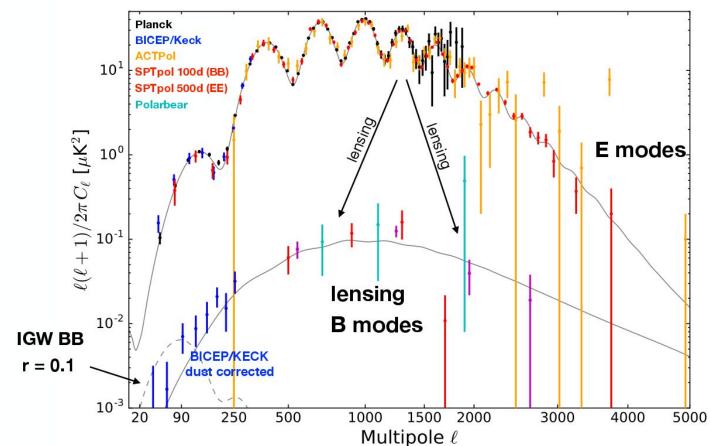
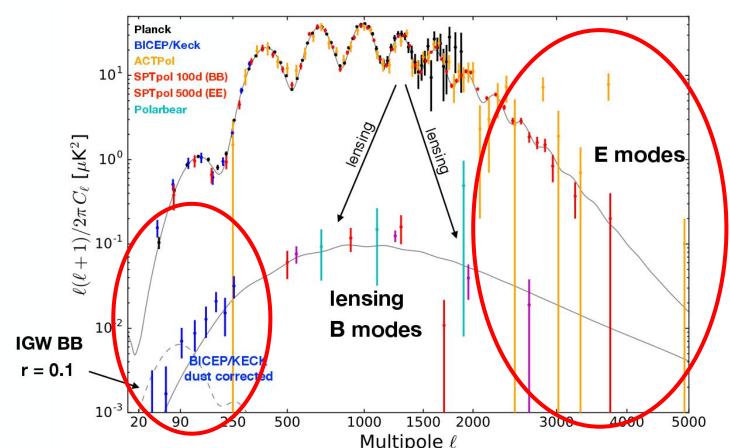


