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Set 3: Relativistic Perturbation Theory

Wayne Hu



Covariant Perturbation Theory

e Covariant = takes same form 1n all coordinate systems
e Invariant = takes the same value in all coordinate systems

e Fundamental equations are covariant: Einstein equations, covariant
conservation of stress-energy tensor:

G, = 8nG1,,
v, 17" =0

e Components such as p, velocity, curvature etc are not invariant
under a coordinate change

e Between any two fully specified coordinates, Jacobian dx* /0z" is
invertible - so perturbations 1n given gauge can be written in a
covariant manner in terms of perturbations in an arbitrary gauge:
called “gauge invariant” variables



Covariant Perturbation Theory

e In evolving perturbations we inevitably break explicit covariance
by evolving conditions forward in a given time coordinate

e Retain implicit covariance by allowing the freedom to choose an
arbitrary time slicing and spatial coordinates threading constant
time slices

e Exploit covariance by choosing the specific slicing and threading
(or “gauge”) according to what best matches problem

e Preserve general covariance by keeping all free variables: 10 for
each symmetric 4 x4 tensor but blocked into 3 + 1 “ADM” form
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ADM 3+1 Split

e Since Einstein equations dynamically evolve the spacetime, to
solve the 1nitial value problem choose a slicing for the foliation
and evolve the spatial metric forward: 3+1 ADM split

e Define most general line element: lapse N, shift N*, 3-metric h;;
ds* = —N?d¢® + hy;(dz* + N'do)(dz’ + N7 d¢)
or equivalently the metric
goo = —N?+ N'N;,  go; = hijN? = Ny, gij = hy;
and its inverse g"“g,, = 0",
¢ = —1/N?, % =Ni/N2, g =hi_ NiNI/N

e Time coordinate 2" = ¢ need not be cosmological time ¢ - could
be any parameterization, e.g. conformal time, scalar field, ...



ADM 3+1 Split

Useful to define the unit N

normal timelike vector n,n* = —1, ﬁvw\ +50
. Nnt \ /Fixed xi
orthogonal to constant time surfaces

ny, X Op¢ T T 0
n, = (—N,0,0,0), n* = (1/N,—N"/N)
where we have used n* = g"“n,

Interpretation: lapse of proper time along normal, shift of spatial
coordinates with respect to normal

In GR (and most scalar-tensor EFT extensions), the lapse and shift
are non-dynamical and just define the coordinates or gauge

Dynamics in evolving the spatial metric forwards



ADM 3+1 Split

e Projecting 4D tensors onto the normal direction utilizes n#n,, e.g.

—ntn, V"

e Projecting 4D tensors onto the 3D tensors involves the
complement through the induced metric

h,uu — Juv =+ Ty,

ht VY = (6", + ntn, VY = VF + nfn, V"
e.g. 1n the preferred slicing
Vi =R VY = (6", 4+ nfn, VY = (0,V' + N'V°)

whose spatial indices are raised an lowered by h;;:
V; = ngy = hij‘?j



ADM 3+1 Split

e 3-surface embedded 1in 4D, so there 1s fijf’xi
both an intrinsic curvature associated /X\‘\/ﬁ\ 0+80
nh \\ nM+Onk
with /;; and an extrinsic curvature —>
xl
which 1s the spatial projection of the 0

gradient of n*

K, = hﬂah/ﬁna;ﬁ

e [, symmetric since the antisymmetric projection (or vorticity)

vanishes by construction since n, = —Ng.,



ADM 3+1 Split

o Likewise split the spacetime curvature ) R into intrinsic and
extrinsic pieces via Gauss-Codazzi relation

YR = KW K" — (K,")? + PR+ 2(K,"n —nnt).
H U 1% ;o) s

Last piece 1s total derivative so Einstein Hilbert action is equivalent
to keeping first three pieces

e No explicit dependence on slicing and threading N, N* - any
preferred slicing 1s picked out by the matter distribution not by
general relativity

e Beyond GR we can embed a preferred slicing by making the
Lagrangian an explicit function of /NV - will return to this in the
effective field theory of inflation, dark energy



