{3}{\pi^2} \left(\frac{4 \pi T}{m_b} \right)^{3/2} \eta_{b \gamma} \zeta(3) e^{B_2/T} X_p X_n$$

- Deuterium
 "bottleneck" is mainly due to the low baryon-photon number of the universe
 $\eta_{b \gamma} \sim 10^{-9}$, secondarily due to the low binding energy B_2
Deuterium

- $X_2/X_pX_n \approx \mathcal{O}(1)$ at $T \approx 100$keV or 10^9 K, much lower than the binding energy B_2

- Most of the deuterium formed then goes through to helium via $D + D \rightarrow ^3\text{He} + p$, $^3\text{He} + D \rightarrow ^4\text{He} + n$

- Deuterium freezes out as number abundance becomes too small to maintain reactions $n_D = \text{const.}$ independent of n_b

- The deuterium freezeout fraction $n_D/n_b \propto \eta_{b\gamma}^{-1} \propto (\Omega_b h^2)^{-1}$ and so is fairly sensitive to the baryon density.

- Observations of the ratio in quasar absorption systems give $\Omega_b h^2 \approx 0.02$
Essentially all neutrons around during nucleosynthesis end up in Helium.

In equilibrium, the neutron-to-proton ratio is determined by the mass difference:

\[Q = m_n - m_p = 1.293 \text{ MeV} \]

\[\frac{n_n}{n_p} = \exp\left[-\frac{Q}{T}\right] \]
Helium

- Equilibrium is maintained through weak interactions, e.g.
 \[n \leftrightarrow p + e^- + \bar{\nu}, \nu + n \leftrightarrow p + e^-, e^+ + n \leftrightarrow p + \bar{\nu} \] with rate
 \[\frac{\Gamma}{H} \approx \frac{T}{0.8\text{MeV}} \]

- Freezeout fraction
 \[\frac{n_n}{n_p} = \exp[-1.293/0.8] \approx 0.2 \]

- Finite lifetime of neutrons brings this to \(\sim 1/7 \) by \(10^9\text{K} \)

- Helium mass fraction
 \[Y_{\text{He}} = \frac{4n_{He}}{n_b} = \frac{4(n_n/2)}{n_n + n_p} = \frac{2n_n/n_p}{1 + n_n/n_p} \approx \frac{2/7}{8/7} \approx \frac{1}{4} \]
Helium

- Depends mainly on the expansion rate during BBN - measure number of relativistic species
- Traces of ^7Li as well. Measured abundances in reasonable agreement with deuterium measure $\Omega_b h^2 = 0.02$ but the detailed interpretation is still up for debate
Baryogenesis

- What explains the small, but non-zero, baryon-to-photon ratio?

\[\eta_{b\gamma} = \frac{n_b}{n_\gamma} \approx 3 \times 10^{-8} \Omega_b h^2 \approx 6 \times 10^{-10} \]

- Must be a slight excess of baryons \(b \) to anti-baryons \(\bar{b} \) that remains after annihilation

- Sakharov conditions
 - Baryon number violation: some process must change the net baryon number
 - CP violation: process which produces \(b \) and \(\bar{b} \) must differ in rate
 - Out of equilibrium: else equilibrium distribution with vanishing chemical potential (processes exist which change baryon number) gives equal numbers for \(b \) and \(\bar{b} \)

- Expanding universe provides 3; physics must provide 1,2
Baryogenesis

- Example: out of equilibrium decay of some heavy boson X, \bar{X}

- Suppose X decays through 2 channels with baryon number b_1 and b_2 with branching ratio r and $1 - r$ leading to a change in the baryon number per decay of

$$rb_1 + (1 - r)b_2$$

- And \bar{X} to $-b_1$ and $-b_2$ with ratio \bar{r} and $1 - \bar{r}$

$$-\bar{r}b_1 - (1 - \bar{r})b_2$$

- Net production

$$\Delta b = (r - \bar{r})(b_1 - b_2)$$
Baryogenesis

- Condition 1: $b_1 \neq 0, b_2 \neq 0$
- Condition 2: $\bar{r} \neq r$
- Condition 3: out of equilibrium decay
- GUT and electroweak (instanton) baryogenesis mechanisms exist
- Active subject of research
Black Body Formation