Progress in the CMB Detection



Cosmological parameters from 2015 Planck results^{[33][35]}

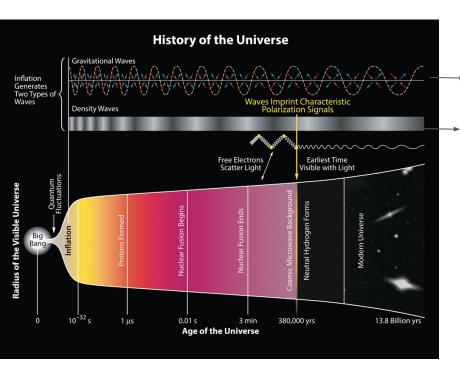
Parameter	Symbol	TT+lowP 68% limits	TT+lowP +lensing 68% limits	TT+lowP +lensing+ext 68% limits	TT,TE,EE+lowP 68% limits	TT,TE,EE+lowP +lensing 68% limits	TT,TE,EE+lowP +lensing+ext 68% limits
Baryon density	$\Omega_b h^2$	0.022 22 ±0.000 23	0.022 26 ±0.000 23	0.022 27 ±0.000 20	0.022 25 ±0.000 16	0.022 26 ±0.000 16	0.022 30 ±0.000 14
Cold dark matter density	$\Omega_c h^2$	0.1197 ±0.0022	0.1186 ±0.0020	0.1184 ±0.0012	0.1198 ±0.0015	0.1193 ±0.0014	0.1188 ±0.0010
100x approximation to r _s / D _A (CosmoMC)	$100 heta_{MC}$	1.040 85 ±0.000 47	1.041 03 ±0.000 46	1.041 06 ±0.000 41	1.040 77 ±0.000 32	1.040 87 ±0.000 32	1.040 93 ±0.000 30
Thomson scattering optical depth due to reionization	τ	0.078 ±0.019	0.066 ±0.016	0.067 ±0.013	0.079 ±0.017	0.063 ±0.014	0.066 ±0.012
Power spectrum of curvature perturbations	$\ln(10^{10}A_s)$	3.089 ±0.036	3.062 ±0.029	3.064 ±0.024	3.094 ±0.034	3.059 ±0.025	3.064 ±0.023
Scalar spectral index	n_s	0.9655 ±0.0062	0.9677 ±0.0060	0.9681 ±0.0044	0.9645 ±0.0049	0.9653 ±0.0048	0.9667 ±0.0040
Hubble's constant (km Mpc ⁻¹ s ⁻¹)	H_0	67.31 ±0.96	67.81 ±0.92	67.90 ±0.55	67.27 ±0.66	67.51 ±0.64	67.74 ±0.46
Dark energy density	Ω_{Λ}	0.685 ±0.013	0.692 ± 0.012	0.6935 ±0.0072	0.6844 ±0.0091	0.6879 ±0.0087	0.6911 ±0.0062
Matter density	Ω_m	0.315 ±0.013	0.308 ±0.012	0.3065 ±0.0072	0.3156 ±0.0091	0.3121 ±0.0087	0.3089 ±0.0062
Density fluctuations at 8h ⁻¹ Mpc	(8	0.929 ±0.014	0.8140 ±0 0093	0.8154 ±0.0090	0.481 -0.013	0.81 \ ±0. / 87	0.8159 ±0.0086
Redshift of reionization	3	9 + 6	8.8 1	8 V _{-1.2}	0.¢ +1.7 -1.¢	.5 +1/4	8.8 +1.2
Age of the Universe (Gy)	t_0	13.813 ±0.038	13.799 ±0.038	3.70 5 ±0.029	13.813 ±0.026	13.807 ±0.026	13.799 ±0.021
Redshift at decoupling	z_*	1 090.09 ±0.42	1 089.94 ±0.42	1 089.90 ±0.30	1 090.06 ±0.30	1 090.00 ±0.29	1 089.90 ±0.23
Comoving size of the sound horizon at z = z*	COI	~ 1.1€.4 €	147.89 ±0.44	144.93 ±0.30	144.57 ±0.32	144.71 ±0.31	144.81 ±0.24
100× angular scale of sound horizon at last-scattering	$100 heta_*$	1.041 0 ±0.000 46	1.041 22 ±0.000 45	1.041 26 ±0.000 41	1.040 96 ±0.000 32	1.041 06 ±0.000 31	1.041 12 ±0.000 29
Redshift with baryon-drag optical depth = 1	z_{drag}	1 059.57 ±0.46	1 059.57 ±0.47	1 059.60 ±0.44	1 059.65 ±0.31	1 059.62 ±0.31	1 059.68 ±0.29
Comoving size of the sound horizon at $z = z_{drag}$	r_{drag}	147.33 ±0.49	147.60 ±0.43	147.63 ±0.32	147.27 ±0.31	147.41 ±0.30	147.50 ±0.24


Current status of CMB Polarization

From Jeff McMahon talk (2016)