ADM 3+1 Split

e Trace K /" =nt = 0 isexpansion

U
e Avoid confusion with FRW notation for intrinsic curvature:

BIR = 6K /a?

e The anisotropic part 1s known as the shear

0
3

e For the FRW background the shear vanishes and the expansion
0 =3H



ADM 3+1 Split

e Fully decompose the 4-tensor n,,.,, by adding normal components

Ny = K — nunahuﬁna;ﬁ - huanunﬁna;ﬁ + nunanvnﬁna;ﬁ
= K — huanl/nﬁna;ﬁ = Ky — nynﬂnu;g Bl nunanl/nﬁna;ﬁ
where we have used [(n,n")., = 0 = n*n,, = 0]

e Here the directional derivative of the normal along the normal or
“acceleration” 1s

Ay = (nu;ﬁ’)nﬁ



ADM 3+1 Split

in terms of the ADM variables

1
Kij = 57 (Ohiz — Ny = Nij)

where | denotes the covariant derivative with respect to h;;

e Extrinsic curvature acts like a “velocity” term for /;; moving the
metric from one slice to another with the coordinate freedom of the
lapse and shift

e Initial value problem in GR: define h;; and h;; on the spacelike
surface and integrate forwards, with lapse and shift defining the
temporal and spatial coordinates



ADM 3+1 Split

e Beyond GR we can extend this logic by constructing a general
theory with some scalar whose constant surfaces define the normal
and the time coordinate - build the most general action that retains
spatial diffeomorphism invariance out of the ADM geometric
objects

— EFT of inflation and dark energy: return to this in inflation
discussion

e For linear perturbation theory in GR, ADM looks simpler since we
can linearize metric fluctuations and take out the global scale
factor in the spatial tensors for convenience h;; = a*y;;

e ADM language useful in defining the geometric meaning of gauge
choices in defining the time slicing and spatial threading



Metric Perturbations
o First define the slicing (lapse function A, shift function B*)

g’ = —a*(1-24),
O = —a2B
e ADM correspondence: perturbed lapse N = a(1 + A) between
3-surfaces whereas shift N* = — B* defines the shift of

3-coordinates of the surfaces: note that for convenience spatial
indices on B* are lowered by ~;; not h;;

e This absorbs 1+3=4 free variables in the metric, remaining 6 is in
the spatial surfaces which we parameterize as

g7 = a*(y¥ —2H 47 —2HY) .

here (1) H;, a perturbation to the scale factor; (5) H;J a trace-free
distortion to spatial metric



Curvature Perturbation

e Curvature perturbation on the 3D slice

4

CL2

2 g
0[P R = —= (V*+3K) Hy, + — ViV, Hy

e Note that we will often loosely refer to H;, as the “curvature
perturbation”

e We will see that many representations have Hy = 0

e It 1s easier to work with a dimensionless quantity

e Curvature perturbation 1s a 3-scalar in the ADM split and a Scalar
in the SVT decomposition



Matter Tensor

e Likewise expand the matter stress energy tensor around a
homogeneous density p and pressure p:

TOO — —pP— 5p7
7% = (p+p)(vi—By),
Ty = —(p+pr',

1% = (p+op)d’; +pll',,
e (1) 0p a density perturbation; (3) v; a vector velocity, (1) op a
pressure perturbation; (5) 11;; an anisotropic stress perturbation

e So far this 1s fully general and applies to any type of matter or
coordinate choice including non-linearities in the matter, e.g.
scalar fields, cosmological defects, exotic dark energy.



Counting Variables

20  Vanables (10 metric; 10 matter)
—10  Einstein equations

—4  Conservation equations

+4  Bianchi identities

—4  Gauge (coordinate choice 1 time, 3 space)

6 Free Variables

e Without loss of generality these can be taken to be the 6
components of the matter stress tensor

e For the background, specify p(a) or equivalently
w(a) = p(a)/p(a) the equation of state parameter.



Homogeneous Einstein Equations

e Einstein (Friedmann) equations:

1da\’ K 8nG 1a\’

—— — —_—_4+ =y [=(==] = H?