- After $z \sim 10^6$, photon creating processes $\gamma + e^- \leftrightarrow 2\gamma + e^-$ and bremmstrahlung $e^- + p \leftrightarrow e^- + p + \gamma$ drop out of equilibrium for photon energies $E \sim T$.
- Compton scattering remains effective in redistributing energy via exchange with electrons.
- Out of equilibrium processes like decays leave residual photon chemical potential imprint.
- Observed black body spectrum places tight constraints on any that might dump energy into the CMB.
Recombination

- Maxwell-Boltzmann distribution determines the equilibrium distribution for reactions, e.g. big-bang nucleosynthesis, recombination:

\[p + e^- \leftrightarrow H + \gamma \]

\[
\frac{n_p n_e}{n_H} \approx e^{-B/T} \left(\frac{m_e T}{2\pi} \right)^{3/2} e^{(\mu_p + \mu_e - \mu_H)/T}
\]

where \(B = m_p + m_e - m_H = 13.6 \text{eV} \) is the binding energy, \(g_p = g_e = \frac{1}{2} g_H = 2 \), and \(\mu_p + \mu_e = \mu_H \) in equilibrium

- Define ionization fraction

\[
\begin{align*}
 n_p & = n_e = x_e n_b \\
 n_H & = n_b - n_p = (1 - x_e) n_b
\end{align*}
\]
Recombination

- Saha Equation

\[\frac{n_e n_p}{n_H n_b} = \frac{x_e^2}{1 - x_e} = \frac{1}{n_b} \left(\frac{m_e T}{2\pi} \right)^{3/2} e^{-B/T} \]

- Naive guess of \(T_\ast = B \) wrong due to the low baryon-photon ratio

\(- T_\ast \approx 0.3 \text{eV} \) so recombination at \(z_\ast \approx 1000 \)

- But the photon-baryon ratio is very low

\[\eta_{b\gamma} \equiv \frac{n_b}{n_\gamma} \approx 3 \times 10^{-8} \Omega_b h^2 \]
Recombination

- **Eliminate** in favor of $\eta_{b\gamma}$ and B/T through

$$n_\gamma = 0.244T^3, \quad \frac{m_e}{B} = 3.76 \times 10^4$$

- Big coefficient

$$\frac{x_e^2}{1 - x_e} = 3.16 \times 10^{15} \left(\frac{B}{T}\right)^{3/2} e^{-B/T}$$

$$T = 1/3\text{eV} \rightarrow x_e = 0.7, \quad T = 0.3\text{eV} \rightarrow x_e = 0.2$$

- **Further delayed** by inability to maintain equilibrium since net is through 2γ process and redshifting out of line

- Free electrons freezeout as recombination rate drops below Hubble - low ionization tail has observable impact on CMB power spectrum and is used to constrain energy injection from dark matter annihilation, primordial black holes, etc.
Recombination

Redshift z

Scale factor a

Ionization fraction

Saha

2-level
Inhomogeneous Universe

- Boltzmann equation defines how particles propagate and interact in the spacetime metric: “geometry tells matter how to move”

- Beyond the background FRW metric, fluctuations in the metric are inhomogeneous and anisotropic (but statistically homogeneous and isotropic in ensemble average)

- Particle numbers are still conserved in the absence of collisions if the spacetime metric is fluctuating adiabatically: generalize \(df/dt = 0 \) to changes in the momentum due to gravitational forces, redshift and lensing

- Matter tells spacetime how to curve: perturbed stress energy or low order moments of \(f \) determine the geometry and its evolution – joint solution

- Solve for the low order moments with the Boltzmann equation or an “equation of state” closure condition for the moment hierarchy
Inhomogeneous Universe

- To be continued with relativistic perturbation theory defining the joint evolution...