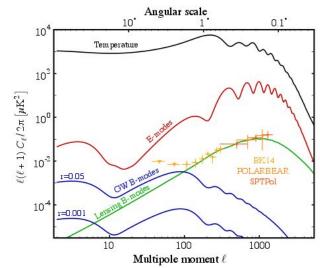
Current status of CMB Polarization

Need to fill out sparsely populated spots

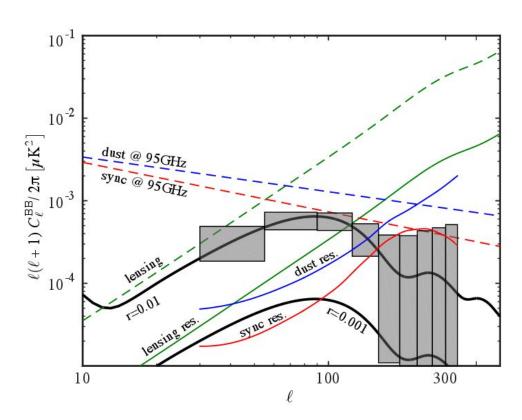


More Science to Come

- Inflation
- Neutrino
- Light relics
- Dark Matter
- Dark Energy
- CMB lensing


For more, CMB S4 Science Book: arXiv:1610.02743

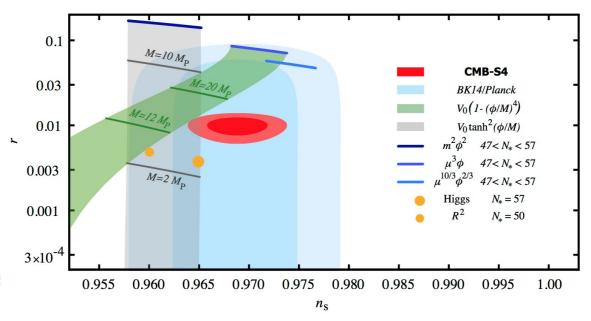
Inflation



Tensor perturbations -> B-mode. ???????

Scalar perturbations -> E-mode. DETECTED

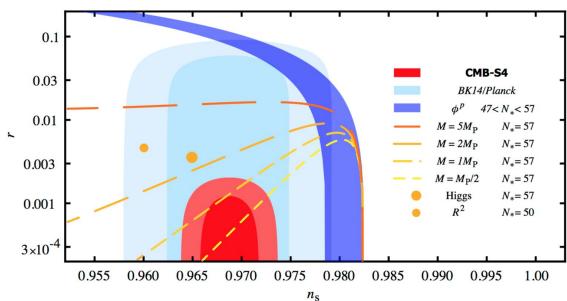
Predictions for CMB-S4



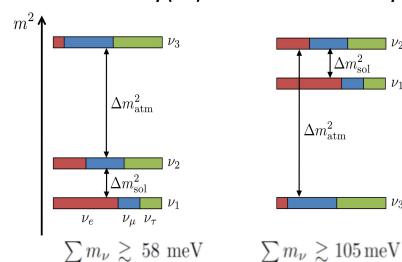
- Sensitivity ~ 1uK arcmin needed to reach σ(r) ~10⁻³
- Target bump at I~80
 - Reionization bump difficult to reach from ground
- Multi-band to separate foregrounds
- Large aperture telescope delensing (constructed from E-mode maps) effort needed

Implications of B-mode Detection

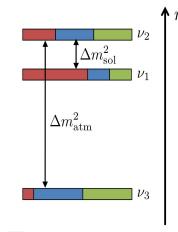
- Final check of inflation
- Probes the energy scale of inflation ~ 10¹⁶ GeV
- Evidence that quantum gravity must accommodate Planckian field range

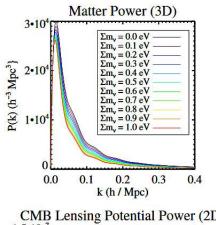

$$\frac{\Delta\phi}{M_{
m P}}\gtrsim \left(\frac{r_*}{8}\right)^{1/2}\mathcal{N}_*\gtrsim \left(\frac{r}{0.01}\right)^{1/2}$$

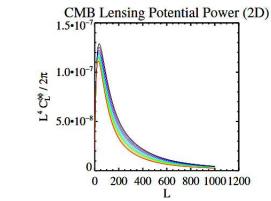
Implications of an Improved Upper Limit

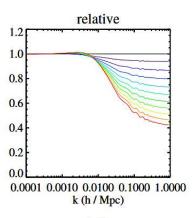

Models that explain observed value of n_s naturally with $\Delta\Phi > \sim M_P$ would be excluded

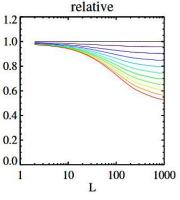
Give up on inflation?