(a dt) a2+ 3 7 | (aa) |
1 d%a 4G 1l da 1 d
_— — _ - —_—— = — H
a dt? 3 (+3p) | a’?dna  a? dn(a )

so that w = p/p < —1/3 for acceleration
e Conservation equation V#1,,,, = 0 implies

P 301+ w)l
0 a

overdots are conformal time but equally true with coordinate time



Homogeneous Einstein Equations

e Counting exercise:

20  Variables (10 metric; 10 matter)
—17  Homogeneity and Isotropy

—2  Einstein equations

—1  Conservation equations

+1  Bianchi identities

1 Free Variables

without loss of generality choose ratio of homogeneous & i1sotropic
component of the stress tensor to the density w(a) = p(a)/p(a).



Acceleration Implies Negative Pressure

e Role of stresses in the background cosmology

e Homogeneous Einstein equations G, = 8wG1),,, imply the two
Friedmann equations (flat universe, or associating curvature

pr = —3K/8nGa?)

1da\’ 8
a dt 3 7
1 d*a At
- - = 3
so that the total equation of state w = p/p < —1/3 for acceleration

e Conservation equation V#T,,,, = 0 implies

P o 301+ w)”
P a

so that p must scale more slowly than a2



Scalar, Vector, Tensor

e In linear perturbation theory, perturbations may be separated by
their transformation properties under 3D rotation and translation.

e The eigenfunctions of the Laplacian operator form a complete set

V2Q(0) — _k2Q(0) S,
VQQ(il) _ _kZQ(il) V
VY = -kQyY T,

e Vector and tensor modes satisty divergence-free and
transverse-traceless conditions

viQr =0
ViQ; " =0

17QiY =0



Vector and Tensor Quantities

e A scalar mode carries with 1t associated vector (curl-free) and
tensor (longitudinal) quantities

e A vector mode carries and associated tensor (trace and divergence
free) quantities

e A tensor mode has only a tensor (trace and divergence free)

e These are built from the mode basis out of covariant derivatives
and the metric

QY = -k 'v,QO,
1
0 _
Q,fj) = (k ZVz'VjJrg%j)Q(o),
1
QFY = ——v,Q\ + v,

* 2k



Perturbation k-Modes

e For the kth eigenmode, the scalar components become
Ax) = A(R)QY,  Hi(x)
op(k)Q®,  dp(x)

the vectors components become

Bix) = Y B™®HQ™,

op(x) =

m=—1

and the tensors components

Hi (k) QW
op(k) QY

2
(k) QE;%)a I1;;(x) = Z H(””(/f) an)a

m=—2

e Note that the curvature perturbation only involves scalars

319 R] -

a2

4 1
(k* — 3K)(H" +

3
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Spatially Flat Case

e For a spatially flat background metric, harmonics are related to
plane waves:

QY = exp(ik-x)

Q= _—Z(él + 765);exp(ik - x)

Z V2
3. A\ n .
QE;EQ) —\/g(el + zeg)i(el + zeg)jexp(zk . X)

where €3 || k. Chosen as spin states, c.f. polarization.

e For vectors, the harmonic points in a direction orthogonal to k
suitable for the vortical component of a vector



Spatially Flat Case

e Tensor harmonics are the transverse traceless gauge representation

e Tensor amplitude related to the more traditional

hil(er)i(er); — (e2)i(ea);],  hx[(ei)i(ez); + (e2)i(e1);]

as

hy +ihy = —V/6HT?

o ;ﬂ) proportional to the right and left circularly polarized
amplitudes of gravitational waves with a normalization that 1s

convenient to match the scalar and vector definitions



Covariant Scalar Equations

e DOF counting exercise

8  Variables (4 metric; 4 matter)
—4  Einstein equations
—2  Conservation equations
+2  Bianchi identities

—2  Gauge (coordinate choice 1 time, 1 space)

2 Free Variables

without loss of generality choose scalar components of the stress
tensor op, II .



