GALAXY CLUSTER COSMOLOGY

ttp://chandra.harvard.edu/photo/2006/1e0657/

SEBASTIAN BOCQUET
ARGONNE NATIONAL LABORATORY / KICP

OVERVIEW

- Cluster Cosmology in a Nutshell
- The Halo Mass Function
- How do we Measure Cluster Properties?
- Scaling Relations
- Recent results (with a focus on SPT)

THE UNIVERSE CONTENT

The Q Continuum Simulation: Heitmann et al., 2015 (arXiv:1411.3396)

dark matter halo

- Predict abundance of halos as a function of cosmology using numerical simulations
- 2. Measure number of galaxy clusters in a given survey as a function of *mass* and *redshift*
- 3. Learn about cosmology

CLUSTER MASS DEFINITIONS

- Cluster masses usually defined as M_{Δ} , which is mass enclosed within a sphere of radius r_{Δ} , whose average density is $\Delta * \rho$
- defined with respect to ρ_{mean} or ρ_{critical}
- $\Delta = 500c$ used for X-ray because only inner part is bright
- $\Delta = 200c$ used for weak grav. lensing and velocity dispersions
- In simulations, also consider friend-of-friend (FoF) masses with linking length $b \sim 0.2$

CONSTRAINTS ON FLAT LCDM MODEL

DE HAAN ET AL. 2016 (SPT COLLABORATION)

OVERVIEW

- Cluster Cosmology in a Nutshell
- The Halo Mass Function
- How do we Measure Cluster Properties?
- Scaling Relations
- Recent results (with a focus on SPT)

Structure formation in numerical simulations N-BODY VS. HYDRODYNAMIC SIMULATIONS

- gravity-only
- (relatively) cheap
- no free parameters

- gravity & gas
- more expensive
- complicated sub-grid physics such as star formation, feedback from active galactic nuclei

HALO MASS FUNCTION

SB ET AL. 2016 (ARXIV: 1502.07357)

IMPACT OF BARYONS ON THE HMF

MAGNETICUM HYDRODYNAMIC SIMULATIONS: UP TO (3.8 MPC)3 (K. DOLAG+)

SPT-like (high-mass > \sim 3e14 M_{sun}) eROSITA-like (all masses > \sim 5e13 M_{sun})

blue vs. green contours: impact of baryons on the HMF

SB et al., MNRAS 2016 (arXiv: 1502.07357)

HMF - OUTLOOK

CALIBRATE THE COSMOLOGICAL DEPENDENCE

- Run simulations for a range of different cosmologies and mass definitions
- Use emulator to interpolate to desired cosmology

OVERVIEW

- Cluster Cosmology in a Nutshell
- The Halo Mass Function
- How do we Measure Cluster Properties?
- Scaling Relations
- Recent results (with a focus on SPT)

THESE ARE GALAXY CLUSTERS...

... SO WHAT ARE THEIR MASSES?

Credit: NASA, ESA, and J. Lotz, M. Mountain, A. Koekemoer, and the HFF Team (STScI)

http://www.spacetelescope.org/images/heic1401a/

Credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA), J.
Blakeslee (NRC Herzberg Astrophysics Program, Dominion Astrophysical Observatory), and H. Ford (JHU) http://www.spacetelescope.org/images/heic1317a

WHAT IS A GALAXY CLUSTER?

SZ / NIR OBSERVATIONS

MOST MASSIVE CLUSTER KNOWN AT Z > 1, FOLEY ET AL. 2013

The South Pole Telescope

- (Sub) millimeter wavelength telescope
 - 10 meter aperture
 - 1' FWHM beam at 150 GHz
 - 5 arcsec astrometry
- mm-wave receiver
 - 1 deg² FOV
 - 3 bands: 95 GHz, 150 GHz, 220 GHz
 - Depth ~ 15-60 μK-arcmin
- Observed the CMB over >2500 deg²

Image credit: Nicholas Huang & Robert Citron

Sunyaev-Zel'dovich Effect (SZE)

- About 1% of CMB photons scatter
- SZE flux proportional to total thermal energy in the electron population
- SZE surface brightness is independent of redshift

Zoom in on an SPT map 50 deg² from 2500 deg² survey

CMB Anisotropy -

Primordial and secondary anisotropy in the CMB

Point Sources - High-redshift dusty star forming galaxies and Active Galactic Nuclei

Clusters - High signal to noise SZ galaxy cluster detections as "shadows" against the CMB!

From B. Benson

SZ AND X-RAY SURVEYS

(SOME OF THE) UPCOMING SURVEYS

SPT-3G, EROSITA

CLUSTER RED SEQUENCE

USEFUL FEATURE IN COLOR-MAGNITUDE SPACE

RED-SEQUENCE MATCHED-FILTER PROBABILISTIC PERCOLATION CLUSTER FINDER (REDMAPPER, RYKOFF ET AL.)

Stott et al. 2009

RED SEQUENCE OF SPT CLUSTERS IN DES

0.07 < z < 1.12 (HENNIG ET AL. 2016)

EXAMPLE OPTICAL SURVEYS

- Sloan Digital Sky Survey (SDSS): 14,000 deg², 26,311 clusters with richness $\lambda > 20$, 0.08 < z < 0.6
- Dark Energy Survey (DES): 5,000 deg²; currently: 150 deg² Science Verification Data, 786 clusters with $\lambda > 20$, 0.2 < z < 0.9
- Large Synoptic Survey Telescope (LSST, ~2020): 18,000 deg²

OVERVIEW

- Cluster Cosmology in a Nutshell
- The Halo Mass Function
- How do we Measure Cluster Properties?
- Scaling Relations
- Recent results (with a focus on SPT)

SCALING RELATIONS

RELATE OBSERVABLES TO MASS

- Assume there is a mean relation < Obs > = f(Mass) with scatter
- self-similar model for virialized objects (Kaiser 1986)
 - Mgas = $C_{gas} M_{\Delta c}$
 - $T^{3/2} = C_T E(z) M_{\Delta c}$
 - $Ysz^{3/5} = C_{SZ} E(z)^{2/5} M_{\Delta c}$
 - $E(z) = H(z)/H_0$
- In practice, allow for more freedom $< Obs > = A M^B E(z)^C$

SCALING RELATIONS IN SIMULATIONS

X-RAY - WL CALIBRATION

OVERVIEW

- Cluster Cosmology in a Nutshell
- The Halo Mass Function
- How do we Measure Cluster Properties?
- Scaling Relations
- Recent results (with a focus on SPT)

Observed Cluster Mass Function

800

600

400

200

Flat LCDM Cosmology

Neutrino Sector

Dark Energy Equation of State

PARAMETRIZED GROWTH OF STRUCTURE

$$f(a) \equiv \frac{d \ln \delta}{d \ln a} \equiv \Omega_{\rm m}^{\gamma}(a)$$

$$D_{\rm ini}(z) \equiv \frac{\delta(z)}{\delta(z_{\rm ini})} = \delta(z_{\rm ini})^{-1} \exp\left(\int_{a_{\rm ini}}^a d\ln a' \; \Omega_{\rm m}^{\gamma}(a')\right)$$

$$P(k,z) = P(k,z_{\rm ini}) D_{\rm ini}^2(z)$$

GR predicts $\gamma = 0.55$

RESULTS FROM CLUSTERS TO DATE

Weighing the Giants IV: Mantz et al. 2015 Also: Rapetti et al. 2009, 2010, 2013

RESULTS FROM CLUSTERS TO DATE

SPT-SZ 720 deg²: SB et al. 2015