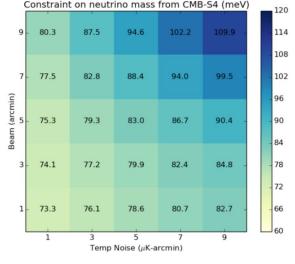

Neutrinos

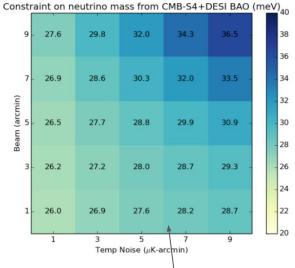

normal hierarchy (NH)

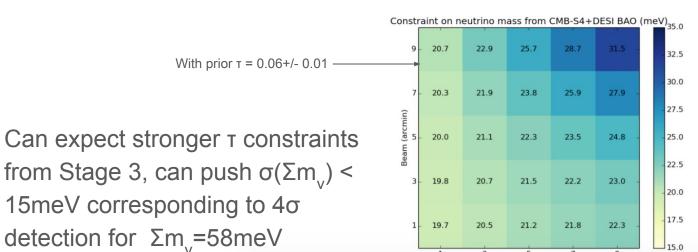



inverted hierarchy (IH)

Probing Neutrino Mass


CMB Lensing


- CMB directly sensitive to matter spectrum, largely free of astrophysical uncertainties
- Challenges: degeneracy with τ at above $I \sim 20$, and with $\Omega_{\rm m}$ (can be broken with DESI BAO expansion history)


Galaxy Cluster Abundance

- Free streaming neutrinos slow growth of structure and suppresses abundance
- Expects nearly mass limited sample (140000 for 1' resolution)
- Limited by cluster mass estimation (X-ray observations and galaxy-cluster weak lensing can help)
- Synergy with LSST, sensitive to galaxy clusters at different epochs

Forecast

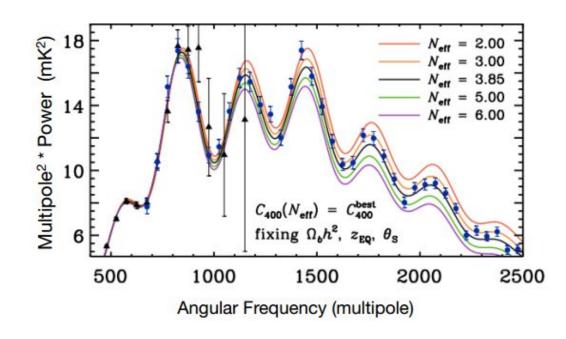
1

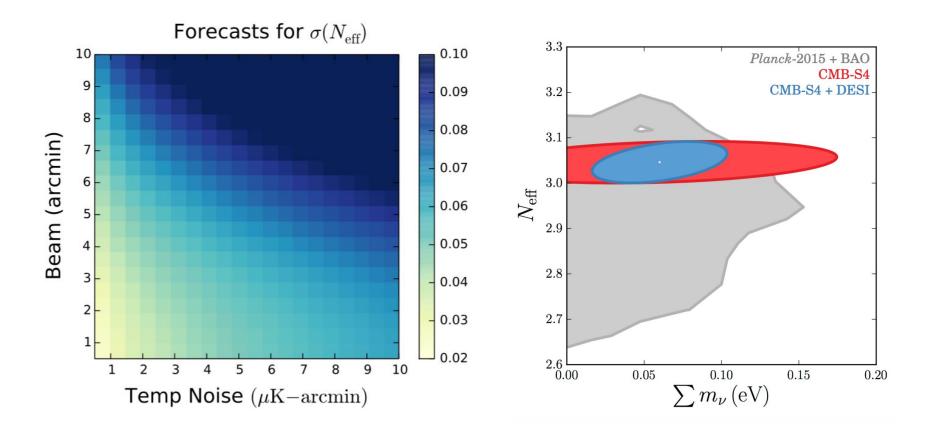
5

Temp Noise (µK-arcmin)