Covariant Scalar Equations

e Einstein equations (suppressing 0) superscripts

1
(k? —3K)[HL+3HT]—3( )2A+3 Hp + kB_

= A7rGa’5p, 00 Poisson Equation

1. K
—A H;, —-Hyr— —=(kB—-H
L= gHr kQ( T)
= 47Ga’*(p + p)(v — B)/k, 0i Momentum Equation

. e\ 2 . 2
[2a2(a> Lad K
a a adn 3

1
= 41Ga’(5p + §5 p), i1 Acceleration Equation

d a : 1
A—|—+—-|(H —kB
[dn—l—a]( L+3 )

1 d .
K2(A+H; + - H 2 kB — H
(A + pt 3 T)‘|‘(dn—|— a)( T)

= —81Ga’pll, ij Anisotropy Equation



Covariant Scalar Equations

e Poisson and acceleration equations are the perturbed
generalization of the Friedmann equations

e Momentum and anisotropy equations are new to the perturbed
metric

e Poisson and momentum equations in the ADM language take the
form of constraints on the shift and lapse respectively - leaving the
spatial metric components as dynamical

e Like the Friedmann equations, the 4 equation are redundant given
the 2 energy-momentum conservation equations

e Choose a gauge and set of equations to simplify the given problem



Covariant Scalar Equations

e Conservation equations: continuity and Navier Stokes

d

= 432 6p+356p = —(p+p)(kv+3HL),

dn a a
d  a (v — B) 2 K
@ .l = dp— =(1—=3=)plIl A
[d?7+ a] [(p+p) ; ] L

e Equations are not independent since V,,G*” = 0 via the Bianchi
1dentities.

e Related to the ability to choose a coordinate system or “gauge” to
represent the perturbations.



Covariant Vector Equations

e Einstein equations
- (£1
(1 —2K/k?)(kB*Y — FY)
= 167Ga’(p + p)(vF) — BEY) /|
d a - (£1)
— 4+ 22| (kBEY — A
— —87Ga’pll*Y .

e Conservation Equations

o+ 42 | 1o+ PO = B0

1
= —5(1- 2K /k2)pIT+Y

e Gravity provides no source to vorticity — decay



Covariant Vector Equations

e DOF counting exercise

8  Variables (4 metric; 4 matter)
—4  Einstein equations
—2  Conservation equations
+2  Bianchi identities

—2  Gauge (coordinate choice 1 time, 1 space)

2 Free Variables

without loss of generality choose vector components of the stress
tensor IT(+1),



Covariant Tensor Equation

e Einstein equation

d? 1 d

-+ zﬁd— + (K + 2K)] 1 = 8rGa?pll+2)
n a ar

e DOF counting exercise

4 Variables (2 metric; 2 matter)
—2  Einstein equations
—0  Conservation equations
+0  Bianchi identities

—0  Gauge (coordinate choice 1 time, 1 space)

2 Free Variables

wlog choose tensor components of the stress tensor I1(+2),



Arbitrary Dark Components

e Total stress energy tensor can be broken up into individual pieces

e Dark components interact only through gravity and so satisty
separate conservation equations

e Einstein equation source remains the sum of components.

e To specify an arbitrary dark component, give the behavior of the
stress tensor: 6 components: dp, [1(, where s = —2, ..., 2.

e Many types of dark components (dark matter, scalar fields,
massive neutrinos,..) have simple forms for their stress tensor in
terms of the energy density, 1.e. described by equations of state.

e An equation of state for the background w = p/p is not sufficient
to determine the behavior of the perturbations.



Geometry of Gauge Choice

e Geometry of the gauge or time slicing and spatial threading

e For perturbations larger than the horizon, a local observer should
just see a different (separate) FRW universe

e Scalar equations should be equivalent to an appropriately
remapped Friedmann equation

e ADM recap: unit normal vector n* to constant time hypersurfaces

n, dx* = nodn, n*n,, = —1, to linear order in metric
7 U T

ng = —a(l+ AQ), n; =0

n’ = a1 - AQ), n' = —BQ"

e Intrinsic 3-geometry of dg;;, changes in the normal vector n,.,, that
define the extrinsic curvature



