Mass Functions and Bias

Consider the Jenkins et al (2001) mass function:

$$\frac{dn}{d\ln M} = 0.315 \frac{\rho_m}{M} \frac{d\ln \sigma^{-1}}{d\ln M} \exp\left[-|\ln \sigma^{-1} + 0.61|^{3.8}\right].$$
(1)

and dig out your code for computing $\sigma(M)$ from the previous problem set.

- Modify your code to also calculate $d \ln \sigma^{-1}/d \ln M$. Hint: again start with the tophat in R and compute $d\sigma_R^2/d \ln R$ by differentiating the window under the integral; the rest is just chain-ruling M(R).
- Integrate the mass function above $3 \times 10^{14} h^{-1} M_{\odot}$. What is the number density of such (cluster sized) objects in $h^3 \text{ Mpc}^{-3}$ in the same cosmology as the previous problem sets?
- The bias as a function of mass is given in Press-Schecter theory as

$$b(M) = 1 + [\delta_c^2 / \sigma^2(M) - 1] / \delta_c \,. \tag{2}$$

Take δ_c the threshold for spherical collapse to be $\delta_c = 1.68$. Plot b(M) from $10^{11}M_{\odot}$ to $10^{16}M_{\odot}$. By integrating over the mass function, find the average bias of objects $> 3 \times 10^{14} h^{-1} M_{\odot}$.