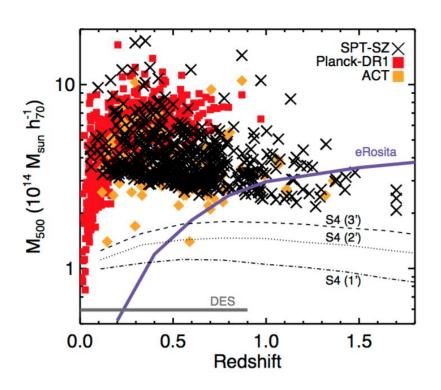
9

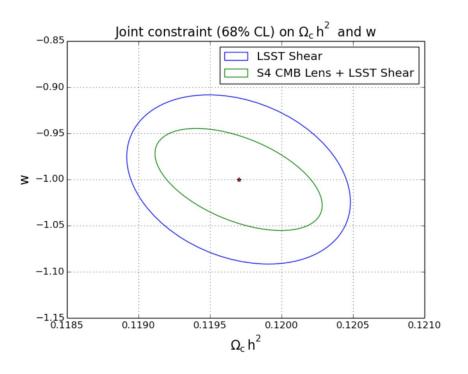
Sensitivity caps out ~ 26meV, strongly dependent on τ !


Light Relics


- N_{eff}: total energy density in radiation prior to recombination (SM: N_{eff}=3.046)
 - Measure of the gravitational influence of free streaming radiation that is decoupled from the photon-baryon fluid
- Possible sources of dark radiation: axions, sterile neutrinos, gravitational waves, dark photons, etc.
- $\Delta N_{eff} \ge 0.047$ predicted for models with additional light particles of spin 1/2,1, and/or 3/2
- $\Delta N_{eff} \ge 0.027$ predicted for models with particles of spin 0
- $\sigma(N_{eff}) \sim 0.02-0.03$ will probe this at 2σ and 1σ

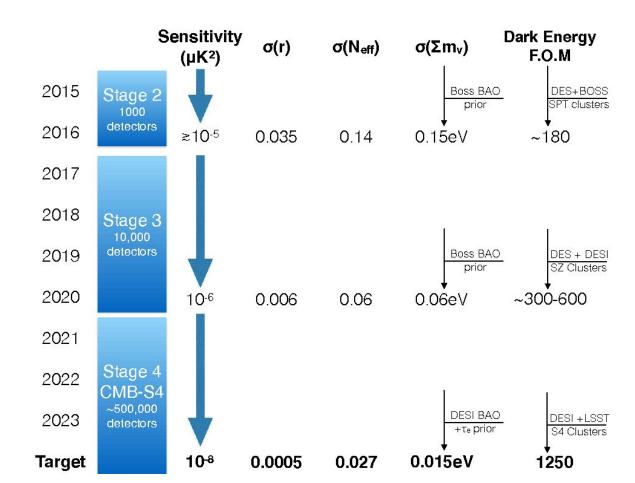
Observational Signatures


- Change in radiation energy density which controls the expansion and thus the damping tail of power spectrum
- Fluctuations also produces a shift in phase of peaks


Constraints sensitive to I_{max} (~5000?)

Dark Energy

~ 140000 clusters for 1'


Photon noise limited

NEP = $6x10^{-17}W^2/(Hz)^{1/2}$

NET ~ $300 \mu \text{K s}^{1/2}$

Assume temperature noise of 3 nK deg, 4 year survey with 25% efficiency, $f_{\rm sky} \sim 0.05$

 $N_{bolo} = (300 \text{uK s}^{1/2}/0.003 \text{ uK deg})^2 \text{ x} (2000 \text{ deg}^2/3\text{x}10^7\text{s}) \sim 5\text{x}10^5 \text{ bolometers needed}$

NSF

From Jeff McMahon talk (2016)

Current status

- Fleshing out CMB-S4 Instrumentation Book. What could we do to achieve the goals from Science Book?
- Figuring out how to control systematics, especially removing foreground
- Start building telescopes and detectors