Geometric Quantities

e Expansion of spatial volume per proper time 1s given by
4-divergence

k 3

n',=0=3H(1 - AQ)+ ~BQ+

y HLQ

a

e Other pieces of n,., give the vorticity, shear and acceleration

3
hyw = Guv +npny
Wpv = h,uahl/ﬁ(nQQB —Ngia) =0
Opv = %huahuﬁ(na;ﬁ +Ngia) — éehuv
a, = MNyan®

e Recall n, 1s a special timelike vector normal to the constant time
surfaces, the vorticity vanishes by construction



Geometric Quantities

e Remaining perturbed quantities are the spatial shear and
acceleration (0 components vanish)

O_z'j = CL(HT — ]’CB)QU
a; = —kAQ;
e Recall that the extrinsic curvature K;; = o;; + 60h,,, /3

e Intrinsic curvature of the 3-surface determined by 3-metric /;;

4 H
S[PR] = — (k* = 3K)(Hp + =)
e E-foldings of the local expansion In a;, are given

1 ' : 1
lnaL:/dTgﬁzfdn (Q—I—HLQ—I—ngQ)
a

where we have used dr = (1 + AQ)adn



Separate Universe

e Notice that

d . Hp 1,.
—01 — H — — —(H+ - kB
dn nar, L+ 3 3( T )

so that if the shear 1s negligible the change in efolds tracks the
change in curvature

e Shear vanishes in the FRW background; uniform efolding gives
constant curvature

e Underlying principle: local observer should find long wavelength
perturbations are indistingishable from a change in the background
FRW quantities

e Perturbation equations take the form of Friedmann equations once
rescaled



Time Slicing
e Constant time surfaces can be defined according to what geometry

1s helpful for the problem at hand

e Common choices:
Uniform efolding: H; + kB/3 =0
Shear free: HT — kB =0
Zero lapse pert or acceleration, A = 0
Uniform expansion: —3H A + (3H;, + kB) =0
Comoving: v = B
e For the background all of these conditions hold.

e For perturbations each define a choice of slicing

e Can define the validity of the separate universe principle as the
coexistence of comoving and zero lapse slicing



Time Slicing
e Comoving slicing 1s more formally called velocity orthogonal

slicing since constant time surfaces are orthogonal to the matter
4-velocity V#:

e VY = (8" 4 ntn, V" = (0,V' + N'V°) =0

— V' =vQ" = B' = BQ"

e Should not be confused with comoving (threading) where the
3-velocity v = 0 unless the shift 5 also vanishes



Gauge

e Metric and matter fluctuations take on different values in different
coordinate system

e No such thing as a “gauge invariant” density perturbation!

e General coordinate transformation:

n = n+7T
P o= 4+ I

free to choose (7', L") to simplify equations or physics —
corresponds to a choice of slicing and threading in ADM.

e Decompose these into scalar 7', L(®) and vector harmonics L(*1).



Gauge

e g, and 1, transtorm as tensors, so components 1n different
frames can be related

SR Oz* Ox” Z.
g,ul/(nax ) — 8:%” @f’/ gaﬁ(n7$ )
Ox® Oz | .
— w3(m—T0, 7" — L)'
57 Az Jes(l — 1Q, 1" — LQ')

e Fluctuations are compared at the same coordinate positions (not
same space time positions) between the two gauges

e For example with a 7'C) perturbation, an event labeled with
1 =const. and & =const. represents a different time with respect to
the underlying homogeneous and 1sotropic background



Gauge Transformation

e Scalar Metric:

A= A-17-%7,
a
B = B+ L+kT,
~ k .
H, = H,—~r-%1
3 a
) 1. 1 a
Hy = Hp+kL,  Hy+ Hp=Hp+  Hp—-T
a

curvature perturbation depends on slicing not threading

e Scalar Matter (Jth component):

opy = opy—pjT,
opg = opy;—pjT,
{}J = Uyt La

density and pressure likewise depend on slicing only



Gauge Transformation

e Vector:
B(il) _ B(il) —I—L(il),
ﬁ;il) _ H;il) —I—kL(il),
@Sil) _ vgil) —|—L(i1),

e Spatial vector has no background component hence no dependence
on slicing at first order

Tensor: no dependence on slicing or threading at first order

e Gauge transformations and covariant representation can be
extended to higher orders

e A coordinate system 1s fully specified if there 1s an explicit
prescription for (7', L") or for scalars (7', L)



Slicing
Common choices for slicing 1": set something geometric to zero

e Proper time slicing A = 0: proper time between slices
corresponds to coordinate time — 1" allows ¢/a freedom

e Comoving (velocity orthogonal) slicing: v — B = 0, slicing 1s
orthogonal to matter 4 velocity - 1" fixed

e Newtonian (shear free) slicing: Hy — kB =0, expansion rate 1s
1sotropic, shear free, 7' fixed

e Uniform expansion slicing: —(a/a)A + H, + kB/3 =0,
perturbation to the volume expansion rate 6 vanishes, 7' fixed

e Flat (constant curvature) slicing, o R =0,(H; + Hr /3 =0),
1" fixed

e Constant density slicing, 0p; = 0, T' fixed



Threading

e Threading specifies the relationship between constant spatial
coordinates between slices and 1s determined by L
Typically involves a condition on v, 5, Hrp

e Orthogonal threading B = 0, constant spatial coordinates
orthogonal to slicing (zero shift), allows 0 L. = c translational
freedom

e Comoving threading v = 0, allows 0 L. = c translational
freedom.

e [sotropic threading Hp = 0, fully fixes L



Newtonian (Longitudinal) Gauge

e Newtonian (shear free slicing, 1sotropic threading):

N N &

Hr =0

A (Newtonian potential)
H; (Newtonian curvature)
—Hr/k

~B/k+ Hyp/K?

Good: intuitive Newtonian like gravity; matter and metric
algebraically related; commonly chosen for analytic CMB and

lensing work

Bad: numerically unstable



Newtonian (Longitudinal) Gauge

e Newtonian (shear free) slicing, 1sotropic threading 5 = Hy =0 :

(k* —=3K)® = 4nGa* [5,0 + 3 (p+ p)v/k] Poisson + Momentum
a
(U 4+ ®) = —8rGa’pll Anisotropy
so W = —& 1f anisotropic stress 11 = 0 and
d a a :
[— + 3—] op+3=0p = —(p+p)(kv+3D),
dn a a
d a 2 K
— 44— = kop— =(1—-3-—=5)pkll kW
2] e = ko= BRI+ (o )k

e Newtonian competition between stress (pressure and viscosity)
and potential gradients

e Note: Poisson source 1s the density perturbation on comoving
slicing



Comoving Gauge

e Comoving gauge (comoving slicing, isotropic threading)

B = © (I) =0)
Hr = 0

¢ = A

R = H; (comoving curvature)
A = § (total density pert)

T = (v—DB)/k

L = —Hp/k

Good: Algebraic relations between matter and metric;
comoving curvature perturbation obeys conservation law

Bad: Non-intuitive threading involving v



Comoving Gauge

e Euler equation becomes an algebraic relation between stress and

potential
2 K
(p+p)é=—-dp+5(1——5|pll
3 k
e Einstein equation lacks momentum density source
a . K
55 — R — ﬁkv =0

Combine: R 1s conserved if stress fluctuations negligible, e.g.
above the horizon if |K| < H*

. [ o 2 3K
R+Kv//c:9[——p+—(1— ) P H]%O
al p+p 3 k2 ) p+p




“Gauge Invariant” Approach

e Gauge transformation rules allow variables which take on a
geometric meaning in one choice of slicing and threading to be
accessed from variables on another choice

e Functional form of the relationship between the variables 1s gauge
invariant (not the variable values themselves! — 1.e. equation is

covariant)

e E.g. comoving curvature and density perturbations

| .
R = HL+§HT—9(v—B)/k
a

Ap = 0p+ 3(p+p)g(v — B)/k



Newtonian-Comoving Hybrid

e With the gauge in(or co)variant approach, express variables of one
gauge 1n terms of those in another — allows a mixture in the
equations of motion

e Example: Newtonian curvature and comoving density

(k* — 3K)® = 4nGa’pA
ordinary Poisson equation then implies ¢ approximately constant
if stresses negligible.

e Example: Exact Newtonian curvature above the horizon derived
through comoving curvature conservation

Gauge transformation

a v
O =R+ ——
_l_a,k



Hybrid “Gauge Invariant” Approach

Einstein equation to eliminate velocity

¢ = ArGa’(p + p)v/k
a

Friedmann equation with no spatial curvature

(d>2 &G
a 3

With® = 0and ¥ ~ —®

@w___ 2 4
ak 3(1 4+ w)




Newtonian-Comoving Hybrid

Combining gauge transformation with velocity relation

_S—I—Sw
543w

o

Usage: calculate ‘R from inflation determines ¢ for any choice of
matter content or causal evolution.

e Example: Scalar field (*quintessence” dark energy) equations in
comoving gauge imply a sound speed op/dp = 1 independent of
potential V' (¢). Solve in synchronous gauge.



Synchronous Gauge

e Synchronous: (proper time slicing, orthogonal threading )

~

A = B=0

. 1 -~
nr = _HL_§HT
hL = 6HL

T = a_l/dnaA—l—cla_l
L = —/dn(B+kT)+02

Good: stable, the choice of numerical codes and separate
universe constructs

Bad: residual gauge freedom 1n constants c;, co must be
specified as an 1nitial condition, intrinsically relativistic,
threading conditions breaks down beyond linear regime 1f c; 1s
fixed to CDM comoving.



Synchronous Gauge

e The Einstein equations give

nr — @(hL + 6nr) = 4rGa*(p + p)

v
k Y,
hi + ghL = —81Ga’*(dp + 30p) ,

la.
—(k2 — 3K)77T + ighlj = 47TGCL25,0

[choose (1 & 2) or (1 & 3)] while the conservation equations give

d a a 1.
L 3% 50, +3%6p, = - kvy + =
[dﬁ +3a] PJ+3a DJ (ps+py)(kvy + 5 L),

Vg 2 K

d a
=gl L= Spy— 21— 3 )pyTly .
[dn+ a] (ps +pJ) I pJ 3( Skg)pJ J



Synchronous Gauge

e Lack of a lapse A implies no gravitational forces in Navier-Stokes
equation. Hence for stress free matter like cold dark matter, zero
velocity initially implies zero velocity always.

e Choosing the momentum and acceleration Einstein equations 1s
good since for CDM domination, curvature 7 is conserved and /.
1s simple to solve for.

e Choosing the momentum and Poisson equations 1s good when the
equation of state of the matter is complicated since op is not

involved. This 1s the choice of CAMB.

Caution: since the curvature np appears and it has zero CDM
source, subtle effects like dark energy perturbations are important
everywhere



Spatially Flat Gauge

e Spatially Flat (flat slicing, 1sotropic threading):

H, = Hr=0
L = —Hrp/k
A,B = metric perturbations
a\ " 1
e (0) (megm)
a 3

Good: eliminates spatial metric evolution in ADM and
perturbation equations ; useful in inflationary calculations

( )

Bad: non-intuitive slicing (no curvature!) and threading

e Caution: perturbation evolution i1s governed by the behavior of
stress fluctuations and an isotropic stress fluctuation op is gauge
dependent.



Uniform Density Gauge

e Uniform density: (constant density slicing, 1sotropic threading)

HT:()a

¢r =Hp

B[EB

A[EA

T %P1
PI1

L=—Hp/k

Good: Curvature conserved involves only stress energy
conservation; simplifies 1socurvature treatment

Bad: non intuitive slicing (no density pert! problems beyond
linear regime) and threading



Uniform Density Gauge

e Einstein equations with / as the total or dominant species

. 2 . .
(k2—3kﬁg~—3(9) Ar+3%¢ 4+ 2kB; =0,
a a a

) . K v — By
—A; — (; — —B; = 41Gd?
A C1 D1 mGa”(p + p) o

e The conservation equations (if J = [ then 0p; = 0)

d a a '
[d— —+ 3—] 5,0J + 3—5pj = _(,OJ +pJ>(kUJ + 3CI)7
i a ¢
d vy — Br 2

a K
=4 4= = 0py — =(1 — 3= )pyII A
[d?7+ a] (ps +DpJ) I pJ 3( 3k2)PJ g+ (ps+ps)As




Uniform Density Gauge

e Conservation of curvature - single component /

e Since dp;y = 0, dpy is the non-adiabatic stress and curvature is
constant as k — 0 for adiabatic fluctuations p;(py).

e Note that this conservation law does not involve the Einstein
equations at all: just local energy momentum conservation so it 1s
valid for alternate theories of gravity

e Curvature on comoving slices ‘R and (; related by

1 ,OA[
— R4+ =
o1 3 (pr + pr)

and coincide above the horizon for adiabatic fluctuations

comoving



Uniform Density Gauge

e Simple relationship to density fluctuations in the spatially flat

gauge
C_} 0p1
! 3 (pr +pr)

e For each particle species 6p/(p + p) = dn/n, the number density

flat .

fluctuation

e Multiple {; carry information about number density fluctuations
between species

e (; constant component by component outside horizon if each
component is adiabatic p;(p;).



Unitary Gauge

e Given a scalar field ¢(z*, ), choose a slicing so that the field is
spatially uniform ¢ (", ) = ¢(n) via the transformation

sh=66— o - T="20

o
e Specify threading, e.g. isotropic threading . = —Hr/k

Good: Scalar field carried completely by the metric; EFT of
inflation and scalar-tensor theories of gravity. Extensible to
nonlinear perturbations as long as 0,,¢ remains timelike

Bad: Preferred slicing retains only the spatial diffeomorphism
invariance; can make full covariance and DOF counting obscure

e For a canonical scalar field, unitary and comoving gauge coincide



EFT of Dark Energy and Inflation

e Beyond linear theory, unitary gauge and ADM 1s useful to define
most general Lagrangian and interaction terms for a scalar-tensor
theory of gravity: so-called Effective Field Theory (EFT)

e Rule: broken temporal diffeomorphisms (preferred slicing) but
spatial diffeomorphism invariance means explicit functions of
unitary time and ADM spatial scalars allowed

e Typically also want second order in time derivatives to avoid
Ostrogradsky ghost, lapse and shift non-dynamical

L(N, Kij, Rij, V')

where the function is constructed out of spatial scalars (3D
Riemann tensor can be expressed through 3 Ricci tensor and metric

e Recall that the extrinsic curvature carries a first time derivative of
the spatial metric and spatial gradients of the shift



EFT of Dark Energy and Inflation

e This class includes quintesence, k-essence, f(R), Horndeski,
“beyond Horndeski”, Horava-Liftshiz gravity, ghost condensate

e Does not include theories where derivatives of the lapse N appear
but the shift is still nondynamical due to hidden constraints - can
be generalized

e GR: time diffeomorphism not broken so the Einstein-Hilbert
Lagrangian in EFT language 1s given by the Gauss-Codazzi
relation

DR - K, K" — K>+ 0®R



EFT of Dark Energy and Inflation

e Now consider the scalar field to pick out a particular foliation

e Simplest example k-essence where L£( X, ¢) where
X = ¢"0,¢0,¢ (sometimes —1/2X to resemble kinetic energy)

e In unitary gauge ¢ is a function of the temporal coordinate only so
X = —¢?/N? so that

L(X,¢) = L(N,t)

e We will return to this case when considering inflationary
non-Gaussianity: note that ¢ = —1/N? so the EFT literature
sometimes writes £(g", ..., ) (Cheung et al 2008)

e Unifying description for “building blocks™ of dark energy
(Gleyzes, Langois, Vernizzi 2015)



Vector Gauges
Vector gauge depends only on threading L

Poisson gauge: orthogonal threading B*!Y = 0, leaves constant L
translational freedom

Isotropic gauge: 1sotropic threading H;il) = 0, fixes L

To first order scalar and vector gauge conditions can be chosen
separately

More care required for second and higher order where scalars and
vectors mix



